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ABSTRACT: 

Fully homomorphic encryption (FHE) can perform arbi-
trarily on the given user data using a secondary key which 
is unknown to the user  but the algorithm contains a large 
number of multipliers which is a bottle neck for the vlsi 
design .so the large number of multipliers are replaced 
with the Fast Fourier transform without any loss in per-
formance of the algorithm and low complexity in hard-
ware design .the paper focus on the hardware design for 
the existing schemes to make the existing FHE schemes 
more efficient and practical towards real-life applications. 
The integer-FFT multiplication algorithm is adopted for 
the implementation of Gentry-Halevi’s FHE scheme. As 
the Moore law continues driving the computer technol-
ogy, the key size of the Rivest-Shamir-Adelman (RSA) 
encryption is necessary to be upgraded
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I.INTRODUCTION:

Fully homomorphic encryption can be considered as 
ring homomorphism. In mathematics, a ring is a set 
R equipped with two operations + and * satisfying the 
following eight axioms, called the ring axioms. R is an 
abelian group under addition. Craig Gentry [6, 7], using 
lattice-based cryptography, showed the first fully homo-
morphic encryption scheme as announced by IBM on 25 
June 2009. His scheme supports evaluations of arbitrary 
depth circuits. His construction starts from a somewhat 
homomorphic encryption scheme using ideal latticesthat 
is limited to evaluating low-degree polynomials over en-
crypted data. It is limited because each cipher text is noisy 
in some sense, and this noise grows as one adds and mul-
tiplies ciphertexts, until ultimately the noise makes the 
resulting ciphertext indecipherable. 
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He then shows how to modify this scheme to make it 
bootstrappable—in particular, he shows that by modify-
ing the somewhat homomorphic scheme slightly, it can 
actually evaluate its own decryption circuit, a self-refer-
ential property. Finally, he shows that any bootstrappable 
somewhat homomorphic encryption scheme can be con-
verted into a fully homomorphic encryption through a re-
cursive self-embedding. In the particular case of Gentry’s 
ideal-lattice-based somewhat homomorphic scheme, this 
bootstrapping procedure effectively “refreshes” the cipher 
text by reducing its associated noise so that it can be used 
thereafter in more additions and multiplications without 
resulting in an indecipherable ciphertext.

II.RELATED WORK:

Previously general-purpose GPU has also been used for 
acceleration of security algorithms such as elliptic curve 
cryptography [54]. But the GPU architecture was origi-
nally geared for graphics operations and later has been 
extended for general purpose computations. It is not the 
most power efficient architecture for a specific algorithm 
or applications. One approach is to attach an Application 
Specific Integrated Circuit (ASIC) to the CPU which is 
dedicated to encryption/decryption operations. At micro-
architectural level, it can be implemented as an exten-
sion of instruction set. Previously customized ASIC or IP 
blocks has been designed to accelerate the well-known 
encryption schemes such as Advanced Encryption Stan-
dard (AES) and RSA [1] [2]. Today many embedded pro-
cessors have AES or RSA cores included. This work is 
aimed to take a similar approach and to design a specific 
hardware or IP blocks for accelerating the core computa-
tions in FHE. There are some works tackling the problem 
of hardware acceleration of fully homomorphic encryp-
tion. In [55], an FPGA implementation draft for improv-
ing the speed of FHE primitives was proposed. However, 
no implementation results were presented. [56] Presents a 
first custom hardware architecture supporting
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encryption, decryption and recryption primitives for the 
lowest security setting with a dimension 2,048 for the 
Gentry-Halevi scheme. A number theoretical transform 
based fast million-bit multiplier is the heart of all the 
primitives as claimed in [3]. Large integer multiplica-
tion is by far the most time consuming operation in the 
FHE scheme. Therefore we have selected it as the first 
block for hardware acceleration. Because multiplication 
is the dominating component of FHE operations, it will 
be a significant step toward practical application of FHE 
if a high performance, low power, area efficient, high pre-
cision, integer multiplier architecture can be developed. 
Therefore, our initial attempt is to tackle the design of a 
large-number multiplier thatcan handle 768K bits, in sup-
port of the 2048 dimension FHE scheme demonstrated by 
Gentry and Halevi.

III.IMPLEMENTATION:

The finite-field FFT and IFFT units are the main compo-
nents of the large-number multiplier. For high-throughput 
applications, a pipeline FFT architecture is often used 
[17]. However, the pipeline design requires a local mem-
ory buffer at every stage [17] which often results larger 
chip area and more power consumption. In contrast, a 
memory-based inplace FFT architecture stores the in-
termediate results at the same memory where the input 
data are read from. As a result, it minimizes the memory 
usage but still can produces high throughput [15]. Thus, 
the memory-based strategy is adopted in this design. The 
memory-based FFT architecture mainly consists of a but-
terfly unit, a data memory, a ROM storing the twiddle 
factors, and a control logic unit. The butterfly unit needs 
to read γ input data from the memory then write back γ 
output results back to the memory. Hereby, we adopt a 
conflict memory access approach [15] [16] that partitions 
the memory into γ banks for concurrent conflict-free read 
and write access. More specifically, the input data with 
indexes D = [dn−1, dn−1, ..., d0]γ, where n = logK γ , 
are stored at address = [dn−1, dn−2, ..., d1]r and bank = 
( Pn−1 i=0 di) mod r. In this design, γ is 4 and K is 40. 
In this architecture, we need to design a 1,024-point fi-
nite- field FFT processor. For hardware efficiency, we 
choose to use two stages of 32-point FFTs to implement 
the 1,024-point FFT. A radix-4 butterfly unit can be used 
recursively for four times to compute one radix-4 FFT. 
For 40-point FFT. From equations (1-2), it is obvious that 
only shift operations and modulo additions are needed to 
compute the FFT. 

Fig .1 FFT-based multiplication algorithm.

Carry Save Adder:

The limitation of speed of a modern computer in perform-
ing the arithmetic operations where addition is the basic 
units of arithmetic machines leads to slow operating de-
vices. A fast arithmetic unit allows the extension of the 
application domain of fast addition in digital image pro-
cessing, signal processing, inversion of matrices; compu-
tation of Eigen values, digital filters etc.The adders are 
important building blocks of any digital processors and 
their design have been of great concern to engineers and 
professionals in the area of microprocessors and special 
signal processors. This is because most of the As a re-
sult fast adder designs have been of continued interest in 
order to reduce the addition time constraints in sophisti-
cated processing applications. Redundant number system 
may not be convenient for manual computations but they 
are useful in designing high speed arithmetic machines. 
CSA number representation systems posses sufficient 
redundancy to allow the annihilation of carry or borrow 
chains and hence result in fast, propagation free addition 
and subtraction. Additionally, Adder designed with CSA 
number system has a regular layout which is suitable for 
implementations. The redundant binary representation 
(RBR) is a numeral system that uses A signed digit num-
ber is represented by m+n+1 digits x’ Formula having al-
gebraic value as;

Where the value of r and x’ are such that the following 
conditions satisfied: The ‘r’ radix is a positive integer Al-
gebraic value Formula has unique representation Totally 
parallel addition and subtraction is possible for all digits 
in corresponding position of two’s representation.
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If Formula, then Formula number representation is known 
as Redundant Binary Signed Digit Number System.Multi-
plication requires the addition of several summands. This 
technique of adding the summands is called carry save ad-
dition. In this type of addition, addition of two numbers is 
done and carry is saved and the carry is added to the final 
sum. We can understand it easily by an example, suppose 
the addition of n-bit numbers ‘a’, ‘b’, ‘c’ to produce a sum 
‘z’. Now first we add ‘a’ and ‘b’ to produce an intermedi-
ate sum ‘u’ and now we add ‘u’ to ‘c’ to produce a final 
sum ‘z’. 

IV.RESULTS 
TRANSMITTER:

 
Fig 2 .Transmitter resultant

The above resultant is the four input port of 8 bit each 6 0 
0 6 is given as the data and key and the two resultants out1 
and out2 are the chipper text  with proposed encryption

RECIEVER:

 
Fig 3 Reciever resultant

The above resultant is the two input port of 16 bit each 
.the chipper text generated is given as the data and the 
four resultants out1, out2, out3 and out4 are the original 
text with proposed decryption.

V.CONCLUSION AND FUTURE SCOPE:

The large-number multiplier is using Strassen’s FFT-
based multiplication algorithm. 

The memory-based, in-place FFT architecture was used 
for the FFT processor to reduce the memory usage. We 
use a number of design optimization strategies to improve 
the performance and reduce the area of the Radix-16 unit.
For RADIX FFTs, coding gain is only achieved if it is 
concatenated with an outer code, such as a TCM code or 
a Turbo TCM Code. This was mentioned as an ongoing, 
exciting area of research.
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