

A Peer Reviewed Open Access International Journal

Data Mining Revolution with Titanic Data

Mr.Sayeed Yasin Department of CSE, Nimra College of Engineering and Technology,Vijayawada.

Ms.I.Tabitha Department of CSE, Nimra College of Engineering and Technology,Vijayawada. **Mr.Baig Asadulla** Department of CSE, Nimra College of Engineering and Technology,Vijayawada.

Abstract:

Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This data-driven model involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations. We analyze the challenging issues in the data-driven model and also in the Big Data revolution.

Key Terms:

Big Data, data mining, heterogeneity, autonomous sources, complex and evolving associations.

1 INTRODUCTION:

In the era of Big Data, every day, 2.5 quintillion bytes of data are created and 90 percent of the data in the world today were produced within the past two years. Our capability for data generation has never been so powerful and enormous ever since the invention of the information technology in the early 19th century. As another example, on 4 October 2012, the first presidential debate between President Barack Obama and Governor Mitt Romney triggered more than 10 million tweets within 2 hours. Among all these tweets, the specific moments that generated the most discussions actually revealed the public interests, such as the discussions about medicare and vouchers. Such online discussions provide a new means to sense the public interests and generate feedback in real time, and are mostly appealing compared to generic media, such as radio or TV broadcasting. Another example is Flickr, a public picture sharing site, which received 1.8 million photos per day, on average, from February to March 2012 [35].

Assuming the size of each photo is 2 megabytes (MB), this requires 3.6 terabytes (TB) storage every single day. Indeed, as an old saying states: "a picture is worth a thousand words," the billions of pictures on Flicker are a treasure tank for us to explore the human society, social events, public affairs, disasters, and so on, only if we have the power to harness the enormous amount of data. The above examples demonstrate the rise of Big Data applications where data collection has grown tremendously and is beyond the ability of commonly used software tools to capture, manage, and process within a "tolerable elapsed time." The most fundamental challenge for Big Data applications is to explore the large volumes of data and extract useful information or knowledge for future actions [40]. In many situations, the knowledge extraction process has to be very efficient and close to real time because storing all observed data is nearly infeasible. For example, the square kilometer array (SKA) [17] in radio astronomy consists of 1,000 to 1,500 15-meter dishes in a central 5-km area. It provides 100 times more sensitive vision than any existing radio telescopes, answering fundamental questions about the Universe. However, with a 40 gigabytes (GB)/second data volume, the data generated from the SKA are exceptionally large. Although researchers have confirmed that interesting patterns, such as transient radio anomalies [41] can be discovered from the SKA data, existing methods can only work in an offline fashion and are incapable of handling this Big Data scenario in real time. As a result, the unprecedented data volumes require an effective data analysis and prediction platform to achieve fast response and real-time classification for such Big Data.

Fig. 1. The blind men and the giant elephant: the localized (limited) view of each blind man leads to a biased conclusion.

Volume No: 2 (2015), Issue No: 10 (October) www.ijmetmr.com

October 2015 Page 77

A Peer Reviewed Open Access International Journal

2 BIG DATA CHARACTERISTICS: HACE THEOREM:

HACE Theorem. Big Data starts with large-volume, heterogeneous, autonomous sources with distributed and decentralized control, and seeks to explore complex and evolving relationships among data.

2.1.Huge Data with Heterogeneous and Diverse Dimensionality:

One of the fundamental characteristics of the Big Data is the huge volume of data represented by heterogeneous and diverse dimensionalities. This is because different information collectors prefer their own schemata or protocols for data recording, and the nature of different applications also results in diverse data representations. For example, each single human being in a biomedical world can be represented by using simple demographic information such as gender, age, family disease history, and so on. For X-ray examination and CT scan of each individual, images or videos are used to represent the results because they provide visual information for doctors to carry detailed examinations.For a DNA or genomic-related test, microarray expression images and sequences are used to represent the genetic code information because this is the way that our current techniques acquire the data. Under such circumstances, the heterogeneous features refer to the different types of representations for the same individuals, and the diverse features refer to the variety of the features involved to represent each single observation. Imagine that different organizations (or health practitioners) may have their own schemata to represent each patient, the data heterogeneity and diverse dimensionality issues become major challenges if we are trying to enable data aggregation by combining data from all sources.

2.2 Autonomous Sources with Distributed and Decentralized Control:

Autonomous data sources with distributed and decentralized controls are a main characteristic of Big Data applications. Being autonomous, each data source is able to generate and collect information without involving (or relying on) any centralized control. This is similar to the World Wide Web (WWW) setting where each web server provides a certain amount of information and each server is able to fully function without necessarily relying on other servers. On the other hand, the enormous volumes of the data also make an application vulnerable to attacks or malfunctions, if the whole system has to rely on any centralized control unit. For major Big Data-related applications, such as Google, Flicker, Facebook, and Walmart, a large number of server farms are deployed all over the world to ensure nonstop services and quick responses for local markets. Such autonomous sources are not only the solutions of the technical designs, but also the results of the legislation and the regulation rules in different countries/ regions. For example, Asian markets of Walmart are inherently different from its North American markets in terms of seasonal promotions, top sell items, and customer behaviors. More specifically, the local government regulations also impact on the wholesale management process and result in restructured data representations and data warehouses for local markets.

2.3 Complex and Evolving Relationships:

While the volume of the Big Data increases, so do thecomplexity and the relationships underneath the data. In an early stage of data centralized information systems, the focus is on finding best feature values to represent each observation. This is similar to using a number of data fields, such as age, gender, income, education background, and so on, to characterize each individual. This type of sample feature representation inherently treats each individual as an independent entity without considering their social connections, which is one of the most important factors of the human society. Our friend circles may be formed based on the common hobbies or people are connected by biological relationships. Such social connections commonly exist not only in our daily activities, but also are very popular in cyberworlds.

For example, major social network sites, such as Facebook or Twitter, are mainly characterized by social functions such as friend-connections and followers (in Twitter). The correlations between individuals inherently complicate the whole data representation and any reasoning process on the data. In the sample-feature representation, individuals are regarded similar if they share similar feature values, whereas in the sample-feature-relationship representation, two individuals can be linked together (through their social connections) even though they might share nothing in common in the feature domains at all.

Volume No: 2 (2015), Issue No: 10 (October) www.ijmetmr.com

A Peer Reviewed Open Access International Journal

In a dynamic world, the features used to represent the individuals and the social ties used to represent our connections may also evolve with respect to temporal, spatial, and other factors. Such a complication is becoming part of the reality for Big Data applications, where the key is to take the complex (nonlinear, many-to-many) data relationships, along with the evolving changes, into consideration, to discover useful patterns from Big Data collections.

3.DATA MINING CHALLENGES WITH BIG DATA:

Fig. 2 shows a conceptual view of the Big Data processing framework, which includes three tiers from inside out with considerations on data accessing and computing (Tier I), data privacy and domain knowledge (Tier II), and Big Data mining algorithms (Tier III). The challenges at Tier I focus on data accessing and arithmetic computing procedures. Because Big Data are often stored at different locations and data volumes may continuously grow, an effective computing platform will have to take distributed large-scale data storage into consideration for computing. For example, typical data mining algorithms require all data to be loaded into the main memory, this, however, is becoming a clear technical barrier for Big Data because moving data across different locations is expensive (e.g., subject to intensive network communication and other IO costs), even if we do have a super large main memory to hold all data for computing. The challenges at Tier II center around semantics and domain knowledge for different Big Data applications. Such information can provide additional benefits to the mining process, as well as add technical barriers to the Big Data access (Tier I) and mining algorithms (Tier III). For example, depending on different domain applications, the data privacy and information sharing mechanisms between data producers and data consumers can be significantly different. Sharing sensor network data for applications like water quality monitoring may not be discouraged, whereas releasing and sharing mobile users' location information is clearly not acceptable for majority, if not all, applications. In addition to the above privacy issues, the application domains can also provide additional information to benefit or guide Big Data mining algorithm designs. For example, in market basket transactions data, each transaction is considered independent and the discovered knowledge is typically represented by finding highly correlated items,

possibly with respect to different temporal and/or spatial restrictions. In a social network, on the other hand, users are linked and share dependency structures. The knowledge is then represented by user communities, leaders in each group, and social influence modeling, and so on. Therefore, understanding semantics and application knowledge is important for both low-level data access and for high-level mining algorithm designs. At Tier III, the data mining challenges concentrate on algorithm designs in tackling the difficulties raised by the Big Data volumes, distributed data distributions, and by complex and dynamic data characteristics. The circle at Tier III contains three stages. First, sparse, heterogeneous, uncertain, incomplete, and multisource data are preprocessed by data fusion techniques. Second, complex and dynamic data are mined after preprocessing. Third, the global knowledge obtained by local learning and mode fusion is tested and relevant information is feedback to the preprocessing stage. Then, the model and parameters are adjusted according to the feedback. In the whole process, information sharing is not only a promise of smooth development of each stage, but also a purpose of Big Data processing.

Fig.2. A Big Data processing framework: The research challenges form a three tier structure and center around the "Big Data mining platform" (Tier I), which focuses on low-level data accessing and computing. Challenges on information sharing and privacy, and Big Data application domains and knowledge form Tier II, which concentrates on high-level semantics, application domain knowledge, and user privacy issues. The outmost circle shows Tier III challenges on actual mining algorithms.

4 RELATED WORK: 4.1 Big Data Mining Platforms (Tier I):

Due to the multisource, massive, heterogeneous, and dynamic characteristics of application data involved

A Peer Reviewed Open Access International Journal

in a distributed environment, one of the most important characteristics of Big Data is to carry out computing on the petabyte (PB), even the exabyte (EB)-level data with a complex computing process. Therefore, utilizing a parallel computing infrastructure, its corresponding programming language support, and software models to efficientlyanalyze and mine the distributed data are the critical goals for Big Data processing to change from "quantity" to "quality." Currently, Big Data processing mainly depends on parallel programming models like MapReduce, as well as providing a cloud computing platform of Big Data services for the public. MapReduce is a batch-oriented parallel computing model. There is still a certain gap in performance with relational databases. Improving the performance of MapReduce and enhancing the realtime nature of large-scale data processing have received a significant amount of attention, with MapReduce parallel programming being applied to many machine learning and data mining algorithms.

Data mining algorithms usually need to scan through the training data for obtaining the statistics to solve or optimize model parameters. It calls for intensive computing to access the large-scale data frequently. To improve the efficiency of algorithms, Chu et al. proposed a general-purpose parallel programming method, which is applicable to a large number of machine learning algorithms based on the simple MapReduce programming model on multicore processors. Ten classical data mining algorithms are realized in the framework, including locally weighted linear regression, k-Means, logistic regression, naive Bayes, linear support vector machines, the independent variable analysis, Gaussian discriminant analysis, expectation maximization, and back-propagation neural networks [14]. With the analysis of these classical machine learning algorithms, we argue that the computational operations in the algorithm learning process could be transformed into a summation operation on a number of training data sets.

Summation operations could be performed on different subsets independently and achieve penalization executed easily on the MapReduce programming platform. Therefore, a large-scale data set could be divided into several subsets and assigned to multiple Mapper nodes. Then, various summation operations could be performed on the Mapper nodes to collect intermediate results. Finally, learning algorithms are executed in parallel through merging summation on Reduce nodes.

Ranger et al. [39] proposed a MapReduce-based application programming interface Phoenix, which supports parallel programming in the environment of multicore and multiprocessor systems, and realized three data mining algorithms including k-Means, principal component analysis, and linear regression. Gillick et al. [22] improved the MapReduce's implementation mechanism in Hadoop, evaluated the algorithms' performance of singlepass learning, iterative learning, and query-based learning in the MapReduce framework, studied data sharing between computing nodes involved in parallel learning algorithms, distributed data storage, and then showed that the MapReduce mechanisms suitable for large-scale data mining by testing series of standard data mining tasks on medium-size clusters. Papadimitriou and Sun [38] proposed a distributed collaborative aggregation (DisCo) framework using practical distributed data preprocessing and collaborative aggregation techniques. The implementation on Hadoop in an open source MapReduce project showed that DisCo has perfect scalability and can process and analyze massive data sets (with hundreds of GB).

To improve the weak scalability of traditional analysis software and poor analysis capabilities of Hadoop systems, Das et al. [16] conducted a study of the integration of R (open source statistical analysis software) and Hadoop. The in-depth integration pushes data computation to parallel processing, which enables powerful deep analysis capabilities for Hadoop. Wegener et al. [47] achieved the integration of Weka (an open-source machine learning and data mining software tool) and MapReduce. Standard Weka tools can only run on a single machine, with a limitation of 1-GB memory. After algorithm parallelization, Weka breaks through the limitations and improves performance by taking the advantage of parallel computing to handle more than 100-GB data on MapReduce clusters. Ghoting et al. [21] proposed Hadoop-ML, on which developers can easily build task-parallel or data-parallel machine learning and data mining algorithms on program blocks under the language runtime environment.

4.2.Big Data Semantics and Application Knowledge (Tier II):

In privacy protection of massive data, Ye et al. [55] proposed a multilayer rough set model, which can accurately describe the granularity change produced by different levels of generalization and provide a theoretical foundation for measuring the data effectiveness criteria in the

A Peer Reviewed Open Access International Journal

anonymization process, and designed a dynamic mechanism for balancing privacy and data utility, to solve the optimal generalization/refinement order for classification. A recent paper on confidentiality protection in Big Data [4] summarizes a number of methods for protecting public release data, including aggregation (such as kanonymity, I-diversity, etc.), suppression (i.e., deleting sensitive values), data swapping (i.e., switching values of sensitive data records to prevent users from matching), adding random noise, or simply replacing the whole original data values at a high risk of disclosure with values synthetically generated from simulated distributions. For applications involving Big Data and tremendous data volumes, it is often the case that data are physically distributed at different locations, which means that users no longer physically possess the storage of their data.

To carry out Big Data mining, having an efficient and effective data access mechanism is vital, especially for users who intend to hire a third party (such as data miners or data auditors) to process their data. Under such a circumstance, users' privacy restrictions may include 1) no local data copies or downloading, 2) all analysis must be deployed based on the existing data storage systems without violating existing privacy settings, and many others. In Wang et al. [48], a privacy-preserving public auditing mechanism for large scale data storage (such as cloud computing systems) has been proposed. The public keybased mechanism is used to enable third-party auditing (TPA), so users can safely allow a third party to analyze their data without breaching the security settings or compromising the data privacy. For most Big Data applications, privacy concerns focus on excluding the third party (such as data miners) from directly accessing the original data

Common solutions are to rely on some privacy-preserving approaches or encryption mechanisms to protect the data. A recent effort by Lorch et al. [32] indicates that users' "data access patterns" can also have severe data privacy issues and lead to disclosures of geographically co-located users or users with common interests (e.g., two users searching for the same map locations are likely to be geographically colocated). In their system, namely Shround, users' data access patterns from the servers are hidden by using virtual disks. As a result, it can support a variety of Big Data applications, such as microblog search and social network queries, without compromising the user privacy.

5.3 Big Data Mining Algorithms (Tier III):

To adapt to the multisource, massive, dynamic Big Data, researchers have expanded existing data mining methods in many ways, including the efficiency improvement of single-source knowledge discovery methods [11], designing a data mining mechanism from a multisource perspective [50], [51], as well as the study of dynamic data mining methods and the analysis of stream data [18], [12]. The main motivation for discovering knowledge from massive data is improving the efficiency of single-source mining methods. On the basis of gradual improvement of computer hardware functions, researchers continue to explore ways to improve the efficiency of knowledge discovery algorithms to make them better for massive data. Because massive data are typically collected from different data sources, the knowledge discovery of the massive data must be performed using a multisource mining mechanism.

As real-world data often come as a data stream or a characteristic flow, a well-established mechanism is needed to discover knowledge and master the evolution of knowledge in the dynamic data source. Therefore, the massive, heterogeneous and real-time characteristics of multisource data provide essential differences between singlesource knowledge discovery and multisource data mining.Knowledge evolution is a common phenomenon in realworld systems. For example, the clinician's treatment programs will constantly adjust with the conditions of the patient, such as family economic status, health insurance, the course of treatment, treatment effects, and distribution of cardiovascular and other chronic epidemiological changes with the passage of time. In the knowledge discovery process, concept drifting aims to analyze the phenomenon of implicit target concept changes or even fundamental changes triggered by dynamics and context in data streams. According to different types of concept drifts, knowledge evolution can take forms of mutation drift, progressive drift, and data distribution drift, based on single features, multiple features, and streaming features.

6 CONCLUSIONS:

As the term Big Data literally concerns about data volumes, our HACE theorem suggests that the key characteristics of the Big Data are 1) huge with heterogeneous and diverse data sources,

A Peer Reviewed Open Access International Journal

2) autonomous with distributed and decentralized control, and 3) complex and evolving in data and knowledge associations. Such combined characteristics suggest that Big Data require a "big mind" to consolidate data for maximum values.

High-performance computing platforms are required to support Big Data mining, that impose systematic designs to unleash the full power of the Big Data. At the data level, the autonomous information sources and the variety of the data collection environments, often result in data with complicated conditions, such as missing/uncertain values. In other situations, privacy concerns, noise, and errors can be introduced into the data, to produce altered data copies. Developing a safe and sound information sharing protocol is a major challenge. At the model level, the key challenge is to generate global models by combining locally discovered patterns to form a unifying view. This requires carefully designed algorithms to analyze model correlations between distributed sites, and fuse decisions from multiple sources to gain a best model out of the Big Data. At the system level, the essential challenge is that a Big Data mining framework needs to consider complex relationships between samples, models, and data sources, along with their evolving changes with time and other possible factors. A system needs to be carefully designed so that unstructured data can be linked through their complex relationships to form useful patterns, and the growth of data volumes and item relationships should help form legitimate patterns to predict the trend and future.We regard Big Data as an emerging trend and the need for Big Data mining is arising in all science and engineering domains. With Big Data technologies, we will hopefully be able to provide most relevant and most accurate social sensing feedback to better understand our society at realtime. We can further stimulate the participation of the public audiences in the data production circle for societal and economical events. The era of Big Data has arrived.

REFERENCES:

[1] R. Ahmed and G. Karypis, "Algorithms for Mining the Evolution of Conserved Relational States in Dynamic Networks," Knowledge and Information Systems, vol. 33, no. 3, pp. 603-630, Dec. 2012.

[2] M.H. Alam, J.W. Ha, and S.K. Lee, "Novel Approaches to Crawling Important Pages Early," Knowledge and Information Systems, vol. 33, no. 3, pp 707-734, Dec. 2012.

[3] S. Aral and D. Walker, "Identifying Influential and Susceptible Members of Social Networks," Science, vol. 337, pp. 337-341, 2012.

[4] A. Machanavajjhala and J.P. Reiter, "Big Privacy: Protecting Confidentiality in Big Data," ACM Crossroads, vol. 19, no. 1, pp. 20-23, 2012.

[5] S. Banerjee and N. Agarwal, "Analyzing Collective Behavior from Blogs Using Swarm Intelligence," Knowledge and Information Systems, vol. 33, no. 3, pp. 523-547, Dec. 2012

[6] E. Birney, "The Making of ENCODE: Lessons for Big-Data Projects," Nature, vol. 489, pp. 49-51, 2012.

Authors:

Mr. Sayeed Yasin

pursuing a Phd degree in Rayalaseema University, Kurnool, and Received his M.tech degree from jntu Hyderabad university. He has been an associate professor for more than 5 years, and also working as HOD in Nimra College Of Engineering And Technology. He has more than 9 years of experience in the field of teaching.

His areas of interesting are Wireless Networking.

Ms.I.Tabitha

Received her M.tech degree from jntu Kakinada university. She has been an assistant professor for more than 3 years in Nimra College Of Engineering And Technology, Vijayawada, and has more than five years of experience in the field of teaching. Her areas of interesting are Networking and Cloud computing.

Mr. Baig Asadulla

pursuing a M.tech degree in Nimra College Of Engineering And Technology, Vijayawada, affiliated to JNTU Kakinada. and Received his Bachelor degree from Nimra College Of Engineering And Technology, Vijayawada, affiliated to JNTU Kakinada. His areas of interesting are Data Mining, Data Base Administration.

Volume No: 2 (2015), Issue No: 10 (October) www.ijmetmr.com

October 2015 Page 82