
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 279

ABSTRACT:

Fully homomorphic encryption (FHE) can perform arbi-
trarily on the given user data using a secondary key which
is unknown to the user but the algorithm contains a large
number of multipliers which is a bottle neck for the vlsi
design .so the large number of multipliers are replaced
with the Fast Fourier transform without any loss in per-
formance of the algorithm and low complexity in hard-
ware design .the paper focus on the hardware design for
the existing schemes to make the existing FHE schemes
more efficient and practical towards real-life applications.
The integer-FFT multiplication algorithm is adopted for
the implementation of Gentry-Halevi’s FHE scheme. As
the Moore law continues driving the computer technol-
ogy, the key size of the Rivest-Shamir-Adelman (RSA)
encryption is necessary to be upgraded

KEYWORDS:
Fully homomorphic encryption, Fast Fourier transform,
RSA algorithm.

I.INTRODUCTION:

Fully homomorphic encryption can be considered as
ring homomorphism. In mathematics, a ring is a set
R equipped with two operations + and * satisfying the
following eight axioms, called the ring axioms. R is an
abelian group under addition. Craig Gentry [6, 7], using
lattice-based cryptography, showed the first fully homo-
morphic encryption scheme as announced by IBM on 25
June 2009. His scheme supports evaluations of arbitrary
depth circuits. His construction starts from a somewhat
homomorphic encryption scheme using ideal latticesthat
is limited to evaluating low-degree polynomials over en-
crypted data. It is limited because each cipher text is noisy
in some sense, and this noise grows as one adds and mul-
tiplies ciphertexts, until ultimately the noise makes the
resulting ciphertext indecipherable.

Pottendla Anjali Devi
PG Scholar,

Dept of ECE,
Global College of Engineering & Technology,

Kadapa, YSR (Dt), AP, India.

S K Imam Basha
Assistant Professor,

Dept of ECE,
Global College of Engineering & Technology,

Kadapa, YSR (Dt), AP, India.

He then shows how to modify this scheme to make it
bootstrappable—in particular, he shows that by modify-
ing the somewhat homomorphic scheme slightly, it can
actually evaluate its own decryption circuit, a self-refer-
ential property. Finally, he shows that any bootstrappable
somewhat homomorphic encryption scheme can be con-
verted into a fully homomorphic encryption through a re-
cursive self-embedding. In the particular case of Gentry’s
ideal-lattice-based somewhat homomorphic scheme, this
bootstrapping procedure effectively “refreshes” the cipher
text by reducing its associated noise so that it can be used
thereafter in more additions and multiplications without
resulting in an indecipherable ciphertext.

II.RELATED WORK:

Previously general-purpose GPU has also been used for
acceleration of security algorithms such as elliptic curve
cryptography [54]. But the GPU architecture was origi-
nally geared for graphics operations and later has been
extended for general purpose computations. It is not the
most power efficient architecture for a specific algorithm
or applications. One approach is to attach an Application
Specific Integrated Circuit (ASIC) to the CPU which is
dedicated to encryption/decryption operations. At micro-
architectural level, it can be implemented as an exten-
sion of instruction set. Previously customized ASIC or IP
blocks has been designed to accelerate the well-known
encryption schemes such as Advanced Encryption Stan-
dard (AES) and RSA [1] [2]. Today many embedded pro-
cessors have AES or RSA cores included. This work is
aimed to take a similar approach and to design a specific
hardware or IP blocks for accelerating the core computa-
tions in FHE. There are some works tackling the problem
of hardware acceleration of fully homomorphic encryp-
tion. In [55], an FPGA implementation draft for improv-
ing the speed of FHE primitives was proposed. However,
no implementation results were presented. [56] Presents a
first custom hardware architecture supporting

Double Key Encryption RSA Algorithm Using FFT in
Homomorphic Methodology

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 280

encryption, decryption and recryption primitives for the
lowest security setting with a dimension 2,048 for the
Gentry-Halevi scheme. A number theoretical transform
based fast million-bit multiplier is the heart of all the
primitives as claimed in [3]. Large integer multiplica-
tion is by far the most time consuming operation in the
FHE scheme. Therefore we have selected it as the first
block for hardware acceleration. Because multiplication
is the dominating component of FHE operations, it will
be a significant step toward practical application of FHE
if a high performance, low power, area efficient, high pre-
cision, integer multiplier architecture can be developed.
Therefore, our initial attempt is to tackle the design of a
large-number multiplier thatcan handle 768K bits, in sup-
port of the 2048 dimension FHE scheme demonstrated by
Gentry and Halevi.

III.IMPLEMENTATION:

The finite-field FFT and IFFT units are the main compo-
nents of the large-number multiplier. For high-throughput
applications, a pipeline FFT architecture is often used
[17]. However, the pipeline design requires a local mem-
ory buffer at every stage [17] which often results larger
chip area and more power consumption. In contrast, a
memory-based inplace FFT architecture stores the in-
termediate results at the same memory where the input
data are read from. As a result, it minimizes the memory
usage but still can produces high throughput [15]. Thus,
the memory-based strategy is adopted in this design. The
memory-based FFT architecture mainly consists of a but-
terfly unit, a data memory, a ROM storing the twiddle
factors, and a control logic unit. The butterfly unit needs
to read γ input data from the memory then write back γ
output results back to the memory. Hereby, we adopt a
conflict memory access approach [15] [16] that partitions
the memory into γ banks for concurrent conflict-free read
and write access. More specifically, the input data with
indexes D = [dn−1, dn−1, ..., d0]γ, where n = logK γ ,
are stored at address = [dn−1, dn−2, ..., d1]r and bank =
(Pn−1 i=0 di) mod r. In this design, γ is 4 and K is 40.
In this architecture, we need to design a 1,024-point fi-
nite- field FFT processor. For hardware efficiency, we
choose to use two stages of 32-point FFTs to implement
the 1,024-point FFT. A radix-4 butterfly unit can be used
recursively for four times to compute one radix-4 FFT.
For 40-point FFT. From equations (1-2), it is obvious that
only shift operations and modulo additions are needed to
compute the FFT.

Fig .1 FFT-based multiplication algorithm.

Carry Save Adder:

The limitation of speed of a modern computer in perform-
ing the arithmetic operations where addition is the basic
units of arithmetic machines leads to slow operating de-
vices. A fast arithmetic unit allows the extension of the
application domain of fast addition in digital image pro-
cessing, signal processing, inversion of matrices; compu-
tation of Eigen values, digital filters etc.The adders are
important building blocks of any digital processors and
their design have been of great concern to engineers and
professionals in the area of microprocessors and special
signal processors. This is because most of the As a re-
sult fast adder designs have been of continued interest in
order to reduce the addition time constraints in sophisti-
cated processing applications. Redundant number system
may not be convenient for manual computations but they
are useful in designing high speed arithmetic machines.
CSA number representation systems posses sufficient
redundancy to allow the annihilation of carry or borrow
chains and hence result in fast, propagation free addition
and subtraction. Additionally, Adder designed with CSA
number system has a regular layout which is suitable for
implementations. The redundant binary representation
(RBR) is a numeral system that uses A signed digit num-
ber is represented by m+n+1 digits x’ Formula having al-
gebraic value as;

Where the value of r and x’ are such that the following
conditions satisfied: The ‘r’ radix is a positive integer Al-
gebraic value Formula has unique representation Totally
parallel addition and subtraction is possible for all digits
in corresponding position of two’s representation.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 281

If Formula, then Formula number representation is known
as Redundant Binary Signed Digit Number System.Multi-
plication requires the addition of several summands. This
technique of adding the summands is called carry save ad-
dition. In this type of addition, addition of two numbers is
done and carry is saved and the carry is added to the final
sum. We can understand it easily by an example, suppose
the addition of n-bit numbers ‘a’, ‘b’, ‘c’ to produce a sum
‘z’. Now first we add ‘a’ and ‘b’ to produce an intermedi-
ate sum ‘u’ and now we add ‘u’ to ‘c’ to produce a final
sum ‘z’.

IV.RESULTS
TRANSMITTER:

Fig 2 .Transmitter resultant

The above resultant is the four input port of 8 bit each 6 0
0 6 is given as the data and key and the two resultants out1
and out2 are the chipper text with proposed encryption

RECIEVER:

Fig 3 Reciever resultant

The above resultant is the two input port of 16 bit each
.the chipper text generated is given as the data and the
four resultants out1, out2, out3 and out4 are the original
text with proposed decryption.

V.CONCLUSION AND FUTURE SCOPE:

The large-number multiplier is using Strassen’s FFT-
based multiplication algorithm.

The memory-based, in-place FFT architecture was used
for the FFT processor to reduce the memory usage. We
use a number of design optimization strategies to improve
the performance and reduce the area of the Radix-16 unit.
For RADIX FFTs, coding gain is only achieved if it is
concatenated with an outer code, such as a TCM code or
a Turbo TCM Code. This was mentioned as an ongoing,
exciting area of research.

REFERENCES:

[1]J. D. Cohen and M. J. Fischer, “A robust and veriable
cryptographically secure election scheme,in FOCS, vol.
85, 1985, pp. 37282.
[2]E.Kushilevitz and R. Ostrovsky, Replication is not
needed: Single database, computationally-private infor-
mation retrieval, in Foundations of Computer Sci- ence,
1997. Proceedings., 38th Annual Symposium on. IEEE,
1997, pp. 364-373.
[3]M. Naehrig, K. Lauter, and V. Vaikuntanathan, Can ho-
momorphic encryption be practical?in Proceedings of the
3rd ACM workshop on Cloud computing security work-
shop. ACM, 2011, pp. 113-124.
[4]R. L. Rivest, L.Adleman, and M. L. Dertouzos, On
data banks and privacy homomorphisms, Foundations of
secure computation, vol. 32, no. 4, pp. 169- 178, 1978.
[5]S.Goldwasser and S. Micali, Probabilistic
encryption,Journal of computer and system sciences, vol.
28, no. 2, pp. 270-299, 1984.
[6]R. L. Rivest, A. Shamir, and L. Adleman, A method
for obtaining digital signatures and public-key cryptosys-
tems, Communications of the ACM, vol. 21, no. 2, pp.
120-126, 1978.

Author’s Profile:

