
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 322

ABSTRACT:

In this paper area efficient Multiplier architecture is de-
veloped using Dadda Multiplier. The proposed Multiplier
Algorithm takes reduced area than the previous one and
the significant delay is also lower than the previous de-
signs. The number of slices in the previous designs is 648
and in our proposed Dadda Multiplier architecture utilizes
only 402 slices then area is reduced up to 30%. As shown
in the design as well as the simulation results the proposed
Multiplier architecture area as well as delay is better.

Keywords:

Double Precision, Dadda Multiplier, Floating Point, Area
Efficient.

1. INTRODUCTION:

Digital arithmetic operations are very important in the
design of digital processors and application-specific sys-
tems. Arithmetic circuits form an important class of cir-
cuits in digital systems. With the remarkable progress in
the very large scale integration (VLSI) circuit technology,
many complex circuits, unthinkable yesterday have be-
come easily realizable today.

Algorithms that seemed impossible to implement now
have attractive implementation possibilities for the fu-
ture. This means that not only the conventional computer
arithmetic methods, but also the unconventional ones are
worth investigation in new designs. The notion of real
numbers in mathematics is convenient for hand computa-
tions and formula manipulations. However, real numbers
are not well-suited for general purpose computation, be-
cause their numeric representation as a string of digits ex-
pressed in, say, base 10 can be very long or even infinitely
long. Examples include π, e, and 1/3.

In practice, computers store numbers with finite preci-
sion. Numbers and arithmetic used in scientific computa-
tion should meet a few general criteria:- Numbers should
have modest storage requirements.

• Arithmetic operations should be efficient to carry.

• A level of standardization, or portability, is desirable–re-
sults obtained on one computer should closely match the
results of the same computation on other computers In-
ternationallystandardized methods for representing num-
bers on computers have been established by the IEEE-754
standard to satisfy these basic goals [1].

An arithmetic unit based on IEEE standard for floating
point numbers has been implemented on FPGA Board.
The arithmetic unit implemented has a 64-bit process-
ing unit which allows various arithmetic operations such
as, Addition, Subtraction, Multiplication, Division and
Square Root on floating point numbers.

Each operation can be selected by a particular operation
code. Synthesis of the unit for the FPGA board has been
done using XILINX-ISE.The IEEE standards mandate
exact representations for binary single and double preci-
sion floating-point formats [4], as well as more flexible
guidelines for single-extended and double-extended for-
mats.

Quadruple precision is not yet an official standard, al-
though at present, an IEEE working group is standardiz-
ing it [12]. The IEEE standards have been extraordinarily
successful in ensuring a level of portability for computer
arithmetic across a vast array of implementations and dis-
parate architectures. Since these standards are the basis
for virtually all floating-point computation, it is important
to understand their details.

Shaik Akber
M.Tech VLSI,

Department of ECE,
CMR Institute of Technology.

Dr.A.Balaji Nehru, ME, Ph.D, MISTE
Professor,

Department of ECE,
CMR Institute of Technology.

L.Thiru Ganesh, ME
Assistant professor,

Department of ECE,
CMR Institute of Technology.

Design of double-precision Binary Floating Point
Multiplier Using Dadda Algorithm

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 323

Fig 1: Single Precision Floating-Point IEEE Formats

Fig 2: Double Precision Floating-Point IEEE Formats

Fig.1 and Fig.2 illustrates the IEEE standard binary sin-
gle precision floating-point formats, along with the IEEE
standard for double precision floating-point format. Single
precision has 1 sign bit, 8 exponent bits, and 23 mantissa
bits. Double precision has 1 sign bit, 11 exponent bits,
and 52 mantissa bits. The IEEE format requires normal-
ization, and since it uses radix 2, it is known a prior that
the first bit of the mantissa is a 1, which means that it can
be implied. This implied bit gives IEEE formats an extra
bit of mantissa. For example, IEEE single precision has
effectively 24 bits of mantissa, rather than the 23 which
are expressed in the external representation as shown in
Fig 1. Floating Point Numbers The term floating point is
derived from the fact that there is no fixed number of dig-
its before and after the decimal point, that is, the decimal
point can float.

There are also representations in which the number of
digits before and after the decimal point is set, called
fixed-point representations. In general, floating point rep-
resentations are slower and less accurate than fixed-point
representations, but they can handle a larger range of num-
bers. Floating Point Numbers are numbers that can con-
tain a fractional part. For e.g. following numbers are the
floating point numbers: 3.0, - 111.5, ½, 3E-5 etc. Floating-
point arithmetic is considered an esoteric subject by many
people. This is rather surprising because floating-point is
ubiquitous in computer systems. Almost every language
has a floating-point data type; computers from PC’s to
supercomputers have floating-point accelerators; most
compilers will be called upon to compile floating-point
algorithms from time to time; and virtually every operat-
ing system must respond to floating-point exceptions such
as overflow. A number representation (called a numeral
system in mathematics) specifies some way of storing a
number that may be encoded as a string of digits.

In computing, floating point describes a system for nu-
merical representation in which a string of digits (or bits)
represents a rational number. The term floating point re-
fers to the fact that the radix point (decimal point, or, more
commonly in computers, binary point) can “float”; that
is, it can be placed anywhere relative to the significant
digits of the number. This position is indicated separately
in the internal representation, and floating-point represen-
tation can thus be thought of as a computer realization
of scientific notation. Over the years, several different
floating-point representations have been used in comput-
ers; however, for the last ten years the most commonly
encountered representation is that defined by the IEEE
754 Standard. The advantage of floating-point representa-
tion over fixedpoint (and integer) representation is that it
can support a much wider range of values. For example,
a fixed point representation that has seven decimal digits,
with the decimal point assumed to be positioned after the
fifth digit, can represent the numbers 12345.67, 8765.43,
123.00, and so on, whereas a floating-point representa-
tion (such as the IEEE 754 decimal32 format) with sev-
en decimal digits could in addition represent 1.234567,
123456.7, 0.00001234567, 1234567000000000, and so
on. The floating-point format needs slightly more storage
(to encode the position of the radix point), so when stored
in the same space, floating-point numbers achieve.

II. FLOATING POINT MULTIPLIER AL-
GORITHM:

 The normalized floating point numbers have the form of
Z= (-1 S) * 2 (E - Bias) * (1.M). The following algorithm
is used to multiply two floating point numbers. 1. Signifi-
cand multiplication; i.e. (1.M1*1.M2).
2. Placing the decimal point in the result. 3. Exponent’s
addition; i.e. (E1 + E2 - Bias).
4. Getting the sign; i.e. s1 XOR s2.
5. Normalizing the result; i.e. obtaining 1 at the MSB of
the results’ significand.
 6. Rounding implementation.
7. Verifying for underflow/overflow occurrence.

3. IMPLEMENTATION:
Single-precision binary floating-point is used due to its
wider range over fixed point (of the same bit-width), even
if at the cost of precision. Our discussion of floating point
will focus almost exclusively on the IEEE floating-point
standard (IEEE 754) because of its rapidly increasing ac-
ceptance.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 324

Multiplying floating point numbers is a critical require-
ment for DSP applications. The possible ways to repre-
sent real numbers in binary format floating point numbers
are; the IEEE 754 standard [1] represents two floating
point formats, Binary interchange format and Decimal in-
terchange format. This paper focuses only on single pre-
cision normalized binary interchange format. Represen-
tation of single precision normalized binary interchange
format is shown in Fig.1. It consists of a one bit sign (S),
an eight bit exponent (E), and a twenty three bit fraction
(M or Mantissa)

Z = (-1S) * 2 (E - Bias) * (1.M) (1) Where M = n22 2-1 +
n21 2-2 + n20 2-3+…+ n1 2-22+ n0 2-23; Bias = 127

Step1. Exponents of the two numbers are added directly,
extra bias is subtracted from the exponent result. Step
2. Significands multiplication of the two numbers using
Dadda & Wallace algorithm. Step 3. Calculating the sign
by XORing the sign of the two numbers. Step 4. Finally
the result is normalized such that there should be 1 in the
MSB of the result (leading one). Mohamed Al-Ashrfy,
Ashraf Salem and Wagdy Anis implementation which
handles the overflow and underflow cases. Rounding is
not implemented to give more precision when using the
multiplier in a multiply and Accumulate (MAC) unit. And
an implementation of a floating point multiplier that sup-
ports the IEEE 754-2008 binary interchange format. The
multiplier doesn’t implement rounding and just presents
the significant multiplication result as is (48 bits).

In 2013, B. Jeevan, et al, shows a high speed binary float-
ing point multiplier based on Dadda Algorithm. In this
improvement in speed of multiplication of mantissa is
done using Dadda multiplier thereby replacing Carry Save
Multiplier. The design achieves high speed with maxi-
mum frequency of 526 MHz compared to existing float-
ing point multipliers. The floating point multiplier is de-
veloped to handle the underflow and overflow cases. The
significant multiplication time is reduced by using Dadda
Algorithm. DADDA MULTIPLIER Dadda proposed a
sequence of matrix heights that are predetermined to give
the minimum number of reduction stages. To reduce the
N by N partial product matrix, dada multiplier develops a
sequence of matrix heights that are found byworking back
from the final two-row matrix.

DADDA MULTIPLIER Dadda proposed a sequence of
matrix heights that are predetermined to give the mini-
mum number of reduction stages. To reduce the N by
N partial product matrix, dada multiplier develops a se-
quence of matrix heights that are found byworking back
from the final two-row matrix.

Figure 2 Dot diagram for 8 by 8 Dadda Multiplier

4. FLOATING POINT MULTIPLIER AL-
GORITHM:

As shown in Figure 3 the Floating Point Algorithm.The
normalized floating point numbers have the form of Z=
(-1S) * 2 (E - Bias) * (1.M). The following algorithm is
used to multiply two floating point numbers.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 325

1. Significand multiplication; i.e. (1.M1*1.M2).
2. Placing the decimal point in the result. 3. Exponent’s
addition; i.e. (E1 + E2 - Bias).
4. Getting the sign; i.e. s1 xor s2.
 5. Normalizing the result; i.e. obtaining 1 at the MSB of
the results’ significand.
6. Rounding implementation.
7. Verifying for underflow/overflow occurrence.

PROPOSED METHODOLOGY:

Floating point multiplier block diagram

Exponent The exponent field represents the exponent as
a biased number. It contains the actual exponent plus 127
for single precision, or the actual exponent plus 1023 in
double precision.This converts all single precision ex-
ponents from -127 to 127 into unsigned numbers from
0 to 254, and all double precision exponents from -1023
to 1023 into unsigned numbers from 0 to 2046. Two Ex-
amples shown below for single precision If the exponent
is 4, the e-field will be 4+127=132 (100000112). If the
e-field contains 8’b01011101(9310) the actual exponent
is 93-127 = 34 Storing a biased exponent means we can
compare IEEE values as if they were signed integers. De-
sign of Floating point multiplier is done by using VHDL
in previous last years. All the available design uses carry
save adder or ripple carry adder for design of floating
point multiplier. Also different algorithms are available
for the design.Carry look ahead adder is one of the fastest
adder and having more advantages among all the avail-
able adders. So our aim is to design and implement float-
ing point multiplier using Wallace and Dadda algorithm
with carry look ahead adder.

5. Concluding Remarks :

The Double Precision proposed Dadda Multiplier archi-
tecture is implemented on FPGA vertex board and the
device utilization summary is shown in the previous sec-
tion.

The architecture found area efficient as it utilizes only 402
slices against the 648 slices on the previous Multiplier
design. The proposed Multiplier architecture is capable of
calculating 64 bit numbers. In the future designs the ad-
der architectures will help to reduce the device utilization
to large extent because if the components of Multiplier
architecture is efficient than the whole architecture will be
definitely better in terms of delay as well as area.

6. Experimental Results:

RTL view of Dadda Multiplier

Simulation waveform of Dadda multiplier

The RTL view of Dadda multiplier and Wallace multiplier.
In both, There are used 4 stages i.e.Expadder, Mantissa,
Sign and Normalizer. Thus, the exponent of single preci-
sion normalized binary interchange format is designed.
shows the Simulation waveform of Dadda and Wallace
multiplier, wherein the multiply of two 32 bit data inputs
(dataina & datainb) are performed using Dadda and Wal-
lace multiplier with carry look aheadadder. The two in-
puts are a & b which produces the output (dataout) given
below.

i.e. a = 10111111111000000000000000000000
b = 00111111111000000000000000000000
Result=10111111000000000000000000000000

ACKNOWLEDGMENTS:

I am J.Swathi and would like to thank the publishers, re-
searchers for making their resources material available.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 10 (October) October 2015
 www.ijmetmr.com Page 326

I am greatly thankful to Assistant Prof: Miss.Ch.Nirmala
for their guidance. We also thank the college authorities,
PG coordinator and Principal for providing the required
infrastructure and support. Finally, we would like to ex-
tend a heartfelt gratitude to friends and family members.

REFERENCES:

1] M. C. C¸ avu¸so˘glu. Telesurgery and Surgical Simu-
lation: Design, Modeling, and Evaluation of Haptic In-
terfaces to Real and Virtual Surgical Environments. PhD
thesis, University ofCalifornia, Berkeley, August 2000.

[2] M. C. C¸ avu¸so˘glu, F. Tendick, M. Cohn, and S. S.
Sastry. A laparoscopic telesurgical workstation. IEEE
Transactions on Robotics and Automation, 15(4):728–
739, August 1999.

[3] E. Graves. Vital and Health Statistics. Data f rom the
National Health Survey No. 122. U.S. Department of-
Health and Human Services, Hyattsville, MD, 1993.

[4] J. W. Hill, P. S. Green, J. F. Jensen, Y. Gorfu, and A.
S. Shah. Telepresence surgery demonstration system. In
Proceedings of the IEEE International Conference on Ro-
botics and Automation, pages 2302–2307, 1994.

[5] A. J. Madhani. Design of Teleoperated Surgical In-
struments for Minimally Invasive Surgery. PhD thesis,
Massachusetts Institute ofTechnology, 1998.

[6] A. J. Madhani, G. Niemeyer, and J. K. Salisbury. The
black falcon: a teleoperated surgical instrument for mini-
mally invasive surgery. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS’98), volume 2, pages 936–944, 1998.

[7] J.W.Hill, P. S. Green, J. F. Jensen,Y. Gorfu, and A.
S. Shah, “Telepresencesurgery demonstration system,”
in Proc. IEEE Int. Conf. Robot. Autom.,San Diego, CA,
May 1994, vol. 3, pp. 2302–2307.

[8] P. Dario, E. Guglielmelli, B. Allotta, and M. C. Car-
rozza, “Robotics formedical applications,” IEEE Robot.
Autom.Mag., vol. 3, no. 3, pp. 44–56,Sep. 1996.

Author’s Details:

Shaik Akber
M.Tech VLSI, Department of ECE,

CMR Institute of Technology.

Dr.A.Balaji Nehru,
ME, Ph.D, MISTE, Professor, Department of ECE,

CMR Institute of Technology.

L.Thiru Ganesh, ME
Assistant professor, Department of ECE,

CMR Institute of Technology.

