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Abstract: 

In this chapter, the estimation of vibration in static 

system for both free and forced vibration of single-

degree-of-freedom (SDOF) systems of both 

Undamped and damped due to harmonic force is 

considered. The knowledge of the mechanical 

properties of materials used in mechanical systems 

devices is critical not only in designing structures 

such as cantilevers and beams but also for ensuring 

their reliability. A mechanical system is said to be 

vibrating when its component part are undergoing 

periodic oscillations about a central statically 

equilibrium position. Any system can be caused to 

vibrate by externally applying forces due to its 

inherent mass and elasticity. The fundamentals of 

vibration analysis can be understood by studying the 

simple mass spring damper model. Indeed, even a 

complex structure such as an automobile body can be 

modeled as a "summation" of simple mass–spring–

damper models. The mass–spring–damper model is 

an example of a simple harmonic oscillator. In the 

theory of vibrations, mode shapes in undamped and 

damped systems have been clearly explained by mode 

shape diagrams. This method may be helpful in 

understanding mode shapes and the response of 

magnitude, acceleration, time, frequency of the 

homogeneous beam will be found out at different 

variables of beam using MATLAB R2013. A 

vibratory system is a dynamic one which for which 

the variables such as the excitations (input) and 

responses (output) are time dependent. The response 

of a vibrating system generally depends on the initial 

conditions as well as any form of external excitations. 

Therefore, analyzing a vibrating system will involve 

setting up a mathematical model, deriving and 

solving equations pertaining to the model, 

interpreting the results and assumptions and 

reanalyze or redesign if need be. 

 

Keywords: vibration, damping elements, forced 

vibration, free vibration, vibrating systems. 

 

INTRODUCTION 

Vibration is the motion of a particle or a body or 

system of connected bodies displaced from a position 

of equilibrium [1]. Most Vibrations are undesirable in 

machines and structures because they produce 

increased stresses, energy losses, because added wear, 

increase bearing loads, induce fatigue, create 

passenger discomfort in vehicles, and absorb energy 

from the system [2].   

 
Fig.1 (a): A deterministic (periodic) excitation 

 
Fig.1 (b) Random excitation 

 

1. CLASSIFICATION OF VIBRATIONS: 
Vibrations can be classified into three categories: free, 

forced, and self-excited. Free vibration of a system is 

vibration that occurs in the absence of external force. 

An external force that acts on the system causes forced 

vibrations [3-4] . In this case, the exciting force 
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continuously supplies energy to the system. Forced 

vibrations may be either deterministic or random (see 

Fig. 1.1).   

 

1.2 ELEMENTARY PARTS OF VIBRATING 

SYSTEMS: In general, a vibrating system consists of 

a spring (a means for storing potential energy), amass 

or inertia (a means for storing kinetic energy), and a 

damper (a means by which energy is gradually lost) as 

shown in Fig. 1.2. An Undamped vibrating system 

involves the transfer of its potential energy to kinetic 

energy and kinetic energy to potential energy, 

alternatively [5]. In a damped vibrating system, some 

energy is dissipated in each cycle of vibration and 

should be replaced by an external source if a steady 

state of vibration is to be maintained.                   

 
Fig.1.2 Elementary parts of vibrating systems 

 

2. PERIODIC MOTION: When the motion is 

repeated in equal intervals of time, it is known as 

periodic motion. Simple harmonic motion is the 

simplest form of periodic motion [6-7]. If x(t) 

represents the displacement of a mass in a vibratory 

system, the motion can be expressed by the equation, 

𝒙 = 𝑨 𝐜𝐨𝐬 𝝎𝒕 = 𝑨 𝐜𝐨𝐬 𝟐𝝅
𝒕

𝝉
 

Where A is the amplitude of oscillation measured from 

the equilibrium position of the mass. The repetition 

time 𝜏 is called the period of the oscillation, and its 

reciprocal, f = 1/𝜏 is called the frequency [8-9]. Any 

periodic motion satisfies the relationship, 

x(t)=x(t+𝝉) 

That is, 

Period 𝝉 =
𝟐𝝅

𝝎
 

𝒔

𝒄𝒚𝒄𝒍𝒆
 

Frequency, 

𝐟 =
𝟏

𝛕
=

𝛚

𝟐𝛑

𝐜𝐲𝐜𝐥𝐞𝐬

𝐬
, 𝐇𝐳 

ω is called the circular frequency measured in rad/sec. 

 

3. COMPONENTS OF VIBRATING SYSTEMS 

3.1. STIFFNESS ELEMENTS 

Sometimes it requires finding out the equivalent spring 

stiffness values when a continuous system is attached 

to a discrete system or when there are a number of 

spring elements in the system [10]. Stiffness of 

continuous elastic elements such as rods, beams, and 

shafts, which produce restoring elastic forces, is 

obtained from deflection considerations [11]. 

The stiffness coefficient of the rod is given by k = 

EA/l 

The cantilever beam stiffness is k = 3EI/l3                 

 

Fig.3.1 (a) longitudinal vibration of rods 

 
Fig.3.2 (b) Transverse vibration of cantilever 

beams. 

 

3.1.2. Damping elements: 

In real mechanical systems, there is always energy 

dissipation in one form or another. The process of 

energy dissipation is referred to in the study of 

vibration as damping. A damper is considered to have 

neither mass nor elasticity [12-13] . The three main 

forms of damping are viscous damping, Coulomb or 

dry-friction damping, and hysteresis damping. The 
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most common type of energy-dissipating element used 

in vibrations study is the viscous damper, which is also 

referred to as a dashpot. In viscous damping, the 

damping force is proportional to the velocity of the 

body. Coulomb or dry-friction damping occurs when 

sliding contact that exists between surfaces in contact 

are dry or have insufficient lubrication. In this case, the 

damping force is constant in magnitude but opposite in 

direction to that of the motion. In dry-friction damping 

energy is dissipated as heat [14-15] . 

 

3.2 FREE VIBRATION OF AN UNDAMPED 

TRANSLATIONAL SYSTEM 

The simplest model of a vibrating mechanical system 

consists of a single mass element which is connected 

to a rigid support through a linearly elastic mass less 

spring as shown in Fig. 1.8. The mass is constrained to 

move only in the vertical direction [16] . The motion 

of the system is described by a single coordinate x (t) 

and hence it has one degree of freedom (DOF). 

 

 
Fig.3.2 Spring mass system. 

 

The equation of motion for the free vibration of an 

undamped single degree of freedom system can be 

rewritten as 

𝐦�̈�(𝐭) + 𝐤𝐱(𝐭) = 𝟎 

Dividing through by m, the equation can be written in 

the form 

�̈�(𝐭) + 𝛚𝐧
𝟐𝐱(𝐭) = 𝟎 

In which ωn
2 = k/ m is a real constant. The solution of 

this equation is obtained from the initial condition 

𝐱(𝟎) = 𝐱𝟎, �̇�(𝟎) = 𝛝𝟎 

Where x0 and v0 are the initial displacement and initial 

velocity, respectively [17] . The general solution can 

be written as 

𝐱(𝐭) = 𝐀𝟏𝐞𝐢𝛚𝐧𝐭 + 𝐀𝟐𝐞−𝐢𝛚𝐧𝐭 

In which A1 and A2 are constants of integration, both 

complex quantities. It can be finally simplified as: 

 x(t) =
X

2
[ei(ωnt-φ) + e-i(ωnt-φ)] = X cos(ωnt-φ) 

 

4. Free Vibration without damping: The free body 

diagram of the mass in dynamic condition can be 

drawn as follows: 

 

 Fig: 4 (a) Undamped Free Vibration  

 

 
Fig : 4(b) Free Body Diagram 

 

The free body diagram of mass is shown in Figure 7.3 

[18-20] . The force equation can be written as follows: 

                 mẍ + mg = k(x + ∆) 

Incorporating Eq. (7.1) in Eq. (7.4), the following 

relation is obtained. 

𝐦�̈� + 𝐤 = 𝟎 

This equation is same as we got earlier. 

Solution of Differential Equation: The differential 

equation of single degree freedom Undamped system 

is given by` 

 mẍ + kx = 0  

or 

ẍ + (
k

m
) x = 0  
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When coefficient of acceleration term is unity, the 

under root of coefficient of x is equal to the natural 

circular frequency, i.e. ‘𝜔𝑛’. 

𝛚𝐧 = √
𝐤

𝐦
 

Therefore, Eq. becomes, 

�̈� + 𝛚𝐧
𝟐 𝐱 = 𝟎 

 

The equation is satisfied by functions sinwnt and 

coswnt [19]. Therefore, solution of Eq. can be written 

as 

𝒙 = 𝑨 𝐬𝐢𝐧 𝝎𝒏𝒕 + 𝑩 𝐜𝐨𝐬 𝝎𝒏𝒕 

Where A and B are constants. These constants can be 

determined from initial conditions [20] . The system 

shown in Figure can be disturbed in two ways : 

(a) By pulling mass by distance ‘X’, and 

(b) By hitting mass by means of a fast moving object 

with a velocity \say ‘V’. 

Considering case (a) 

𝐭 = 𝟎, 𝐱 = 𝐗 𝐚𝐧𝐝 �̇� = 𝟎 

 X = B and A = 0  

Therefore, 

 x = X cos ωnt 

 

Considering case (b) 

 

𝐭 = 𝟎, 𝐱 = 𝟎 𝐚𝐧𝐝 �̇� = 𝐕 

 

𝑩 = 𝟎 𝒂𝒏𝒅 𝑨 =
𝑽

𝝎𝒏
 

 

Therefore, 

𝒙 =
𝑽

𝝎𝒏
𝐬𝐢𝐧 𝝎𝒏 𝒕 

 

 

 

Fig :4(c) plot of displacement and acceleration 

 
Fig: 4(d) Plots of Displacement, Velocity and 

acceleration 

 

STEP-1: 

4.1. Matlab programming for free vibration 

without damping: 

clc 

close all 

% give mass of the system 

m=2; 

%give stiffness of the system 

k=8; 

wn=sqrt(k/m); 

%give damping coefficient 

c1=1; 

u(1)=.3; 

udot(1)=.5; 

uddot(1)=(-c1*udot(1)-k*u(1))/m; 

cc=2*sqrt(k*m); 

rho=c1/cc; 

wd=wn*sqrt(1-rho^2); 

wba=rho*wn; 

rhoba=rho/sqrt(1-rho^2); 

b0=2.0*rho*wn; 

b1=wd^2-wba^2; 

b2=2.0*wba*wd; 

dt=0.02; 

t(1)=0; 

for i=2:1500 

t(i)=(i-1)*dt; 

s=exp(-rho*wn*t(i))*sin(wd*t(i)); 

c=exp(-rho*wn*t(i))*cos(wd*t(i)); 

sdot=-wba*s+wd*c; 

cdot=-wba*c-wd*s; 
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sddot=-b1*s-b2*c; 

cddot=-b1*c+b2*s; 

a1=c+rhoba*s; 

a2=s/wd; 

a3=cdot+rhoba*sdot; 

a4=sdot/wd; 

a5=cddot+rhoba*sddot; 

a6=sddot/wd; 

u(i)=a1*u(1)+a2*udot(1);  

udot(i)=a3*u(1)+a4*udot(1); 

uddot(i)=a5*u(1)+a6*udot(1); 

end 

figure(1); 

plot(t,u,'k'); 

xlabel(' time'); 

ylabel(' displacement '); 

title(' displacement - time'); 

figure(2); 

xlabel(' time'); 

ylabel(' velocity'); 

title(' velocity - time'); 

figure(3); 

plot(t,uddot,'k'); 

xlabel(' time'); 

ylabel(' acceleration'); 

title(' acceleration- time') 

 

STEP-2: 

4.1.1. Using matlab coding for the above equation 

the result and plots: 

 
Fig.4.1.1 (a): acceleration-time plot 

 
Fig.4.1.2 (b):velocity and time plot 

 
Fig.4.1.3(c):displacement-time  plot 

 

5. Free Vibration with damping: In Undamped free 

vibrations, two elements (spring and mass) were used 

but in damped third element which is damper in 

addition to these are used. The three element model is 

shown in Figure 7.7. [21-22]  In static equilibrium 

𝒌∆= 𝒎𝒈 

𝐦�̈� = 𝐦𝐠 − 𝐊(𝐱 + ∆) − 𝐜�̇� 

Therefore, 

𝐦�̈� = −𝐊𝐱 − 𝐜�̇� 

Or, 

𝐦�̈� + 𝐜�̇� + 𝐊𝐱 = 𝟎 

Let, 

𝐱 = 𝐗𝐞𝐬𝐭 

Substituting for x in eq and simplifying it 

 

 

𝐦𝐬𝟐 + 𝐜𝐬 + 𝐤 = 𝟎 

Or, 

𝒔𝟐 +
𝒄

𝒎
𝒔 +

𝒌

𝒎
= 𝟎 

Therefore, 

𝒔𝟏,𝟐 = − (
𝒄

𝟐𝒎
) ±

𝟏

𝟐
√(

𝒄

𝒎
) − 𝟒 (

𝒌

𝒎
) 
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Figure: Damped Free Vibration 

 

The solution of Eq. is given by 

                          

 
The nature of this solution depends on the term in the 

square root. There are three possible cases [23]. 

   

 

 
Figure: 5.damped systems 

 

 

STEP-1: 

5.1. Matlab programming for free vibration with 

damping plot: 

Clear 

m=2;  

l0=0.3; 

x0=0.1;  

v0=0;  

k = [288,288,288]; 

b = [288,2*sqrt(k(2)*m),10]; 

OM = sqrt(k/m);  

NN = b/(2*m);  

delta = NN./OM;  

t = 0:0.01:1.4; 

for i=1:3 OM(i)=sqrt(k(i)/m); 

if i==2, x=(x0+(v0+x0*OM(i))*t).*exp(-OM(i)*t); 

else N(i)=b(i)/(2*m); 

za(i)=N(i)^2-OM(i)^2;  

lam1(i)=-N(i)+sqrt(za(i));  

lam2(i)=-N(i)-sqrt(za(i));  

zl1(i)=(v0-lam2(i)*x0)/(lam1(i)-lam2(i)); 

zl2(i)=(v0-lam1(i)*x0)/(lam1(i)-lam2(i)); 

x=(zl1(i)*exp(lam1(i)*t))-(zl2(i)*exp(lam2(i)*t));  

end 

mx(i,:)=x; 

end 

figure(1) 

label1=['overdamped, delta = ' num2str(delta(1))]; 

label2=['critically damped, delta = ' num2str(delta(2))];  

for i=1:3  

plot(t,mx(i,:),'k','linewidth',2); 

ylabel('displacement x [m]');  

else, text(0.6,0.07,label3);xlabel('time t [s]');  

end 

end 

 

STEP-2: 

5.2 Using Matlab coding for the above equation the 

result and plots: 
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Fig: 5.2.over damped; critically damped; under 

damped 

 

6. Forced vibration without damping: In many 

important vibration problems encountered in 

engineering work, the exciting force is applied 

periodically during the motion. These are called  

forced vibrations [24-25]. The most common periodic 

force is a harmonic force of time such as 

P = P0 sinωt 

Where P0 is a constant, ω is the forcing frequency and 

t is the time. The motion is analyzed using Fig. 

 
The general solution of Eq. 4.2 (non-homogeneous 

second order differential equation) consists of two 

parts x = xc + xp where xc = complementary solution, 

 
Fig:6. Spring–mass system subjected to harmonic 

force. 

And xp = particular solution. The complementary 

solution is obtained by setting right hand side as zero. 

 

STEP-1: 

6.1. Matlab programming for forced vibration 

without dampig plot: 

clear  %assign the initial conditions, mass, damping 

and stiffness 

 x0=0.01;v0=0.0;m=100;c=25;k=1000; 

 %compute omega and zeta, display zeta to check if 

underdamped 

 wn=sqrt(k/m); 

 z=c/(2*sqrt(k*m)); 

 z=0.0395; 

 % the damped natural frequency 

wd=wn*sqrt(1-z.^2); 

t=(0:0.01:15*(2*pi/wn));%set the values of time from 

0 in 

% increments of 0.01 up to 15 periods 

x=exp(z*wn*t).*(x0*cos(wd*t)+((v0+z*wn*x0)/wd)*

sin(wd*t)); 

% computes x(t) plot(t,x)%generates a plot of x(t) vs  

 

STEP-2: 

6.1.2. Using matlab coding for the above equation 

the result and plots:  

                                      

 
Fig: 6.1.2displacement time plot 

 

7.  Forced vibration with damping: Consider a 

forced vibration of the under-damped system shown in 

Fig. The dynamic equilibrium equation is written as, 

 
Equation is a second order non-homogeneous equation 

and it has both a complementary solution xc and a 

particular solution xp . xc is same as that for free 

vibration of an under-damped system [26] .   

 
Assume 
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Fig:7. Forced vibration of under-damped system. 

 

 
 

STEP-1: 

7.1. Matlab programming for forced vibration with 

damping plot: 

   

  echo off 

%   sdofxfer.m  plotting frequency responses of sdof 

model for different 

%   damping values.  Calculates and plots magnitude 

and phase for a single 

 clf; 

 clear all; 

 

 %   assign values for mass, percentage of critical 

damping, and stiffnesses 

%   zeta is a vector of damping values from 10% to 

100% in steps of 10% 

 m = 1; 

 zeta = 0.1:0.1:1 

 k = 1; 

 wn = sqrt(k/m); 

 w = logspace(-1,1,400); 

 

%   pre-calculate the radians to degree conversion  

rad2deg = 180/pi; 

%   define s as the imaginary operator times the radian 

frequency vector 

s = j*w; 

%   define a for loop to cycle through all the damping 

values for calculating magnitude and phase 

for  cnt = 1:length(zeta) 

%   define the frequency response to be evaluated  

xfer(cnt,:) = (1/m) ./ (s.^2 + 2*zeta(cnt)*wn*s + 

wn^2); 

%   calculate the magnitude and phase of each 

frequency response 

mag(cnt,:) = abs(xfer(cnt,:)); 

phs(cnt,:) = angle(xfer(cnt,:))*rad2deg; 

 end 

 

%   define a for loop to cycle through all the damping 

values for plotting magnitude 

for  cnt = 1:length(zeta) 

 loglog(w,mag(cnt,:),'k-') 

 xlabel('frequency, rad/sec') 

 ylabel('magnitude') 

 grid 

 hold on 

 end 

 

 hold off 

 grid on 

 disp('execution paused to display figure, "enter" to 

continue'); pause 

 %   define a for loop to cycle through all the damping 

values for plotting phase 

 for  cnt = 1:length(zeta) 

 

 semilogx(w,phs(cnt,:),'k-') 

title('SDOF frequency response phases for zeta = 0.1 

to 1.0 in steps of 0.1') 

xlabel('frequency, rad/sec') 

 ylabel('magnitude') 

 

 grid 

 hold on 

 end 

 hold off 

 grid on 

disp('execution paused to display figure, "enter" to 

continue'); pause 
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STEP-2: 

Using matlab coding for the above equation the 

result and plots: 

 
Fig: 7.1(a) SDOF response for magnitude and 

frequency 

 
Fig: 7.1(b) SDOF response for magnitude and 

Frequency in step of 0.1 

 

CONCLUSION: 

 The theory of free vibration motion with and 

without damping was studied and appropriate 

mathematical model was used to calculate the 

value of the spring stiffness, K the natural 

frequency,  

 When the large mass was attached, also the 

value of the natural frequency, with no mass 

attached. The damping coefficient was also 

calculated for different damping setting. 

Damping is very useful and it should be 

incorporated in the design of systems or 

mechanism subjected to vibrations and shock 

as it helps to minimize fatigue and failure. The 

right damper will reduce stress and deflection.  

 The slight structural consideration will show 

that the amplitude of beam at resonance will 

be maximum and the problem of failure will 

arise.  

 So, in design considerations the beams taken 

should be such that there is no resonance for 

the stability of a structure. 

 In this paper, we are using differentiation 

Method to formulate the equations of motion 

of homogeneous beams. 

  The response of magnitude, acceleration, 

time, frequency of the homogeneous beam will 

be found out at different variables of beam 

using MATLAB R2013.  

 The results will be compared with the results 

found by differentiation method. Using these 

results, frequency and mode shapes of beam 

variables will be correlated. 
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