

 Page 1828

Implementation of Reusable DCT Architectures with Reversible

Adders

A Mehjabeen

M.Tech (VLSI & Embedded Systems)

Department of ECE

G Pulla Reddy Engineering College (Autonomous)

Kurnool, A.P, India.

Sri T Thammi Reddy, M.Tech., (Ph.D)

Associate Professor,

Department of ECE

G Pulla Reddy Engineering College (Autonomous)

Kurnool, A.P, India.

Abstract:

In this paper, power efficient architectures for

implementation of integer discrete cosine transform

(DCT) of the different lengths that can be used in

High Efficiency Video Coding (HEVC) have been

presented. Efficient constant matrix-multiplication

schemes have been presented to derive parallel

architectures for a 1-D integer DCT of variable

lengths. It also describes about how the proposed

structure supports for a reusable structure of DCT

for 4, 8, 16, and 32 variable lengths with a

throughput of a 32 DCT coefficients per cycle

without related to size of a transform. The Reversible

logic gates have been used to design the adders which

are used in reusable architecture to further reduce

the power consumption. From the synthesis and

simulation results we have observed that the

improvement in power. The proposed architecture

will also support in an applications like ultrahigh

definition 7680×4320 at 60 frames/s video which is

the one of the applications of HEVC.

Key words: Discrete cosine transform (DCT), H.265,

High Efficiency Video Coding (HEVC), integer

discrete cosine trans-form (DCT), video coding.

I. INTRODUCTION

Discrete Cosine Transforms of different lengths such

as 4, 8, 16 and 32 supports High Efficient Video

Coding. Therefore flexible hardware architecture is

required for DCT of any length for computation. The

existing designs for a conventional DCT using

constant matrix multiplication CMM and Multiple

Constant Multiplications MCM can provide an optimal

solution for computation of any of these lengths; the

main drawback is they cannot be used as reusable

architecture for different lengths of DCT. This

drawback can be overcome by constructing a new

hardware implementation algorithm for supporting the

reusability and lee hardware complexity in

computation. We have designed a scalable and

reusable architecture for 1-D and a 2-D integer DCTs

which can be used for any of these prescribed lengths

such as 4,8,16 and 32. The proposed architecture

consumes less power.

LITERATURE SURVEY

The efficient integer DCT architectures are proposed

for High Efficient Video Coding. HEVC has a one

main feature is that it supports a DCT of different sizes

like 4, 8, 16 and 32 [1]. DCT is very important in

video compression due to its near optimal de-

correlation efficiency [2]. In last two decades several

variations proposed for integer DCT to reduce the

complexity in computation [3]. The new High

Efficiency Video Coding (HEVC) H.265 standard [8]

was finalized recently to replace AVC/H.264 [9]. In

real time implementation they have also proposed

some hardware architectures for the integer DCT for

HEVC. Author Ahmed et al [10] modified the DCT

matrix into sparse sub matrices by using lifting scheme

to reduce the multiplication. Author Shen et al [11]

used the multiple constant multiplications (MCM)

approach where multiplier is replaced by shift add

logic for 4-point and 8-point DCT, and also used

normal multipliers with sharing techniques for 16 and

32-point DCTs. Author Park et al [12] have used

Chen’s factorization of a DCT where the butterfly

 Page 1829

operation have been implemented by using only

multiplexors, adders and shifters. Budagavi and Sze

[13] proposed forward and inverse transform after

matrix decomposition.

DCT of different lengths such as 4,8,16 & 32 can be

used for HEVC. Hence, flexible hardware architecture

must be needed DCT of any length computation. The

existing designs for a conventional DCT using CMM

and MCM can provide an optimal solution for

computation of any of these lengths, since they cannot

be used has a reusable architecture for different lengths

of DCT. By taking this issue into consideration, we

proposed a new hardware implementation algorithm

for supporting the reusability and lee hardware in

computational complexity. We have designed a

scalable and reusable architecture for 1-D and a 2-D

integer DCTs for an HEVC which can be reused for

any of the selected lengths results in same throughput.

The next section describes the algorithms for a

hardware implementation of the HEVC integer DCTs

of various lengths 4, 8, 16, and 32. Section III

describes the design of architecture for the

implementation of 4 and 8 point integer DCT with a

generalized design of integer DCT of length N, where

it can be used for the 16-point and 32-point DCT.

Section IV describes the proposed power-efficient

designs of transposition buffers for a full-parallel and

folded implementations of 2-D Integer DCT. Section

V describes the proposed Reversible logic adder using

reversible logic gates. Sections VI describes the

observed simulation results & compare the synthesis

result of proposed architecture with existing

architectures.

INTEGER DCT ARCHITECTURES

II Algorithm for Hardware Implementation of

Integer DCT

The Joint Collaborative Team-Video Coding (JCT-

VC) manages the standardization of HEVC; Core

Experiment 10 (CE10) studied the design of core

transforms over many meeting cycles [14]. Generally

HEVC transform design [15] contains coefficients of

size 8-bit [14] but does not support like other

computing proposals for full factorization. However it

allows for both matrix multiplication and a partial

butterfly implementation. This section describes the

computation of integer DCT using the partial-butterfly

algorithm of [15].

A. Key Features of Integer DCT

An N-point integer DCT for an HEVC given in [15]

can be computed by partial butterfly approach using an

(N/2)-point DCT and matrix–vector product of (N/2) ×

(N/2) matrix with a (N/2)-point vector as

Where

a(i)=x(i)+x(N-i-1); b(i)=x(i)-x(N-i-1) (2)

for i = 0, 1,…, N/2−1. X = [x(0), x(1),…, x(N −1)] is

the input vector and Y = [y(0), y(1), ···, y(N−1)] is N-

point DCT of X. And CN/2 is (N/2)-point integer DCT

kernel matrix of a size (N/2) × (N/2). Whereas MN/2 is

also a matrix of a size (N/2) × (N/2) and its (i, j)th

entry is defined as

𝑚𝑁/2
𝑖,𝑗

= 𝑐𝑁
2𝑖+1,𝑗

 For 0≤ i, j ≤N/2-1 (3)

Where 𝑐𝑁
2𝑖+1,𝑗

 is the (2i + 1, j)th entry of a matrix CN.

Hence note that (1a) could be similarly decomposed

and recursively by further using CN/4 MN/4. Hence

referred to the direct implementation of a DCT based

on (1)–(3) as the reference algorithm [1].

 Page 1830

B. Hardware Oriented Algorithm

The direct implementation of (1) requires N
2
/4 +

MULN/2 multiplications, and N
2
/4 + N/2 + ADDN/2

additions and 2 shifts where MULN/2 and ADDN/2 of

(N/2)-point DCT. The computation of (1) may be

represented as a CMM problem [16]–[18]. Thus the

absolute values of the coefficients in all the rows and a

column of matrix M in (1b) are similar, CMM problem

can be implemented as a set of N/2 MCMs which

result in a highly regular architecture and have

implemented for low-complexity architecture. The

kernel matrices for four-point, eight-point, 16-point,

and 32-point integer DCT for HEVC are given in [15]

and 4- and eight point integer DCT are represented

respectively as

III Architectures for Integer DCT Computation

This section presents the architecture for a

computation of integer 4-point DCT. Generalized

architecture for integer DCT of higher lengths is also

presented in this section

A. Architecture for Four-Point Integer DCT

The architecture for 4-point integer DCT is shown in

Fig. 1(a). Which consists of input adder unit (IAU),

shift-add unit (SAU) and output adder unit (OAU). An

IAU computes the values of a(0), a(1), b(0) and b(1)

according to the STAGE-1 of algorithm [1]. The

computations of ti,36 and ti,83 are performed by two

SAUs according to the STAGE-2 of the algorithm.

Hence computation of t0,64 and t1,64 will not requires

any logic due to shift operation have been replaced in

the architecture. The structure of Shift Add Unit is

shown in Fig. 1(b) and outputs of the SAU are finally

added by the Output Add Unit according to the

STAGE-3.

B. Architecture for Integer DCT of Length 8 and

Higher Length DCTs

The N-point integer DCT architecture based on the

algorithm is shown in Figure 2. The architecture

consists of four units such as IAU, an (N/2)-point

integer DCT unit, an SAU and an OAU elements. The

IAU computes the values of a(i) and b(i) for i = 0, 1,

...,N/2 − 1 according to STAGE-1 of an algorithm of

Section II. An SAU provides the results of

multiplication for the input samples with DCT

coefficient by STAGE-2. Finally, Output Add Unit

generates output of DCT from the architecture binary

adder tree. Figure 3(a)–(c) represents the structures of

IAU, an SAU and a OAU in the case of 8-point integer

DCT. To compute the ti,89, ti,75, ti,50, and ti,18 for i = 0, 1,

2, and 3 requires Four SAUs according to STAGE-2.

Finally the outputs of SAUs are added by two-stage

adder tree according to STAGE- 3. The structures of

16- and 32-point integer DCT can also be obtained

similarly.

C. Reusable Integer DCT Architectures

The proposed structure shown in Fig.4 can compute

one 32-point DCT, two 16-point DCTs, four eight

point DCTs, and eight four-point DCTs, even then

throughput remains the same as 32 DCT co efficient

per cycle irrespective of the desired transform size.

From the figure 5 (a) we observed that there are two

(N/2)-point DCT units in the structure of hardware.

The input to a one (N/2)-point DCT unit is given as

feedback through (N/2) 2:1 MUXes that selects either

[a(0), ..., a(N/2 − 1)] or [x(0), ..., x(N/2 − 1)], which

depends on whether it is used for N-point DCT

computation or for a DCT of a lower size. The other

N/2 point DCT takes the input [x(N/2)….x(N-1)] when

it is used for computation of DCT of N/2 point or a

lower size, or else input reset by array of (N/2) AND

gates to disable (N/2) DCT unit. The output of (N/2)

 Page 1831

point is multiplexed with OAU, which proceeded by

SAU and IAU. The N AND gates before IAU are used

to disable IAU, SAU & OAU when architecture

computes (N/2)-point DCT or lower size. The input

control unit, mN is used to decide the size of DCT

computation. For N=32, m32 is 2-bits signal that is set

to {00},{01},{1,0} and {11} to compute 4,8,16 & 32-

point DCT. The control unit generates sel_1 and sel_2.

Here sel_1 is used as control signals of N MUXes and

input of N AND gates before IAU and sel_2 in Fig

5(a) is used as the input mN/2 to two lower size reusable

integer DCT units in a recursive manner. The

combinational logics to control units are shown in Fig.

5(b) and (c) for N = 16 and 32, respectively. For N = 8,

m8 is 1-bitsignal that is used as sel_1 while sel_2 is no

required since four point DCT is the smallest DCT.

Fig.1. Architecture of four-point integer DCT

(a)Four-point DCT architecture (b) Structure of

SAU

Fig. 2. Generalized architecture for integer DCT of

lengths N= 8, 16, and 32.

Fig.3. Architecture of eight-point integer DCT (a)

Structure of IAU (b) Structure of SAU (c)

Structure of OAU

 Page 1832

Fig.4. Reusable Architecture of Integer DCT for

N=8, 16 & 32

IV. Structure for 2 -D Integer DCT

The separable property, of an (N × N)-point 2-D

integer DCT will be computed by the row-column

decomposition technique in two different stages.

1) STAGE-1: N-point 1-D integer DCT is computed

for each column of the input matrix with size (N × N)

which generates an intermediate output matrix of size

(N × N).

2) STAGE-2: N-point 1-D DCT is computed as each

row of the intermediate output matrix of size (N × N)

which generate required 2-D DCT of size (N × N).

A folded architecture and full-parallel architecture for

the 2-D integer DCT, along with the necessary

transposition buffer to match them without internal

data movement are used.

Fig.5. Proposed reusable architecture of integer

DCT. (a) Proposed reusable architecture for N = 8,

16, and 32. (b) Control unit for N=16. (c) Control

unit for N = 32.

REVERSIBLE ADDERS

V. FULL ADDER USING TWO PERES GATES

Peres Gate

A 3x3 Peres gate is shown in Fig:6. In this the input

vector is I (A, B, C) with output vector O (P, Q, R) for

which the output is computed as P = A, Q = A xor B

and R= AB xor C.

Fig 6: Peres Gate

Table1: Truth table of Peres gate

A full adder victimization 2 Peres gates is as shown in

Fig 7 .The quantum realization of this shows that its

quantum price is eight 2 Peres gates are used. One 4*4

reversible gate referred to as PFAG that is Peres Full

Adder Gate with quantum price of eight is employed to

appreciate the multiplier factor.

Fig 7: Full adder using Peres Gates

 Page 1833

VI. SIMULATION AND SYNTHESIS RESULTS

Xilinx ISE Design Suite 12.2 platform is used for the

simulation and synthesis of the proposed architecture.

The hardware description language Verilog HDL is

used for implementation of the proposed architecture.

Fig 8: Simulation results of 32 bit DCT output

results

Fig 9: RTL schematic of 32 Point DCT architecture

Table2: Comparison table of 32 bit existing DCT &

proposed DCT architectures

VII. Summary and Conclusion

In this paper, we have proposed power-efficient

architectures for the implementation of integer DCT of

different lengths that can be used in HEVC. The

computation of N-point 1-D DCT include (N/2)-point

1-D DCT and a vector-matrix multiplication of size

(N/2) × (N/2) with constant matrix. We have shown

that the MCM-based architecture is highly regular and

involves significantly less energy consumption than

the direct implementation of matrix multiplication for

odd DCT coefficients. The proposed architecture we

used to derive a reusable architecture for DCT which

computes the DCT of lengths 4, 8, 16, and 32 with

throughput of 32 output coefficients per cycle. We also

observed that the power consumption has been reduced

from 0.267 Watts to 0.128 Watts by replacing the

adders with Reversible adder by reversible logic gates.

Future scope

In future we can extend the length of the DCT to 64 bit

and the multiplier used can be replaced by efficient

multiplier for further reducing the hardware.

References

[1]Pramod Kumar Meher; Sang Yoon Park; Basant

Kumar Mohanty; Khoon Seong Lim; Chuohao

Yeo,“Efficient Integer DCT Architectures for

HEVC”, IEEE Transactions on Circuits and Systems

for Video Technology, Volume: 24, 2014, Issue: 1,

pp: 168 – 178

[2] N. Ahmed, T. Natarajan, and K. Rao, “Discrete

cosine transform,” IEEE Trans. Comput., vol. 100, no.

1, pp. 90–93, Jan. 1974.

[3] W. Cham and Y. Chan, “An order-16 integer

cosine transform,” IEEETrans. Signal Process., vol.

39, no. 5, pp. 1205–1208, May 1991.

[4] Y. Chen, S. Oraintara, and T. Nguyen, “Video

compression using integer DCT,” in Proc. IEEE Int.

Conf. Image Process., Sep. 2000, pp. 844–845.

[5] J. Wu and Y. Li, “A new type of integer DCT

transform radix and its rapid algorithm,” in Proc. Int.

Conf. Electric Inform. Control Eng., Apr. 2011, pp.

1063–1066.

[6] A. M. Ahmed and D. D. Day, “Comparison

between the cosine and Hartley based naturalness

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pramod%20Kumar%20Meher.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sang%20Yoon%20Park.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Khoon%20Seong%20Lim.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6702488

 Page 1834

preserving transforms for image watermarking and

data hiding,” in Proc. First Canad. Conf. Comput.

Robot Vision, May

2004, pp. 247–251.

[7] M. N. Haggag, M. El-Sharkawy, and G. Fahmy,

“Efficient fast multiplication-free integer

transformation for the 2-D DCT H.265 standard,” in

Proc. Int. Conf. Image Process., Sep. 2010, pp. 3769–

3772.

[8] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-

K. Wang, and T. Wiegand, High Efficiency Video

Coding (HEVC) Text Specification Draft 10 (for FDIS

and Consent), JCT-VC L1003, Geneva, Switzerland,

Jan. 2013.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.

Luthra, “Overview of the H.264/AVC video coding

standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 13, no. 7, pp. 560–576, Jul. 2003.

[10] A. Ahmed, M. U. Shahid, and A. Rehman, “N

Point DCT VLSI Architecture for Emerging HEVC

Standard,” in Proc. VLSI Design, vol. 2012, Article

752024, pp. 1–13, 2012.

[11] S. Shen, W. Shen, Y. Fan, and X. Zeng, “A

unified 4/8/16/32-point integer IDCT architecture for

multiple video coding standards,” in Proc. IEEE Int.

Conf. Multimedia Expo, Jul. 2012, pp. 788–793.

[12] J.-S. Park, W.-J. Nam, S.-M. Han, and S. Lee, “2-

D large inverse transform (16x16, 32x32) for HEVC

(high efficiency video coding),” J. Semicond. Technol.

Sci., vol. 12, no. 2, pp. 203–211, Jun. 2012. 178 IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY, VOL. 24, NO. 1,

JANUARY 2014

[13] M. Budagavi and V. Sze, “Unified

forward+inverse transform architecture for HEVC,” in

Proc. Int. Conf. Image Process., Sep. 2012, pp. 209–

212.

[14] P. Topiwala, M. Budagavi, A. Fuldseth, R. Joshi,

and E. Alshina. (2011, Nov.). JCTVC-G040, CE10:

Summary Report on Core Transform Design [Online].

Available: http://phenix.int-evry.fr/jct/doc end user/

documents/7 Geneva/wg11/JCTVC-G040-v3.zip

[15] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V.

Sze. (2011, Nov.). JCTVC-G495, CE10: Core

Transform Design for HEVC: Proposal for Current

HEVC Transform [Online]. Available:

http://phenix.int-evry.fr/ jct/doc end user/documents/7

Geneva/wg11/JCTV%C-G495-v2.zip

[16] M. Potkonjak, M. B. Srivastava, and A. P.

Chandrakasan, “Multiple constant multiplications:

Efficient and versatile framework and algorithms for

exploring common subexpression elimination,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.

15, no. 2, pp. 151–165, Feb. 1996.

[17] M. D. Macleod and A. G. Dempster, “Common

subexpression elimination algorithm for low-cost

multiplierless implementation of matrix multipliers,”

Electron. Lett., vol. 40, no. 11, pp. 651–652, May

2004.

[18] N. Boullis and A. Tisserand, “Some optimizations

of hardware multiplication by constant matrices,”

IEEE Trans. Comput., vol. 54, no. 10, pp. 1271–1282,

Oct. 2005.

http://phenix.int-evry.fr/jct/doc%20end%20user/%20documents/7%20Geneva/wg11/JCTVC-G040-v3.zip
http://phenix.int-evry.fr/jct/doc%20end%20user/%20documents/7%20Geneva/wg11/JCTVC-G040-v3.zip
http://phenix.int-evry.fr/

