
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 721

Abstract:

In distributed systems protecting the data is become more
vulnerable and has to provide the secure to the digital ap-
plications. A novel load-balancing algorithm to deal
with the load rebalancing problem in large-scale, dy-
namic, and distributed file systems in clouds. Distributed
file systems are key building blocks for cloud comput-
ing applications based on the Map Reduce programming
paradigm. In such file systems, nodes simultaneously
serve computing and storage functions. Files can
also be dynamically created, deleted, and appended.
This results in load imbalance in a distributed file sys-
tem; that is, the file chunks are not distributed as uniform-
ly as possible among the nodes. Additionally, we aim to
reduce network traffic or movement cost caused by
rebalancing the loads of nodes as much as possible
to maximize the network bandwidth available to
normal applications. recover, as failure is the norm,
nodes are newly added to sustain the overall

Key Words: Measurement, security. Denial of service.

1 Introduction:

96% of common people used to think that cloud is the
best place to store and retrieve the values virtually, and
62% of business entrepreneurs used to think that cloud is
the best place to store the content but the case about secu-
rity from hackers. To make use of these resources we need
search mechanisms that distill the information relevant to
each user. Nor- mally, such mechanisms require the user
to provide a server with a query such as a textual key-
word that the server will compare against the documents
in some large data set. This model becomes problematic
for applications in which the user would like to hide the
search criteria. A user might want to protect the pri- vacy
of his search queries for a variety of reasons, in-
cluding protection of commercial interests and personal
privacy.

Mahammad Shabana
Department of CSE,

St. Mary’s Group of Institutions,
Hyderabad.

M.Swapna Reddy
Department of CSE,

St. Mary’s Group of Institutions,
Hyderabad.

Kaja Masthan
Department of CSE,

Spoorthy Engineering College.

Such privacy issues were brought into the spotlight in
2005 when the U.S. Department of Jus- tice subpoe-
naed records of search terms from popular web search
engines. In the current era of digital world, different or-
ganizations produce a large amount of sensitive data in-
cluding personal information, electronic health records,
and financial data. The amount of digital data increases at
a staggering rate; doubling almost every year and a half
[1].This data needs to be widely distributed and stored for
a long time due to operational purposes and regulatory
compliance. The local management of such huge amount
of data is problematic and costly.

While there is an observable drop in the cost of storage
hardware, the management of storage has become more
complex and represents approximately 75% of the total
ownership cost [1]. SaaS offered by CSPs is an emerging
solution to mitigate the burden of large local data stor-
age and reduce the maintenance cost via the concept of
outsourcing data storage In such a distributed file system,
the load of a node is typically proportional to the number
of file chunks the node possesses [3]. Because the files in
a cloud can be arbitrarily created, deleted, and appended,
and nodes can be up- graded, replaced and added in the
file system [7], the file chunks are not distributed as uni-
formly as possible among the nodes. Load balance among
storage nodes is a critical function in clouds.

2 Workflows:

A workflow is a depiction of a sequence of operations, de-
clared as work of a person, work of a simple or complex
mechanism, work of a group of persons, work of an
organization of staff, or machines. Workflow may be seen
as any abstraction of real work, segregated in workshare,
work split or whatever types of ordering.For control pur-
poses, workflow may be a view on real work under a
chosen aspect, thus serving as a virtual representation
of actual work. The flow being described often refers
to a document that is being transferred from one step to
another .

Simplified Data Processing for Efficient Results on Internet
Applications

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 722

3 Related Works:

By leveraging DHTs, we present a load rebalanc-
ing algorithm for distributing file chunks as uniformly as
possible and minimizing the movement cost as much as
possible. Particularly, our proposed algo- rithm operates
in a distributed manner in which nodes perform their
load-balancing tasks indepen- dently without synchroni-
zation or global knowledge regarding the system.Many
systems have provided restricted programming models
and used the restrictions to parallelize the com- putation
automatically. For example, an associative func- tion
can be computed over all pre xes of an N element array
in log N time on N processors using parallel pre x compu-
tations [6, 9, 13]. MapReduce can be considered a simpli
cation and distillation of some of these models based on
our experience with large real-world compu- tations.
More signi cantly, we provide a fault-tolerant imple-
mentation that scales to thousands of processors. In con-
trast, most of the parallel processing systems have only
been implemented on smaller scales and leave the details
of handling machine failures to the programmer.

4 Proposed System:

The chunkservers self-configure and self-heal in our pro-
posal because of their arrivals, departures, and failures,
simplifying the system provisioning and management.
Specifically, typical DHTs guarantee that if a node
leaves, then its locally hosted chunks are reliably mi-
grated to its successor; if a node joins, then it allocates
the chunks whose IDs immediately precede the joining
node from its successor to manage. Our proposal heavily
depends on the node arrival and departure operations to
migrate file chunks among nodes. Interested readers are
referred to [10], [11] for the details of the self-man-
agement technique in DHTs.The DHT network is trans-
parent to the metadata management in our proposal. While
the DHT net- work specifies the locations of chunks, our
proposal can be integrated with existing large-scale dis-
tribu- ted file systems, e.g., Google GFS [2] and Hadoop
HDFS [3], in which a centralized master node manages
the namespace of the file system and the mapping of file
chunks to storage nodes. Specifically, to incorporate our
proposal with the master node in GFS, each chunkserver
periodically piggybacks its locally hosted chunks’ infor-
mation to the master in a heartbeat message [2] so that the
master can gather the locations of chunks in the system.

This eliminates the dependenceon central nodes. The
storage nodes are structured as a networkbased on dis-
tributed hash tables. DHTs enable nodes to self-organize
and repair while constantly offering lookup functionality
in node dynamism, simplifying the system provision and
management. Our algorithm is compared against a cen-
tralized approach in a production system and a competing
distributed solution presented in the literature. The simu-
lation results indicate that although each node performs
our load rebalancing algorithm independently without ac-
quiring global knowledge.

fig 1-The message overhead.

results indicate that centralized matching introduces much
less message overhead than distributed match- ing and
our proposal, as each node in centralized matching sim-
ply informs the centralized load balancer of its load and
capacity. On the contrary, in distributed matching and our
proposal, each node probes a number of existing nodes in
the system, and may then reallocate its load from/to the
probed nodes, introducing more mes- sages. We also see
that our proposal clearly produces less message overhead
than distributed computing. Speci- fically, any node i in
our proposal gathers partial system knowledge from its
neighbors [26], [27], whereas node i in distributed
matching takes Oðlog nÞ messages to probe a randomly
selected node in the network.

Both distributed matching [14] and our proposal depend
on the Chord DHT network in the simulations. How-
ever, nodes may leave and rejoin the DHT network
for load rebalancing, thus increasing the overhead re-
quired to maintain the DHT structure.Thus, we further
investigate the number of rejoining operations. Note that
centra- lized matching introduces no rejoining overhead
be- cause nodes in centralized matching does not need to
self-organize and self-heal for rejoining operations. Fig. 1
illustrates the simulation result

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 723

5.Architecture

In the experimental environment, a number of clients are
established to issue requests to the namenode. The
requests include commands to create directories with ran-
domly designated names, to remove directories arbitrarily
chosen, etc. Due to the scarce resources in our environ-
ment, we have deployed 4 clients to generate requests to
the name- node. However, this cannot overload the na-
menode to mimic the situation as reported s data center
networks proposed recently (e.g., [29]) can offer a fully
bisection bandwidth, the total number of chunks scattered
in the file system in our experiments is limited to 256 such
that the network bandwidth in our environment

6 Conclusions:

The MapReduce programming model has been success-
fully used at Google for many different purposes. We at-
tribute this success to several reasons. First, the model
is easy to use, even for programmers without experience
with parallel and distributed systems, since it hides the
details of parallelization, fault-tolerance, locality opti-
mization, and load balancing. Second, a large variety of
problems are easily expressible as MapReduce com- pu-
tations.

For example, MapReduce is used for the gen- eration of
data for Google’s production web search ser- vice, for
sorting, for data mining, for machine learning, and many
other systems. Third, we have developed an implemen-
tation of MapReduce that scales to large clus- ters
of machines comprising thousands of machines. The im-
plementation makes ef cient use of these machine re-
sources and therefore is suitable for useon many of the
large computational problems encountered at Google.

7.References:

1. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load Balancing in Structured P2P Systems,”
Proc. Second Int’l Workshop Peer-to-Peer Systems (IP-
TPS ’02), pp. 68-79, Feb.2003

2. J.W. Byers, J. Considine, and M. Mitzenmacher, “Sim-
ple Load Balancing for Distributed Hash Tables,” Proc.
First Int’l Workshop Peer-to-Peer Systems (IPTPS ’03),
pp. 80-87, Feb. 2003

3. K. McKusick and S. Quinlan, “GFS: Evolution on
Fast-Forward,” Comm. ACM, vol.53, no. 3, pp. 42-49,
Jan. 2010.

4.john r. douceur, the sybil attack, international workshop
on peer-to- peer systems, 2002.

5.H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea,
and A. Donnelly, “Symbiotic Routing in Future Data Cen-
ters,” Proc. ACM SIGCOMM ’10, pp. 51-62, Aug. 2010.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 722

3 Related Works:

By leveraging DHTs, we present a load rebalanc-
ing algorithm for distributing file chunks as uniformly as
possible and minimizing the movement cost as much as
possible. Particularly, our proposed algo- rithm operates
in a distributed manner in which nodes perform their
load-balancing tasks indepen- dently without synchroni-
zation or global knowledge regarding the system.Many
systems have provided restricted programming models
and used the restrictions to parallelize the com- putation
automatically. For example, an associative func- tion
can be computed over all pre xes of an N element array
in log N time on N processors using parallel pre x compu-
tations [6, 9, 13]. MapReduce can be considered a simpli
cation and distillation of some of these models based on
our experience with large real-world compu- tations.
More signi cantly, we provide a fault-tolerant imple-
mentation that scales to thousands of processors. In con-
trast, most of the parallel processing systems have only
been implemented on smaller scales and leave the details
of handling machine failures to the programmer.

4 Proposed System:

The chunkservers self-configure and self-heal in our pro-
posal because of their arrivals, departures, and failures,
simplifying the system provisioning and management.
Specifically, typical DHTs guarantee that if a node
leaves, then its locally hosted chunks are reliably mi-
grated to its successor; if a node joins, then it allocates
the chunks whose IDs immediately precede the joining
node from its successor to manage. Our proposal heavily
depends on the node arrival and departure operations to
migrate file chunks among nodes. Interested readers are
referred to [10], [11] for the details of the self-man-
agement technique in DHTs.The DHT network is trans-
parent to the metadata management in our proposal. While
the DHT net- work specifies the locations of chunks, our
proposal can be integrated with existing large-scale dis-
tribu- ted file systems, e.g., Google GFS [2] and Hadoop
HDFS [3], in which a centralized master node manages
the namespace of the file system and the mapping of file
chunks to storage nodes. Specifically, to incorporate our
proposal with the master node in GFS, each chunkserver
periodically piggybacks its locally hosted chunks’ infor-
mation to the master in a heartbeat message [2] so that the
master can gather the locations of chunks in the system.

This eliminates the dependenceon central nodes. The
storage nodes are structured as a networkbased on dis-
tributed hash tables. DHTs enable nodes to self-organize
and repair while constantly offering lookup functionality
in node dynamism, simplifying the system provision and
management. Our algorithm is compared against a cen-
tralized approach in a production system and a competing
distributed solution presented in the literature. The simu-
lation results indicate that although each node performs
our load rebalancing algorithm independently without ac-
quiring global knowledge.

fig 1-The message overhead.

results indicate that centralized matching introduces much
less message overhead than distributed match- ing and
our proposal, as each node in centralized matching sim-
ply informs the centralized load balancer of its load and
capacity. On the contrary, in distributed matching and our
proposal, each node probes a number of existing nodes in
the system, and may then reallocate its load from/to the
probed nodes, introducing more mes- sages. We also see
that our proposal clearly produces less message overhead
than distributed computing. Speci- fically, any node i in
our proposal gathers partial system knowledge from its
neighbors [26], [27], whereas node i in distributed
matching takes Oðlog nÞ messages to probe a randomly
selected node in the network.

Both distributed matching [14] and our proposal depend
on the Chord DHT network in the simulations. How-
ever, nodes may leave and rejoin the DHT network
for load rebalancing, thus increasing the overhead re-
quired to maintain the DHT structure.Thus, we further
investigate the number of rejoining operations. Note that
centra- lized matching introduces no rejoining overhead
be- cause nodes in centralized matching does not need to
self-organize and self-heal for rejoining operations. Fig. 1
illustrates the simulation result

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 723

5.Architecture

In the experimental environment, a number of clients are
established to issue requests to the namenode. The
requests include commands to create directories with ran-
domly designated names, to remove directories arbitrarily
chosen, etc. Due to the scarce resources in our environ-
ment, we have deployed 4 clients to generate requests to
the name- node. However, this cannot overload the na-
menode to mimic the situation as reported s data center
networks proposed recently (e.g., [29]) can offer a fully
bisection bandwidth, the total number of chunks scattered
in the file system in our experiments is limited to 256 such
that the network bandwidth in our environment

6 Conclusions:

The MapReduce programming model has been success-
fully used at Google for many different purposes. We at-
tribute this success to several reasons. First, the model
is easy to use, even for programmers without experience
with parallel and distributed systems, since it hides the
details of parallelization, fault-tolerance, locality opti-
mization, and load balancing. Second, a large variety of
problems are easily expressible as MapReduce com- pu-
tations.

For example, MapReduce is used for the gen- eration of
data for Google’s production web search ser- vice, for
sorting, for data mining, for machine learning, and many
other systems. Third, we have developed an implemen-
tation of MapReduce that scales to large clus- ters
of machines comprising thousands of machines. The im-
plementation makes ef cient use of these machine re-
sources and therefore is suitable for useon many of the
large computational problems encountered at Google.

7.References:

1. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load Balancing in Structured P2P Systems,”
Proc. Second Int’l Workshop Peer-to-Peer Systems (IP-
TPS ’02), pp. 68-79, Feb.2003

2. J.W. Byers, J. Considine, and M. Mitzenmacher, “Sim-
ple Load Balancing for Distributed Hash Tables,” Proc.
First Int’l Workshop Peer-to-Peer Systems (IPTPS ’03),
pp. 80-87, Feb. 2003

3. K. McKusick and S. Quinlan, “GFS: Evolution on
Fast-Forward,” Comm. ACM, vol.53, no. 3, pp. 42-49,
Jan. 2010.

4.john r. douceur, the sybil attack, international workshop
on peer-to- peer systems, 2002.

5.H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea,
and A. Donnelly, “Symbiotic Routing in Future Data Cen-
ters,” Proc. ACM SIGCOMM ’10, pp. 51-62, Aug. 2010.

