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Abstract: 

In this paper, power efficient architectures for 

implementation of integer discrete cosine transform 

(DCT) of the different lengths that can be used in 

High Efficiency Video Coding (HEVC) have been 

presented. Efficient constant matrix-multiplication 

schemes have been presented to derive parallel 

architectures for a 1-D integer DCT of variable 

lengths. It also describes about how the proposed 

structure supports for a reusable structure of DCT 

for 4, 8, 16, and 32 variable lengths with a 

throughput of a 32 DCT coefficients per cycle 

without related to size of a transform. The Reversible 

logic gates have been used to design the adders which 

are used in reusable architecture to further reduce 

the power consumption. From the synthesis and 

simulation results we have observed that the 

improvement in power. The proposed architecture 

will also support in an applications like ultrahigh 

definition 7680×4320 at 60 frames/s video which is 

the one of the applications of HEVC. 
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I. INTRODUCTION 

Discrete Cosine Transforms of different lengths such 

as 4, 8, 16 and 32 supports High Efficient Video 

Coding. Therefore flexible hardware architecture is 

required for DCT of any length for computation. The 

existing designs for a conventional DCT using 

constant matrix multiplication CMM and Multiple 

Constant Multiplications MCM can provide an optimal 

solution for computation of any of these lengths; the 

main drawback is they cannot be used as reusable 

architecture for different lengths of DCT. This 

drawback can be overcome by constructing a new 

hardware implementation algorithm for supporting the 

reusability and lee hardware complexity in 

computation. We have designed a scalable and 

reusable architecture for 1-D and a 2-D integer DCTs 

which can be used for any of these prescribed lengths 

such as 4,8,16 and 32. The proposed architecture 

consumes less power. 

 

LITERATURE SURVEY 

The efficient integer DCT architectures are proposed 

for High Efficient Video Coding. HEVC has a one 

main feature is that it supports a DCT of different sizes 

like 4, 8, 16 and 32 [1]. DCT is very important in 

video compression due to its near optimal de-

correlation efficiency [2]. In last two decades several 

variations proposed for integer DCT to reduce the 

complexity in computation [3]. The new High 

Efficiency Video Coding (HEVC) H.265 standard [8] 

was finalized recently to replace AVC/H.264 [9]. In 

real time implementation they have also proposed 

some hardware architectures for the integer DCT for 

HEVC. Author Ahmed et al [10] modified the DCT 

matrix into sparse sub matrices by using lifting scheme 

to reduce the multiplication. Author Shen et al [11] 

used the multiple constant multiplications (MCM) 

approach where multiplier is replaced by shift add 

logic for 4-point and 8-point DCT, and also used 

normal multipliers with sharing techniques for 16 and 

32-point DCTs. Author Park et al [12] have used 

Chen’s factorization of a DCT where the butterfly 
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operation have been implemented by using only 

multiplexors, adders and shifters. Budagavi and Sze 

[13] proposed forward and inverse transform after 

matrix decomposition. 

 

DCT of different lengths such as 4,8,16 & 32 can be 

used for HEVC. Hence, flexible hardware architecture 

must be needed DCT of any length computation. The 

existing designs for a conventional DCT using CMM 

and MCM can provide an optimal solution for 

computation of any of these lengths, since they cannot 

be used has a reusable architecture for different lengths 

of DCT. By taking this issue into consideration, we 

proposed a new hardware implementation algorithm 

for supporting the reusability and lee hardware in 

computational complexity. We have designed a 

scalable and reusable architecture for 1-D and a 2-D 

integer DCTs for an HEVC which can be reused for 

any of the selected lengths results in same throughput. 

 

The next section describes the algorithms for a 

hardware implementation of the HEVC integer DCTs 

of various lengths 4, 8, 16, and 32. Section III 

describes the design of architecture for the 

implementation of 4 and 8 point integer DCT with a 

generalized design of integer DCT of length N, where 

it can be used for the 16-point and 32-point DCT. 

Section IV describes the proposed power-efficient 

designs of transposition buffers for a full-parallel and 

folded implementations of 2-D Integer DCT. Section 

V describes the proposed Reversible logic adder using 

reversible logic gates. Sections VI describes the 

observed simulation results & compare the synthesis 

result of proposed architecture with existing 

architectures. 

 

INTEGER DCT ARCHITECTURES 

II Algorithm for Hardware Implementation of 

Integer DCT 

The Joint Collaborative Team-Video Coding (JCT-

VC) manages the standardization of HEVC; Core 

Experiment 10 (CE10) studied the design of core 

transforms over many meeting cycles [14]. Generally 

HEVC transform design [15] contains coefficients of 

size 8-bit [14] but does not support like other 

computing proposals for full factorization. However it 

allows for both matrix multiplication and a partial 

butterfly implementation. This section describes the 

computation of integer DCT using the partial-butterfly 

algorithm of [15]. 

 

A. Key Features of Integer DCT 

An N-point integer DCT for an HEVC given in [15] 

can be computed by partial butterfly approach using an 

(N/2)-point DCT and matrix–vector product of (N/2) × 

(N/2) matrix with a (N/2)-point vector as 

 
Where  

a(i)=x(i)+x(N-i-1); b(i)=x(i)-x(N-i-1) (2) 

for i = 0, 1,…, N/2−1. X = [x(0), x(1),…, x(N −1)] is 

the input vector and Y = [y(0), y(1), ···, y(N−1)] is N-

point DCT of X. And CN/2 is (N/2)-point integer DCT 

kernel matrix of a size (N/2) × (N/2). Whereas MN/2 is 

also a matrix of a size (N/2) × (N/2) and its (i, j)th 

entry is defined as 

 

𝑚𝑁/2
𝑖,𝑗

= 𝑐𝑁
2𝑖+1,𝑗

 For 0≤ i, j ≤N/2-1  (3) 

 

Where 𝑐𝑁
2𝑖+1,𝑗

  is the (2i + 1, j)th entry of a matrix CN. 

Hence note that (1a) could be similarly decomposed 

and recursively by further using CN/4 MN/4. Hence 

referred to the direct implementation of a DCT based 

on (1)–(3) as the reference algorithm [1]. 
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B. Hardware Oriented Algorithm 

The direct implementation of (1) requires N
2
/4 + 

MULN/2 multiplications, and N
2
/4 + N/2 + ADDN/2 

additions and 2 shifts where MULN/2 and ADDN/2 of 

(N/2)-point DCT. The computation of (1) may be 

represented as a CMM problem [16]–[18]. Thus the 

absolute values of the coefficients in all the rows and a 

column of matrix M in (1b) are similar, CMM problem 

can be implemented as a set of N/2 MCMs which 

result in a highly regular architecture and have 

implemented for low-complexity architecture. The 

kernel matrices for four-point, eight-point, 16-point, 

and 32-point integer DCT for HEVC are given in [15] 

and 4- and eight point integer DCT are represented 

respectively as  

 
 

III Architectures for Integer DCT Computation 

This section presents the architecture for a 

computation of integer 4-point DCT. Generalized 

architecture for integer DCT of higher lengths is also 

presented in this section 

 

A.  Architecture for Four-Point Integer DCT 

The architecture for 4-point integer DCT is shown in 

Fig. 1(a).  Which consists of input adder unit (IAU), 

shift-add unit (SAU) and output adder unit (OAU). An 

IAU computes the values of a(0), a(1), b(0) and b(1) 

according to the STAGE-1 of algorithm [1]. The 

computations of ti,36 and ti,83 are performed by two 

SAUs according to the STAGE-2 of the algorithm. 

Hence computation of t0,64 and t1,64 will not requires 

any logic due to shift operation have been replaced in 

the architecture. The structure of Shift Add Unit is 

shown in Fig. 1(b) and outputs of the SAU are finally 

added by the Output Add Unit according to the 

STAGE-3. 

 

B. Architecture for Integer DCT of Length 8 and 

Higher Length DCTs 

The N-point integer DCT architecture based on the 

algorithm is shown in Figure 2. The architecture 

consists of four units such as IAU, an (N/2)-point 

integer DCT unit, an SAU and an OAU elements. The 

IAU computes the values of a(i) and b(i) for i = 0, 1, 

...,N/2 − 1 according to STAGE-1 of an algorithm of 

Section II. An SAU provides the results of 

multiplication for the input samples with DCT 

coefficient by STAGE-2.  Finally, Output Add Unit 

generates output of DCT from the architecture binary 

adder tree. Figure 3(a)–(c) represents the structures of 

IAU, an SAU and a OAU in the case of 8-point integer 

DCT. To compute the ti,89, ti,75, ti,50, and ti,18 for i = 0, 1, 

2, and 3 requires Four SAUs according to STAGE-2. 

Finally the outputs of SAUs are added by two-stage 

adder tree according to STAGE- 3. The structures of 

16- and 32-point integer DCT can also be obtained 

similarly. 

 

C. Reusable Integer DCT Architectures 

The proposed structure shown in Fig.4 can compute 

one 32-point DCT, two 16-point DCTs, four eight 

point DCTs, and eight four-point DCTs, even then 

throughput remains the same as 32 DCT co efficient 

per cycle irrespective of the desired transform size. 

 

From the figure 5 (a) we observed that there are two 

(N/2)-point DCT units in the structure of hardware. 

The input to a one (N/2)-point DCT unit is given as 

feedback through (N/2) 2:1 MUXes that selects either 

[a(0), ..., a(N/2 − 1)] or [x(0), ..., x(N/2 − 1)], which 

depends on whether it is used for N-point DCT 

computation or for a  DCT of a lower size. The other 

N/2 point DCT takes the input [x(N/2)….x(N-1)] when 

it is used for computation of  DCT of N/2 point or a 

lower size, or else input reset by array of (N/2) AND 

gates to disable (N/2)  DCT unit. The output of (N/2) 
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point is multiplexed with OAU, which proceeded by 

SAU and IAU. The N AND gates before IAU are used 

to disable IAU, SAU & OAU when architecture 

computes (N/2)-point DCT or lower size. The input 

control unit, mN is used to decide the size of DCT 

computation. For N=32, m32 is 2-bits signal that is set 

to {00},{01},{1,0} and {11} to compute 4,8,16  & 32-

point DCT. The control unit generates sel_1 and sel_2. 

Here sel_1 is used as control signals of N MUXes and 

input of N AND gates before IAU and sel_2 in Fig 

5(a) is used as the input mN/2 to two lower size reusable 

integer DCT units in a recursive manner. The 

combinational logics to control units are shown in Fig. 

5(b) and (c) for N = 16 and 32, respectively. For N = 8, 

m8 is 1-bitsignal that is used as sel_1 while sel_2 is no 

required since four point DCT is the smallest DCT. 

 
Fig.1. Architecture of four-point integer DCT 

(a)Four-point DCT architecture (b) Structure of 

SAU 

 
Fig. 2. Generalized architecture for integer DCT of 

lengths N= 8, 16, and 32. 

 
Fig.3. Architecture of eight-point integer DCT (a) 

Structure of IAU (b) Structure of SAU (c) 

Structure of OAU 
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Fig.4. Reusable Architecture of Integer DCT for 

N=8, 16 & 32 

 

IV. Structure for 2 -D Integer DCT 

The separable property, of an (N × N)-point 2-D 

integer DCT will be computed by the row-column 

decomposition technique in two different stages. 

1) STAGE-1: N-point 1-D integer DCT is computed 

for each column of the input matrix with size (N × N) 

which generates an intermediate output matrix of size 

(N × N). 

2) STAGE-2: N-point 1-D DCT is computed as each 

row of the intermediate output matrix of size (N × N) 

which generate required 2-D DCT of size (N × N). 

 

A folded architecture and full-parallel architecture for 

the 2-D integer DCT, along with the necessary 

transposition buffer to match them without internal 

data movement are used. 

 
Fig.5. Proposed reusable architecture of integer 

DCT. (a) Proposed reusable architecture for N = 8, 

16, and 32. (b) Control unit for N=16. (c) Control 

unit for N = 32. 

REVERSIBLE ADDERS 

V. FULL ADDER USING TWO PERES GATES 

Peres Gate 

A 3x3 Peres gate is shown in Fig:6. In this the input 

vector is I (A, B, C) with output vector O (P, Q, R) for 

which the output is computed as P = A, Q = A xor B 

and R= AB  xor C. 

 
Fig 6: Peres Gate 

 

 
Table1: Truth table of Peres gate 

 

A full adder victimization 2 Peres gates is as shown in 

Fig 7 .The quantum realization of this shows that its 

quantum price is eight 2 Peres gates are used. One 4*4 

reversible gate referred to as PFAG that is Peres Full 

Adder Gate with quantum price of eight is employed to 

appreciate the multiplier factor. 

 
Fig 7: Full adder using Peres Gates 
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VI. SIMULATION AND SYNTHESIS RESULTS 

Xilinx ISE Design Suite 12.2 platform is used for the 

simulation and synthesis of the proposed architecture. 

The hardware description language Verilog HDL is 

used for implementation of the proposed architecture. 

 

 
Fig 8: Simulation results of 32 bit DCT output 

results 

 
Fig 9: RTL schematic of 32 Point DCT architecture 

 

 
Table2: Comparison table of 32 bit existing DCT & 

proposed DCT architectures 

 

VII. Summary and Conclusion 

In this paper, we have proposed power-efficient 

architectures for the implementation of integer DCT of 

different lengths that can be used in HEVC. The 

computation of N-point 1-D DCT include (N/2)-point 

1-D DCT and a vector-matrix multiplication of size 

(N/2) × (N/2) with constant matrix. We have shown 

that the MCM-based architecture is highly regular and 

involves significantly less energy consumption than 

the direct implementation of matrix multiplication for 

odd DCT coefficients. The proposed architecture we 

used to derive a reusable architecture for DCT which 

computes the DCT of lengths 4, 8, 16, and 32 with 

throughput of 32 output coefficients per cycle. We also 

observed that the power consumption has been reduced 

from 0.267 Watts to 0.128 Watts by replacing the 

adders with Reversible adder by reversible logic gates. 

 

Future scope 

In future we can extend the length of the DCT to 64 bit 

and the multiplier used can be replaced by efficient 

multiplier for further reducing the hardware. 

 

References 

[1]Pramod Kumar Meher; Sang Yoon Park; Basant 

Kumar Mohanty; Khoon Seong   Lim; Chuohao 

Yeo,“Efficient Integer DCT   Architectures for 

HEVC”, IEEE Transactions on Circuits and Systems 

for Video Technology,  Volume: 24, 2014, Issue: 1, 

pp: 168 – 178 

 

[2] N. Ahmed, T. Natarajan, and K. Rao, “Discrete 

cosine transform,” IEEE Trans. Comput., vol. 100, no. 

1, pp. 90–93, Jan. 1974. 

 

[3] W. Cham and Y. Chan, “An order-16 integer 

cosine transform,” IEEETrans. Signal Process., vol. 

39, no. 5, pp. 1205–1208, May 1991. 

 

[4] Y. Chen, S. Oraintara, and T. Nguyen, “Video 

compression using integer DCT,” in Proc. IEEE Int. 

Conf. Image Process., Sep. 2000, pp. 844–845. 

 

[5] J. Wu and Y. Li, “A new type of integer DCT 

transform radix and its rapid algorithm,” in Proc. Int. 

Conf. Electric Inform. Control Eng., Apr. 2011, pp. 

1063–1066. 

 

[6] A. M. Ahmed and D. D. Day, “Comparison     

between the cosine and Hartley based naturalness 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pramod%20Kumar%20Meher.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sang%20Yoon%20Park.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Basant%20Kumar%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Khoon%20Seong%20Lim.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chuohao%20Yeo.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/document/6575105/
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6702488


 

 Page 1834 
 

preserving transforms for image watermarking and 

data hiding,” in Proc. First Canad. Conf. Comput. 

Robot Vision, May 

2004, pp. 247–251. 

 

[7] M. N. Haggag, M. El-Sharkawy, and G. Fahmy, 

“Efficient fast multiplication-free integer 

transformation for the 2-D DCT H.265 standard,” in 

Proc. Int. Conf. Image Process., Sep. 2010, pp. 3769–

3772. 

 

[8] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-

K. Wang, and T. Wiegand, High Efficiency Video 

Coding (HEVC) Text Specification Draft 10 (for FDIS 

and Consent), JCT-VC L1003, Geneva, Switzerland, 

Jan. 2013. 

 

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. 

Luthra, “Overview of the H.264/AVC video coding 

standard,” IEEE Trans. Circuits Syst. Video Technol., 

vol. 13, no. 7, pp. 560–576, Jul. 2003. 

 

[10] A. Ahmed, M. U. Shahid, and A. Rehman, “N 

Point DCT VLSI Architecture for Emerging HEVC 

Standard,” in Proc. VLSI Design, vol. 2012, Article 

752024, pp. 1–13, 2012. 

 

[11] S. Shen, W. Shen, Y. Fan, and X. Zeng, “A 

unified 4/8/16/32-point integer IDCT architecture for 

multiple video coding standards,” in Proc. IEEE Int. 

Conf. Multimedia Expo, Jul. 2012, pp. 788–793. 

 

[12] J.-S. Park, W.-J. Nam, S.-M. Han, and S. Lee, “2-

D large inverse transform (16x16, 32x32) for HEVC 

(high efficiency video coding),” J. Semicond. Technol. 

Sci., vol. 12, no. 2, pp. 203–211, Jun. 2012. 178 IEEE 

TRANSACTIONS ON CIRCUITS AND SYSTEMS 

FOR VIDEO TECHNOLOGY, VOL. 24, NO. 1, 

JANUARY 2014 

 

[13] M. Budagavi and V. Sze, “Unified 

forward+inverse transform architecture for HEVC,” in 

Proc. Int. Conf. Image Process., Sep. 2012, pp. 209–

212. 

[14] P. Topiwala, M. Budagavi, A. Fuldseth, R. Joshi, 

and E. Alshina. (2011, Nov.). JCTVC-G040, CE10: 

Summary Report on Core Transform Design [Online]. 

Available: http://phenix.int-evry.fr/jct/doc end user/ 

documents/7 Geneva/wg11/JCTVC-G040-v3.zip 

 

[15] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. 

Sze. (2011, Nov.). JCTVC-G495, CE10: Core 

Transform Design for HEVC: Proposal for Current 

HEVC Transform [Online]. Available: 

http://phenix.int-evry.fr/ jct/doc end user/documents/7 

Geneva/wg11/JCTV%C-G495-v2.zip 

 

[16] M. Potkonjak, M. B. Srivastava, and A. P. 

Chandrakasan, “Multiple constant multiplications: 

Efficient and versatile framework and algorithms for 

exploring common subexpression elimination,” IEEE 

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 

15, no. 2, pp. 151–165, Feb. 1996. 

 

[17] M. D. Macleod and A. G. Dempster, “Common 

subexpression elimination algorithm for low-cost 

multiplierless implementation of matrix multipliers,” 

Electron. Lett., vol. 40, no. 11, pp. 651–652, May 

2004. 

 

[18] N. Boullis and A. Tisserand, “Some optimizations 

of hardware multiplication by constant matrices,” 

IEEE Trans. Comput., vol. 54, no. 10, pp. 1271–1282, 

Oct. 2005. 

http://phenix.int-evry.fr/jct/doc%20end%20user/%20documents/7%20Geneva/wg11/JCTVC-G040-v3.zip
http://phenix.int-evry.fr/jct/doc%20end%20user/%20documents/7%20Geneva/wg11/JCTVC-G040-v3.zip
http://phenix.int-evry.fr/

