

 Page 497

Continuous Duplicate Detection
B.Guna Harika

M. Tech Student,

Sreenidhi Institute of Science and

Technology, Hyderabad.

Dr.V.V.S.S.S.Balaram

Professor,

Sreenidhi Institute of Science and

Technology, Hyderabad.

Sunil Bhutada

Associate Professor,

Sreenidhi Institute of Science and

Technology, Hyderabad.

Abstract:

As the usage of data increasing abundantly, the

problem of data quality flourishes. In today’s world

objects the same data is representing in different

customs, duplication is one among data quality

problems. Duplication of data causes unfavorable

effects. For instance, bank trader obtains duplicate

identities, catalog levels are monitored inaccurately,

etc. Detecting duplicates automatically is difficult task.

Process of identifying various representations of same

real world data entity is Duplicate detection. In today’s

world detecting a large quantity of duplicate entity in

short period of time and maintaining data quality is

difficult. Using Genetic Algorithm, we can solve the

problem of duplicate detection and increase efficiency

of detecting duplicate data in short period. This

technique provides a competent way to detect

replicated content in different location switch different

file name or dissimilar content with matching file

name.

Key words:

Duplicate detection, entity resolution, progressive, and

data cleaning.

1. INTRODUCTION:

Knowledge discovery or Data mining is the logical

process of extracting and analyzing massive set of data

and extort the implication of the data. To make

proactive and knowledge driven decisions data mining

tools are used. These tools predict behaviors in less

time whereas traditional tools consume a lot of time to

resolve. These tools clean data bases for hidden

patterns, finding analytical information. Although data

mining is still in its infancy, wide range of industries

including trade, funding, medical field, manufacturing

shipping, and aerospace uses data mining techniques

and tools to take benefit of chronological data. Data

mining provides analysts to identify significant Data

used to find relationships and patterns in turn to create

enhanced business decisions. Using pattern

recognition, statistical and mathematical techniques we

can filter information in warehouse. In today's IT

based economy databases play a vital role. Industries

depend on the accurateness of databases to accomplish

operations. The quality and cost implication are stored

in the database should be more significant to the data

which relies on operating and carry out businesses.

In an ideal system with perfect data, the structure of a

complete analysis of the data consists of relational

terms combination of two or more tables on key fields.

Data lacks to provide unique identifier to per such

operation. The data suspiciously neither controls the

quality of data nor a consistent approach among

various data sources.

Earlier systems such as continuous duplicate detection

algorithms-(PSNM) Progressive Sorted Neighborhood

Method and (PB) Progressive Blocking, produces large

amount of replicated data sets. To detect the replicate

data sets we apply genetic programming algorithm

(GP). GP algorithm is good at detecting similarities

and finding duplicate records.

In the below, section 2 discusses about literature

survey, section 3 talks about progressive Continuous

Duplicate Detection, section 4 discusses about PSNM,

section 5 discusses about PB, section 6 discusses about

attribute parallel method, section 7 discusses about

genetic programming algorithm, section 8 discusses

about architecture, section 9 discusses about

performance evaluation and results.

 Page 498

2. LITERATURE SURVEY:

L. Kolb et.al [1] discussed about Cloud based

infrastructures that supports the effective parallel

execution of data-intensive tasks such as entity

resolution on large datasets. The work investigated

about the challenges and feasible solutions of using the

model of Map Reduce programming for parallel entity

resolution. In precise, two Map-based implementations

are proposed and evaluated for Sorted Neighborhood

blocking which may use multiple Map Reduce jobs or

apply a optimized data replication among the two

proposals considered.

P. Christen [2] discussed about Record linkage process

that matches records referred to the same entities but

collected from many different databases. If the same is

applied on a single database, then the process is termed

as deduplication. Surprisingly, in many applications,

matched data is crucial either due to cost or they can

have information which may be unavailable elsewhere.

In data cleansing process, the vital step is to eliminate

the duplicate records from a single database which

may further influence the possible outcomes of the

subsequent data mining or data processing. As the size

of the single database is advancing today, the

complexity of the matching process also increased and

became one of the major challenges for record linking

and deduplication.

Therefore, in the matching process, it is aimed to

reduce the comparison among the recorded pairs by

eliminating the unmatched pairs, at the same time,

there should be no compromise on the quality of

matching. In this work, a survey of 12 variations of 6

indexing techniques were presented besides with

analysis of their complexity and evaluation of

performance and scalability within a frame work

which use both real and synthetic datasets. U.

Draisbach and F.Naumann [3] suggested that to find

multiple dataset records which represent similar real-

world entities, one can employ duplicate detection

process.

However, due to the bulk cost involved in exhaustive

comparison, promising record pairs are selected for

comparison by typical algorithms. Blocking and

windowing are the two challenging approaches. In

blocking, record partitions into disjoint subsets,

whereas in windowing method, especially the Sorted

Neighborhood method, records are compared within a

window by selecting over the sorted records. In this

work, a new algorithm in several forms called Sorted

Blocks, which could generalize the above two

approaches was presented. Sorted Blocks were

evaluated here by conducting extensive experiments

with different datasets. For that, this new algorithm

requires fewer comparison to find the similar

duplicates.

O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J.

Miller[4] discussed that the formation of duplicate

records in large databases leads to a major data quality

concern. Entity resolution called as record linkage or

duplicate detection is used to identify duplicates that

refer to the same-world entity and to assist the data

cleansing process. A Stringer system is presented in

this work to understand the barriers that remain in the

duplication algorithms provided within an evaluation

framework. Also this work used Stringer to calculate

the clusters (a group of potential duplicates) quality

obtained from various unconstrained clustering

algorithms used along with approximate join

techniques.

The work is highly encouraged by applying recent and

significant advancements which have made high

efficient approximate join algorithms. Interestingly,

the work results have proved that some clustering

algorithms performed efficiently with accuracy and

scalability which were not used regularly before.

3. PROGRESSIVE CDD:

Continuous duplicate detection (CDD) is combination

of Progressive sorted neighborhood method (PSNM)

and progressive blocking (PB),PSNM performs best on

fewer amounts of data and clean datasets.

 Page 499

PB performs best on large and unclean datasets by

using these two algorithms to identify the duplicate

data, now we implement the generic programming

algorithm (GP)used to detect duplicate data.

Duplications are saved when data with same content

and different name is detected.

4. PROGRESSIVE SORTED NEIGHBORHOOD

METHOD

Progressive sorted neighborhood method (PSNM) [6]

sorts given data by using predefined sorting key and

compares records which are in the sorted order. The

perception record closes in the sorted order and likely

duplicates the records, because they are similar with

their sorting key. In particular, distance of two records

sorttheir ranks (rank-distance) and gives PSNM to

estimate matching likelihood. The PSNM algorithm

uses perception to iteratively differ in window size,

begin with a small window size that quickly finds the

most capable records. This algorithm is used for small

datasets and it calculates as suitable partition size p

Size, i.e., the utmost number of records that fit in

memory.

If the data is taken from a database, it calculates the

size of data and matches this to the available main

memory. Otherwise, a sample of records are taken and

for each field it estimates the size of a record with the

largest values. The algorithm calculates the number of

necessary partitions spNum, while considering a

partition overlap of W – 1 record to slide the window

across their boundaries. The order-array keeps the

order of records with respect to the given key K. By

storing only record IDs in this array; we assume that it

can be kept in memory. To hold the actual records of a

current partition, PSNM declares the record array.

ProgressiveSortedNeighborhoodRequire:

datasetreferenceD, sortingkeyK,

windowsizeW, enlargementintervalsizeI,

numberofrecordsN

Step 1: procedurePSNM(D, K, W, I, N)

Step 2: pSize ← calcPartitionSize D

Step 3: pNum ← [N/pSize − W + 1)]

Step 4: arrayordersizeNasInteger

Step 5: arrayrecssizepSizeasRecord

Step 6: order ← sortProgressive

(D, K, I, pSize, pNum)

Step 7: forcurrentI ← 2 todW = Iedo

Step 8: forcurrentP ← 1 topNumdo

Step 9: recs ← loadPartition(D, currentP)

Step 10: fordistbelongstorange

(currentI, I, W) do

Step 11: fori ← 0 to |recs|_ distdo

Step 12: pair ←< 𝑟𝑒𝑐𝑠[𝑖], 𝑟𝑒𝑐𝑠[𝑖 + 𝑑𝑖𝑠𝑡] >

Step 13: ifcompare(pair) then

Step 14: emit(pair)

Step 15: lookAhead(pair)

PSNM sorts the dataset D by key K and the sorting is

done by progressive sorting algorithm. Later, PSNM

linearly increases the window size from 2 to the

maximum window size W in steps of one. In this

manner, promising close neighbors are selected first

and later on less promising far-away neighbors are

selected. For every successive progressive iteration,

PSNM reads the entire dataset once. As the loading

process is in partition-wise, PSNM iterates and loads

all partitions in sequence. In order to process a loaded

partition, the PSNM first iterates overall record rank-

distances dist that are within the current window

interval current. For I= 1, means the distance is only

one, which specifies the record rank-distance of the

current main-iteration. PSNM then iterates all records

in the current partition to compare them to their dist-

neighbor. The compare (pair) function is employed for

comparison. Ifthis function returns “true”, a duplicate

has been found and can be give out.

5. PROGRESSIVE BLOCKING

Progressive blocking (PB) [6] is a novel approach that

builds upon a technique called equidistant blocking

and the successive enlargement of blocks. Like PSNM,

it also presorts the records to use their rank-distance in

this sorting for similarity estimation. This algorithm is

used for large and very dirty datasets.

 Page 500

Itaccepts five input parameters such as dataset

references D, key attribute K, maximum block range

R, block size S and record number N. Initially, PB

estimates the number of records per partition p Size by

using a pessimistic sampling function. The algorithm

also analyses the number of loadable blocks per

partition b Per P, the total number of blocks bNum,

and the total number of partitions pNum. PB then

defines the three main data structures such as the

order-array which stores the ordered list of record IDs,

the blocks-array which holds the current partition of

blocked records, and the b Pairs-list which stores all

recently evaluated block pairs.

Therefore, a block pair is represented as a triple of

(blockNr1, blockNr2, duplicates Per Comparison).The

b Pairs-list is implemented as a priority queue, because

the algorithm frequently reads the top elements from

this list. The PB algorithm sorts the dataset using the

progressive Magpie Sort Algorithm.Felix Naumann [5]

deals with finding multiple records in a dataset which

represent the real world entity. In this work, the author

introduced an algorithm called sorted blocks which

generalizes both blocking and windowing approaches.

Sorted Neighbourhood method sort the data set based

on some key value and compare pairs to the window

size. Afterwards, then it loads all blocks partition-wise

from disk to execute the comparisons within each

block. After the pre-processing, the PB algorithm starts

progressively extending the most promising block

pairs.

ProgressiveBlockingRequire: datasetreferenceD,

keyattributeK, maximumblockrangeR,

blocksizeSandrecord

numberN

Step 1: procedurePB(D, K, R, S, N)

Step 2: pSize⃪calcPartitionSize(D)

Step 3: bPerP ← [pSize/S]

Step 4: bNum ← [N/S]

Step 5: pNum ← [bNum/bPerP]

Step 6: arrayordersizeNasInteger

Step 7: arrayblockssizebPerPas

< 𝐼𝑛𝑡𝑒𝑔𝑒𝑟; 𝑅𝑒𝑐𝑜𝑟𝑑[] >

Step 8: priorityqueuebPairsas

< 𝐼𝑛𝑡𝑒𝑔𝑒𝑟; 𝐼𝑛𝑡𝑒𝑔𝑒𝑟; 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 >

Step 9: bPairs ← {< 1,1,−>, . . . , < 𝑏𝑁𝑢𝑚, 𝑏𝑁𝑢𝑚, −

>}

Step 10: order

← sortProgressive(D, K, S, bPerP, bPairs)

Step 11: fori ← 0 topNum − 1 do

Step 12: pBPs ← get(bPairs, i . bPerP, (i

+ 1) . bPerP)

Step 13: blocks ← loadBlocks(pBPs, S, order)

Step 14: compare(blocks, pBPs, order)

Step 15: whilebPairsisnotemptydo

Step 16: pBPs ← {}

Step 17: bestBPs ← takeBest([bPerP/4], bPairs, R)

Step 18: forbestBPbelongstobestBPsdo

Step 19: ifbestBP[1] _ bestBP[0] < 𝑅𝑡ℎ 𝑒𝑛

Step 20: pBPs ← pBPsUextend(bestBP)

Step 21: blocks ← loadBlocks(pBPs, S, order)

Step 22: compare(blocks, pBPs, order)

Step 23: bPairs ← bPairsUpBPs

Step 24: procedurecompare(blocks, pBPs, order)

Step 25: forpBPbelongstopBPsdo

Step 26: < 𝑑𝑃𝑎𝑖𝑟𝑠, 𝑐𝑁𝑢𝑚

> 𝑐𝑜𝑚𝑝(𝑝𝐵𝑃, 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑜𝑟𝑑𝑒𝑟)

Step 27: emit(dPairs)

Step 28: pBP[2] ← |dPairs|/ cNum

6. ATTRIBUTE PARALLEL METHOD:

The best key for finding the duplicate is generally hard

to identify. Selecting good keys will increase the

progressiveness. Multi-pass execution can be applied

for progressive SNM. Key separation is not needed in

PB algorithm. Here all the records are taken and

checked as parallel processes in order to reduce

average execution time. After splitting, the entire

records are kept in multiple resources. If any

intermediate duplicate results are found in any

resources, they are intimated immediately and returned

to the main application. So the time consumption is

reduced. The consumption of resource is similar to the

existing system, however, the data is kept in multiple

resource memories.

 Page 501

7. GENETIC PROGRAMMING ALGORITHM:

In this effort, the GP evolutionary process is guided by

a generational evolutionary algorithm which

contributes well defined and distinct generation cycles.

This approach is adopted as it captures the basic idea

behind several evolutionary algorithms. The steps of

this algorithm are the following:

1. To initialize the number of people (with random or

user provided individuals).

2. Calculate all individuals in the present population,

assigning a numeric rating or fitness value to each one.

3. If the criteria of terminationfulfilled, then execute

the last step. Otherwise continue.

4. Repeat the best n individuals into the next

generation population.

5. Select m individuals that will compose the next

generation with the best parents.

The below architecture shows the overall performance

of all the above algorithm.

8. Architecture

The below Architecture represents the flow of

duplicate detection in the give data.First we will select

the dataset and load all the data, then we need to

preprocess all the data ie we have to change the data

into sequential order and remove all the noisy content.

Then in next step we will cluster all the data items with

respect to their similarity, after clustering we will

separate the data with respect to the values. Then after

we will select the subset of the data then we start

detecting all the duplicates present in the parent data

and all the subsets. Finally we will get the accurate

results.

Fig 5.1 Architecture

9. PERFORMANCE EVALUATION AND

RESULTS:

To evaluate the performance of this work, the

errorsintroduced in duplicate records range from small

type of graphical changes to large changes of some

fields.Generally, the ratio of duplicate records number

to the database records number is termed as the

database duplicate ratio. To analyze the efficiency of

this work,proposed approach is applied on a selected

data. In this research work, the time taken for detecting

duplicate data along with analysis of elimination

process is carried out to find the efficiency while

saving time.

Experiment:

In this process, sample data is selected and loaded into

to perform duplicate detection. Preprocessing is

applied to the selected data to remove any missing

values and clean the data. We should form clusters of

data depending on the categories. Data is separated in

subsets and a subset of data is selected to detect replica

of data. We here compare the results of Efficiency and

earlier and proposed algorithms.

Fig 6.1 Comparing Duplication & Time

10. CONCLUSION:

In this paper, both progressive sorted neighborhood

method and progressive blocking were discussed. Both

algorithms can handle the situations with limited

execution time and increase the efficiency of duplicate

detection.

 Page 502

Also, they dynamically change the ranking of

comparison based on intermediate results to perform

high promising comparisons first and less promising

comparisons later. Further, to estimate the

performance gain of our algorithms, a quality measure

of novel is proposed for progressiveness that integrates

effortlessly with existing measures.

11. REFERENCES

[1]L. Kolb, A. Thor, and E. Rahm, “Parallel sorted

neighbourhood blocking with mapreduce,” in

Proceedings of the Conference Daten bank systeme

in Büro, Technik und Wissenschaft (BTW), 2011

[2]P. Christen, “A survey of indexing techniques for

scalable record linkage and deduplication,” IEEE

Transactions on Knowledge and Data Engineering

(TKDE), vol. 24, no. 9, 2012.

[3]U. Draisbach and F. Naumann,“A generalization of

blocking and windowing algorithms for duplicate

detection,”in Proc. Int. Conf.DataKnowl. Eng., 2011,

pp. 18-24.

[4]O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J.

Miller, “Framework for evaluating clustering

algorithms in duplicate detection,” in Proceedings

of the International Conference on Very Large

Databases (VLDB), 2009

[5]Papenbrock T., Heise A. and Naumann F.

(2015),’’Progressive duplicate detection‟, Proc. IEEE

Trans. Know. Data Eng., vol. 27, No. 5, pp. 1316-

1329.

[6]Whang S. E., Marmaros D., Molina H. (2012),„Pay-

as-you-go entity resoln‟, IEEE Trans. Know. Data

Eng., vol. No 25.5, pp. 1111–1124.

[5]U. Draisbach and F. Naumann, “A generalization of

blocking and windowing algorithms for duplicate

detection,” in Proc. Int. Conf.DataKnowl. Eng., 2011,

pp. 18–24.

[6]R. Jeffery, M. J. Franklin, and A. Y. Halevy, “Pay-

as-you-go user feedback for dataspace systems,” in

Proceedings of the International Conference on

Management of Data (SIGMOD), 2008.

