
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 124

Abstract:

Storing critical information in cloud should come with
the guarantee of security and availability for data at rest,
in motion, and in use. Several alternatives exist for stor-
age services, while data confidentiality solutions for the
database as a service paradigm are still immature. In this
paper, we propose a novel architecture that integrates
cloud database services with data confidentiality and the
possibility of executing concurrent operations on cipher
text. This is the first solution supporting geographically
distributed clients to connect directly to an encrypted
cloud database, and to execute concurrent and indepen-
dent operations including those modifying the database
structure. Our proposed architecture has the further ad-
vantage of eliminating intermediate proxies that limit
the elasticity, availability, and scalability properties that
are intrinsic in cloud-based solutions. The efficacy of the
proposed architecture is evaluated through theoretical
analyses and extensive experimental results based on a
prototype implementation subject to the TPC-C standard
benchmark for different numbers of clients and network
latencies.

Index Terms:

Cloud, security, confidentiality, SecureDBaaS, database.

1 INTRODUCTION:

IN a context of cloud, ensuring data confidentiality is of
paramount importance. Here original plain data must be
accessible only by trusted parties that do not include cloud
providers, intermediaries, and Internet; in any untrusted
context, data must be encrypted. In this context, we pro-
pose SecureDBaaS as the first solution that allows cloud
tenants to take full advantage of DBaaS qualities, such
as availability, reliability, and elastic scalability, without
exposing unencrypted data to the cloud provider.

The architecture design was motivated by a threefold
goal: to allow multiple, independent, and geographically
distributed clients to execute concurrent operations on
encrypted data, including SQL statements that modify
the database structure; to preserve data confidentiality
and consistency at the client and cloud level to eliminate
any intermediate server between the cloud client and the
cloud provider. The possibility of combining availability,
elasticity, and scalability of a typical cloud DBaaS with
data confidentiality is demonstrated through a prototype
of SecureDBaaS that supports the execution of concur-
rent and independent operations to the remote encrypted
database from many geographically distributed clients as
in any unencrypted DBaaS setup. To achieve these goals,
SecureDBaaS integrates existing cryptographic schemes,
isolation mechanisms, and novel strategies for manage-
ment of encrypted metadata on the untrusted cloud data-
base. This paper contains a theoretical discussion about
solutions for data consistency issues due to concurrent
and independent client accesses to encrypted data.

In this context, we cannot apply fully homo morphic en-
cryption schemes because of their excessive computa-
tional complexity. SecureDBaaS is immediately appli-
cable to any DBMS because it requires no modification
to the cloud database services (demonstrated by a large
set of experiments based on real cloud platforms). Other
studies where the proposed architecture is subject to the
TPC-C standard benchmark for different numbers of cli-
ents and network latencies show that the performance of
concurrent read and write operations not modifying the
SecureDBaaS database structure is comparable to that of
unencrypted cloud database. Workloads including modi-
fications to the database structure are also supported by
SecureDBaaS, but at the price of overheads that seem ac-
ceptable to achieve the desired level of data confidential-
ity. The motivation of these results is that network laten-
cies, which are typical of cloud scenarios, tend to mask the
performance costs ofdata encryption on response time.

Distributed, Concurrent, and Independent Access to Encrypted
Cloud Databases

Mr.S.MD Ismail
Department of CSE,

Al Habeeb College of Engineering &
Technology, Chevella.

Mr.Mohd Anwar Ali
Department of CSE,

Al Habeeb College of Engineering &
Technology, Chevella.

Mr.Syed Tousif Ahmed
Department of CSE,

Al Habeeb College of Engineering &
Technology, Chevella.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 125

The overall conclusions of this paper are important be-
cause for the first time they demonstrate the applicability
of encryption to cloud database services in terms of feasi-
bility and performance.

2 RELATED WORK:

SecureDBaaS provides several original features in the
field of security for remote database services.

It guarantees data confidentiality by allowing a cloud »
database server to execute concurrent SQL operations
(not only read/write, but also modifications to the data-
base structure) over encrypted data.

It provides the same availability, elasticity, and scal- »
ability of the original cloud DBaaS because it does not
require any intermediate server. Response times are af-
fected by cryptographic overheads that for most SQL op-
erations are masked by network latencies.

Multiple clients, possibly geographically distributed, »
can access concurrently and independently a cloud data-
base service.

It does not require a trusted broker or a trusted proxy »
because tenant data and metadata stored by the cloud da-
tabase are always encrypted.

It is compatible with the most popular relational data- »
base servers, and it is applicable to different DBMS im-
plementations because all adopted solutions are database
agnostic.

SecureDBaaS relates more closely to works using encryp-
tion to protect data managed by untrusted databases. In
such a case, a main issue to address is that cryptographic
techniques cannot be naı¨vely applied to standard DBaaS
because DBMS can only execute SQL operations over
plaintext data.Some DBMS engines offer the possibility
of encrypting data at the filesystem level through the so-
called Transparent Data Encryption feature. This feature
makes it possible to build a trusted DBMS over untrusted
storage. However, the DBMS is trusted and decrypts data
before their use. Hence, this approach is not applicable to
the DBaaS context considered by SecureDBaas, because
we assume that the cloud provider is untrusted. Other so-
lutions, allow the execution of operations over encrypted
data. These approaches preserve data confidentiality in
scenarios where the DBMS is not trusted; however, they
require a modified DBMS engine and are not compatible
with DBMS software (both commercial and open source)
used by cloud providers.

On the other hand, SecureDBaaS is compatible with stan-
dard DBMS engines, and allows tenants to build secure
cloud databases by leveraging cloud DBaaS services al-
ready available. For this reason, SecureDBaaS is more
related to [9] and [8] that preserve data confidentiality in
untrusted DBMSs through encryption techniques, allow
the execution of SQL operations over encrypted data, and
are compatible with common DBMS engines. However,
the architecture of these solutions is based on an inter-
mediate and trusted proxy that mediates any interaction
between each client and the untrusted DBMS server. The
approach proposed in [9] by the authors of the DBaaS
model [6] works by encrypting blocks of data instead of
each data item. Whenever a data item that belongs to a
block is required, the trusted proxy needs to retrieve the
whole block, to decrypt it, and to filter out unnecessary
data that belong to the same block. As a consequence,
this design choice requires heavy modifications of the
original SQL operations produced by each client, thus
causing significant overheads on both the DBMS server
and the trusted proxy. Other works [10], [11] introduce
optimization and generalization that extend the subset of
SQL operators supported by [9], but they share the same
proxy-based architecture and its intrinsic issues. On the
other hand, SecureDBaaS allows the execution of opera-
tions over encrypted data through SQL-aware encryption
algorithms. This technique, initially proposed in CryptDB
[8], makes it possible to execute operations over encrypt-
ed data that are similar to operations over plaintext data.
In many cases, the query plan executed by the DBMS for
encrypted and plaintext data is the same.

3 ARCHITECTURE DESIGN:

In this system, Multiple and independent clients can con-
nect directly to the untrusted cloud DBaaS without any
intermediate server. Fig. 1

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 126

describes the overall architecture. We assume that a ten-
ant organization acquires a cloud database service from
an untrusted DBaaS provider. The tenant then deploys
one or more machines (Client 1 through N) and installs a
SecureDBaaS client on each of them. This client allows
a user to connect to the cloud DBaaS to administer it, to
read and write data, and even to create and modify the
database tables after creation. To prevent an untrusted
cloud provider from violating confidentiality of tenant
data stored in plain form, SecureDBaaS adopts multiple
cryptographic techniques to transform plaintext data into
encrypted tenant data and encrypted tenant data structures
because even the names of the tables and of their columns
must be encrypted. SecureDBaaS clients produce also
a set of metadata consisting of information required to
encrypt and decrypt data as well as other administration
information. Even metadata are encrypted and stored in
the cloud DBaaS.

3.1 Data Management:

Encrypted tenant data are stored through secure tables
into the cloud database. To allow transparent execution of
SQL statements each plaintext table is transformed into a
secure table because the cloud database is untrusted. The
name of a secure table is generated by encrypting the name
of the corresponding plaintext table. Table names are en-
crypted by means of the same encryption algorithm and
an encryption key that is known to all the SecureDBaaS
clients. Hence, the encrypted name can be computed from
the plaintext name. On the other hand, column names of
secure tables are randomly generated by SecureDBaaS
hence, even if different plaintext tables have columns
with the same name, the names of the columns of the cor-
responding secure tables are different. This design choice
improves confidentiality by preventing an adversarial
cloud database from guessing relations among different
secure tables through the identification of columns having
the same encrypted name.The field confidentiality param-
eter allows a tenant to define explicitly which columns of
which secure table should share the same encryption key
(if any). SecureDBaaS offers three field confidentiality at-
tributes:

Column (COL) is the default confidentiality level that »
should be used when SQL statements operate on one col-
umn; the values of this column are encrypted through a
randomly generated encryption key that is not used by
any other column.

Multicolumn (MCOL) should be used for columns »
referenced by join operators, foreign keys, and other op-
erations involving two columns; the two columns are en-
crypted through the same key.

Database (DBC) is recommended when operations in- »
volve multiple columns in this instance, it is convenient
to use the special encryption key that is generated and
implicitly shared among all the columns of the database
characterized by the same secure type.

The choice of the field confidentiality levels makes it
possible to execute SQL statements over encrypted data
while allowing a tenant to minimize key sharing.

3.2 Metadata Management:

Metadata management strategies represent an original
idea because SecureDBaaS is the first architecture storing
all metadata in the untrusted cloud database together with
the encrypted tenant data. SecureDBaaS uses two types
of metadata.

Database metadata are related to the whole database. »
There is only one instance of this metadata type for each
database.

Table metadata are associated with one secure table. »
Each table metadata contains all information that is nec-
essary to encrypt and decrypt data of the associated secure
table.

Database metadata contain the encryption keys that are
used for the secure types having the field confidentiality
set to database. A different encryption key is associated
with all the possible combinations of data type and en-
cryption type. Hence, the database metadata represent a
keyring and do not contain any information about tenant
data. Figure 2 represents the structure of a table metadata
and it contains the name of the related secure table and
the unencrypted name of the related plaintext table. More-
over, table metadata include column metadata for each
column of the related secure table. Each column metadata
contain the following information.

Plain name: the name of the corresponding column of »
the plaintext table.

Coded name: the name of the column of the secure ta- »
ble. This is the only information that links a column to the
corresponding plaintext column because column names
of secure tables are randomly generated.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 127

 Secure type: This allows a SecureDBaaS client to
be informed about the data type and the encryption poli-
cies associated with a column.
 Encryption key: the key used to encrypt and de-
crypt all the data stored in the column.

SecureDBaaS stores metadata in the metadata storage
table that is located in the untrusted cloud as the database.
This is an original choice that augments flexibility, but
opens two novel issues in terms of efficient data retrieval
and data confidentiality. To allow SecureDBaaS clients to
manipulate metadata through SQL statements, we save
database and table metadata in a tabular form. Even meta-
data confidentiality is guaranteed through encryption.

Fig. 3. Organization of database metadata and table

metadata in the metadata storage table.
Fig. 3shows the structure of the metadata storage table.
This table uses one row for the database metadata, and
one row for each table metadata. Database and table
metadata are encrypted through the same encryption key
before being saved. This encryption key is called a master
key. Only trusted clients that already know the master key
can decrypt the metadata and acquire information that is
necessary to encrypt and decrypt tenant data.

4 OPERATIONS
4.1 Setup Phase
Here, in this phase, We assume that the DBA creates the
metadata storage table that at the beginning contains just
the database metadata, and not the table metadata.

The DBA populates the database metadata through the
SecureDBaaS client by using randomly generated en-
cryption keys for any combinations of data types and
encryption types, and stores them in the metadata stor-
age table after encryption through the master key. Then,
the DBA distributes the master key to the legitimate us-
ers. User access control policies are administrated by the
DBA through some standard data control language as
in any unencrypted database. In the following steps, the
DBA creates the tables of the encrypted database. It must
consider the three field confidentiality attributes (COL,
MCOL, and DBC) introduced at the end of the Section 3.
Let us describe this phase by referring to a simple but rep-
resentative example shown in Fig. 4, where we have three
secure tables named ST1, ST2, and ST3. Each table STi (i
= 1, 2, 3) includes an encrypted table Ti that contains en-
crypted tenant data, and a table metadata Mi. (Although,
in reality, the names of the columns of the secure tables
are randomly generated; for the sake of simplicity, this
figure refers to them through C1-CN.).

When operations (e.g., algebraic, order comparison) in-
volve more than two columns, it is convenient to adopt
the DBC field confidentiality. This has a twofold advan-
tage: we can use the special encryption key that is gener-
ated and implicitly shared among all the columns of the
database characterized by the same secure type, we limit
possible consistency issues in some scenarios character-
ized by concurrent clients (see Appendix B, available in
the online supplemental material).

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 128

For example, the columns T1.C3, T2.C3, and T3.C1 in
Fig. 4 share the same secure type. Hence, they reference
the database metadata, as represented by the dashed line,
and use the encryption key associated with their data and
encryption types. As they have the same data and encryp-
tion types T1.C3, T2.C3 and T3.C1 can use the same en-
cryption key even if no direct reference exists between
them. The database metadata already contain the encryp-
tion key K associated with the data and the encryption
types of the three columns, because the encryption keys
for all combinations of data and encryption types are cre-
ated in the initialization phase. Hence, K is used as the
encryption key of the T1.C3, T2.C3 and T3.C1 columns
and copied in M1, M2, and M3.

5 EXPERIMENTAL RESULTS:
In the first set of experiments, we evaluate the overhead
introduced when one SecureDBaaS client executes SQL
operations on the encrypted database. Client and database
server are connected through a LAN where no network
latency is added. To evaluate encryption costs, the client
measures the execution time of the 44 SQL commands of
the TPC-C benchmark. Encryption times are reported in
the histogramof the Fig. 5 that has a logarithmic Y -axis.
TPC-C operations are grouped on the basis of the class
of transaction: Order Status, Delivery, Stock Level, Pay-
ment, and New Order. From this figure, we can appreciate
that the encryption time is below 0.1 ms for the majority
of operations and below 1 ms for almost all operations
but two. The exceptions are represented by two opera-
tions of the Stock Level and Payment transactions where
the encryption time is two orders of magnitude higher.
This high overhead is caused by the use of the order pre-
serving encryption that is necessary for range queries.we
focus on the most frequently executed SELECT, INSERT,
UPDATE, and DELETE commands of the TPC-C bench-
marking order to evaluate the performance overhead of
encrypted SQL operations. In Figs. 6 and 7, we compare
the response times of SELECT and DELETE, and UP-
DATE and INSERT operations, respectively. The Y -axis
reports the boxplots of the response times expressed in ms
(at a different scale), while the X-axis identifies the SQL
operations. In SELECT, DELETE, and UPDATE op-
erations, the response times of SecureDBaaS SQL com-
mands are almost doubled, while the INSERT operation is
as expected more critical from the computational point of
view and it achieves a tripled response time with respect
to the plain version. This higher overhead is motivated
by the fact that an INSERT command has to encrypt all
columns.

6 CONCLUSIONS:
Here, in this project, We propose an innovative architec-
ture that guarantees confidentiality of data stored in public
cloud databases. Our solution does not rely on an interme-
diate proxy that we consider a single point of failure and
a bottleneck limiting availability and scalability of typi-
cal cloud database services. A large part of the research
includes solutions to support concurrent SQL operations
(including statements modifying the database structure)
on encrypted data issued by heterogeneous and possibly
geographically dispersed clients.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 129

The proposed architecture does not require modifica-
tions to the cloud database, and it is immediately appli-
cable to existing cloud DBaaS, such as the experimented
PostgreSQL Plus Cloud Database, Windows Azure, and
Xeround. There are no theoretical and practical limits to
extend our solution to other platforms and to include new
encryption algorithms. It is worth observing that experi-
mental results based on the TPC-C standard benchmark
show that the performance impact of data encryption on
response time becomes negligible because it is masked
by network latencies that are typical of cloud scenarios.
In particular, concurrent read and write operations that do
not modify the structure of the encrypted database cause
negligible overhead. Dynamic scenarios characterized by
(possibly) concurrent modifications of the database struc-
ture are supported, but at the price of high computational
costs. These performance results open the space to future
improvements that we are investigating.

REFERENCES:

[1] M. Armbrust et al., “A View of Cloud Computing,”
Comm. of the ACM, vol. 53, no. 4, pp. 50-58, 2010.
[2] W. Jansen and T. Grance, “Guidelines on Security and
Privacy in Public Cloud Computing,” Technical Report
Special Publication 800-144, NIST, 2011.
[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W.
Felten, “SPORC: Group Collaboration Using Untrusted
Cloud Resources,” Proc. Ninth USENIX Conf. Operating
Systems Design and Implementation, Oct. 2010.
[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha, “Se-
cure Untrusted Data Repository (SUNDR),” Proc. Sixth
USENIX Conf. Opearting Systems Design and Imple-
mentation, Oct. 2004.
[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish, “Depot: Cloud Storage with
Minimal Trust,” ACM Trans. Computer Systems, vol. 29,
no. 4, article 12, 2011.
[6] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra, “Provid-
ing Database as a Service,” Proc. 18th IEEE Int’l Conf.
Data Eng., Feb. 2002.
[7] C. Gentry, “Fully Homomorphic Encryption Using
Ideal Lattices,” Proc. 41st Ann. ACM Symp. Theory of
Computing, May 2009.
[8] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H.
Balakrishnan, “CryptDB: Protecting Confidentiality with
Encrypted Query Processing,” Proc. 23rd ACM Symp.
Operating Systems Principles, Oct. 2011.

[9] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra,
“ExecutingSQL over Encrypted Data in the Database-
Service-Provider Model,” Proc. ACM SIGMOD Int’l
Conf. Management Data, June2002.
[10] J. Li and E. Omiecinski, “Efficiency and Security
Trade-Off in Supporting Range Queries on Encrypted
Databases,” Proc. 19thAnn. IFIP WG 11.3 Working Conf.
Data and Applications Security, Aug. 2005.
[11] E. Mykletun and G. Tsudik, “Aggregation Queries in
the Database-as-a-Service Model,” Proc. 20th Ann. IFIP
WG 11.3 Working Conf. Data and Applications Security,
July/Aug. 2006.
[12] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwal-
ly, “Database Management as a Service: Challenges and
Opportunities,” Proc. 25th IEEE Int’l Conf. Data Eng.,
Mar.-Apr. 2009.

Author’s Details:

Mr. S. MD Ismail, has received his M.tech degree
from JNTU Hyderabad. He has been an Associate Profes-
sor for more than five years in Al Habeeb College of En-
gineering and Technology, Chevella, affiliated to JNTU
Hyderabad. He has more than ten years of experience
in the field of teaching. His areas of interesting is Cloud
Computing.

Mr. Mohd Anwar Ali, has received his M.tech de-
gree from JNTU Hyderabad. He has been an Associate
Professor for more than five years, and also working as
HOD in Al Habeeb College of Engineering and Technolo-
gy, Chevella, affiliated to JNTU Hyderabad. He has more
than ten years of experience in the field of teaching. His
areas of interesting is Cloud Computing.

Mr. Syed Tousif Ahmed, pursuing an M.tech degree
in Al Habeeb College of Engineering and Technology,
Chevella, affiliated to JNTU Hyderabad and received his
Bachelor degree from Shadan College of Engineering and
Technology, Peerancheru, JNTU Hyderabad. His areas of
interesting are Cloud Computing, Database Administra-
tion.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 128

For example, the columns T1.C3, T2.C3, and T3.C1 in
Fig. 4 share the same secure type. Hence, they reference
the database metadata, as represented by the dashed line,
and use the encryption key associated with their data and
encryption types. As they have the same data and encryp-
tion types T1.C3, T2.C3 and T3.C1 can use the same en-
cryption key even if no direct reference exists between
them. The database metadata already contain the encryp-
tion key K associated with the data and the encryption
types of the three columns, because the encryption keys
for all combinations of data and encryption types are cre-
ated in the initialization phase. Hence, K is used as the
encryption key of the T1.C3, T2.C3 and T3.C1 columns
and copied in M1, M2, and M3.

5 EXPERIMENTAL RESULTS:
In the first set of experiments, we evaluate the overhead
introduced when one SecureDBaaS client executes SQL
operations on the encrypted database. Client and database
server are connected through a LAN where no network
latency is added. To evaluate encryption costs, the client
measures the execution time of the 44 SQL commands of
the TPC-C benchmark. Encryption times are reported in
the histogramof the Fig. 5 that has a logarithmic Y -axis.
TPC-C operations are grouped on the basis of the class
of transaction: Order Status, Delivery, Stock Level, Pay-
ment, and New Order. From this figure, we can appreciate
that the encryption time is below 0.1 ms for the majority
of operations and below 1 ms for almost all operations
but two. The exceptions are represented by two opera-
tions of the Stock Level and Payment transactions where
the encryption time is two orders of magnitude higher.
This high overhead is caused by the use of the order pre-
serving encryption that is necessary for range queries.we
focus on the most frequently executed SELECT, INSERT,
UPDATE, and DELETE commands of the TPC-C bench-
marking order to evaluate the performance overhead of
encrypted SQL operations. In Figs. 6 and 7, we compare
the response times of SELECT and DELETE, and UP-
DATE and INSERT operations, respectively. The Y -axis
reports the boxplots of the response times expressed in ms
(at a different scale), while the X-axis identifies the SQL
operations. In SELECT, DELETE, and UPDATE op-
erations, the response times of SecureDBaaS SQL com-
mands are almost doubled, while the INSERT operation is
as expected more critical from the computational point of
view and it achieves a tripled response time with respect
to the plain version. This higher overhead is motivated
by the fact that an INSERT command has to encrypt all
columns.

6 CONCLUSIONS:
Here, in this project, We propose an innovative architec-
ture that guarantees confidentiality of data stored in public
cloud databases. Our solution does not rely on an interme-
diate proxy that we consider a single point of failure and
a bottleneck limiting availability and scalability of typi-
cal cloud database services. A large part of the research
includes solutions to support concurrent SQL operations
(including statements modifying the database structure)
on encrypted data issued by heterogeneous and possibly
geographically dispersed clients.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 129

The proposed architecture does not require modifica-
tions to the cloud database, and it is immediately appli-
cable to existing cloud DBaaS, such as the experimented
PostgreSQL Plus Cloud Database, Windows Azure, and
Xeround. There are no theoretical and practical limits to
extend our solution to other platforms and to include new
encryption algorithms. It is worth observing that experi-
mental results based on the TPC-C standard benchmark
show that the performance impact of data encryption on
response time becomes negligible because it is masked
by network latencies that are typical of cloud scenarios.
In particular, concurrent read and write operations that do
not modify the structure of the encrypted database cause
negligible overhead. Dynamic scenarios characterized by
(possibly) concurrent modifications of the database struc-
ture are supported, but at the price of high computational
costs. These performance results open the space to future
improvements that we are investigating.

REFERENCES:

[1] M. Armbrust et al., “A View of Cloud Computing,”
Comm. of the ACM, vol. 53, no. 4, pp. 50-58, 2010.
[2] W. Jansen and T. Grance, “Guidelines on Security and
Privacy in Public Cloud Computing,” Technical Report
Special Publication 800-144, NIST, 2011.
[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W.
Felten, “SPORC: Group Collaboration Using Untrusted
Cloud Resources,” Proc. Ninth USENIX Conf. Operating
Systems Design and Implementation, Oct. 2010.
[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha, “Se-
cure Untrusted Data Repository (SUNDR),” Proc. Sixth
USENIX Conf. Opearting Systems Design and Imple-
mentation, Oct. 2004.
[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish, “Depot: Cloud Storage with
Minimal Trust,” ACM Trans. Computer Systems, vol. 29,
no. 4, article 12, 2011.
[6] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra, “Provid-
ing Database as a Service,” Proc. 18th IEEE Int’l Conf.
Data Eng., Feb. 2002.
[7] C. Gentry, “Fully Homomorphic Encryption Using
Ideal Lattices,” Proc. 41st Ann. ACM Symp. Theory of
Computing, May 2009.
[8] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H.
Balakrishnan, “CryptDB: Protecting Confidentiality with
Encrypted Query Processing,” Proc. 23rd ACM Symp.
Operating Systems Principles, Oct. 2011.

[9] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra,
“ExecutingSQL over Encrypted Data in the Database-
Service-Provider Model,” Proc. ACM SIGMOD Int’l
Conf. Management Data, June2002.
[10] J. Li and E. Omiecinski, “Efficiency and Security
Trade-Off in Supporting Range Queries on Encrypted
Databases,” Proc. 19thAnn. IFIP WG 11.3 Working Conf.
Data and Applications Security, Aug. 2005.
[11] E. Mykletun and G. Tsudik, “Aggregation Queries in
the Database-as-a-Service Model,” Proc. 20th Ann. IFIP
WG 11.3 Working Conf. Data and Applications Security,
July/Aug. 2006.
[12] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwal-
ly, “Database Management as a Service: Challenges and
Opportunities,” Proc. 25th IEEE Int’l Conf. Data Eng.,
Mar.-Apr. 2009.

Author’s Details:

Mr. S. MD Ismail, has received his M.tech degree
from JNTU Hyderabad. He has been an Associate Profes-
sor for more than five years in Al Habeeb College of En-
gineering and Technology, Chevella, affiliated to JNTU
Hyderabad. He has more than ten years of experience
in the field of teaching. His areas of interesting is Cloud
Computing.

Mr. Mohd Anwar Ali, has received his M.tech de-
gree from JNTU Hyderabad. He has been an Associate
Professor for more than five years, and also working as
HOD in Al Habeeb College of Engineering and Technolo-
gy, Chevella, affiliated to JNTU Hyderabad. He has more
than ten years of experience in the field of teaching. His
areas of interesting is Cloud Computing.

Mr. Syed Tousif Ahmed, pursuing an M.tech degree
in Al Habeeb College of Engineering and Technology,
Chevella, affiliated to JNTU Hyderabad and received his
Bachelor degree from Shadan College of Engineering and
Technology, Peerancheru, JNTU Hyderabad. His areas of
interesting are Cloud Computing, Database Administra-
tion.

