

 Page 775

Self Immunity Technoque to Improve Register File Integrity

against Soft Errors
Bungai Karishma Kour Harjeet Singh

M.Tech (VLSI),

Avanthi Scientific Technological and Research

Academy, Approved By AICTE,

Registered By AP And,Affiliated To JNTU,

Hyderabad.

Mr.N.Ashok Kumar, M.Tech

Associate Professor,

Dept of ECE,

Avanthi Scientific Technological and Research

Academy, Approved By AICTE,

Registered By AP And,Affiliated To JNTU,

Hyderabad.

Abstract:

Ceaseless contracting in highlight size, increasing

power thickness and so forth increment the

powerlessness of chip against delicate mistakes even

in earthbound applications. The register record is one

of the key engineering segments where delicate

mistakes can be extremely wicked on the grounds that

blunders may quickly spread from that point all

through the entire framework. Accordingly, enroll

documents are perceived as one of the significant

concerns with regards to dependability. This paper

presents Self-Immunity, a method that enhances the

honesty of the register document regarding delicate

mistakes. Taking into account the perception that a

specific number of register bits are not generally used

to speak to a quality put away in a register. This paper

manages the trouble to adventure this undeniable

perception to improve the register record

trustworthiness against delicate blunders. We

demonstrate that our system can diminish the

powerlessness of the register document extensively

while displaying littler overhead as far as zone and

power utilization contrasted with best in class in

register record insurance.

I. INTRODUCTION:

Over the last decade, and in spite of the progressively

mind boggling models, and the quick development of

new innovations, the innovation scaling has raised

delicate blunders to end up one of the significant

hotspots for processor smashing in numerous

frameworks in the Nano scale time.

Delicate mistakes brought on by charged particles are

hazardous principally in high-air, where substantial

alpha particles are accessible [1]. Nonetheless, slants

in today's nanometer advancements, for example,

forceful contracting have made low-vitality particles,

which are more superabundant than high-vitality

particles, cause proper charge to incite a delicate

blunder. Moreover, there is an overarching expectation

that delicate mistakes will turn into a reason for a

forbidden blunder rate issue soon even in terrestrial

applications [2]. Scientists have essentially and

generally centered around alleviating delicate blunders

in memory and reserve structures [4][5][13], because

of their extensive sizes. Then again, generally little

work had been directed for register records in spite of

the fact that they are exceptionally helpless against

delicate mistakes [8].

Regardless of the general rather little zone impression

of the register record, it is gotten to more oftentimes

than whatever other structural part [6][9]. Along these

lines, debased information in any register, if not dealt

with, may proliferate quickly all through alternate

parts of processor, prompting exceptional framework

unwavering quality issues [6]. Truth be told, delicate

mistakes in register records can be the reason for a

substantial number of framework disappointments

[10]. As of late, Blome et al. [8] demonstrated that a

lot of issues that influence a processor more often than

not originate from the register document.

Subsequently, a few processors ensure their registers

with Error Correction Code (ECC) [11], yet such

 Page 776

arrangements might be restrictive in certain

applications (like installed) because of the noteworthy

effect as far as range and power [14]. Besides, control

utilization was routinely a noteworthy worry in

installed frameworks because of their extensive

impacts on the framework. To overcome any issues,

there is a bothered need of systems to build the register

document respectability against delicate mistakes with

a little impact on both territory and power overhead.

This paper addresses this test by presenting a novel

strategy, called Self-Immunity to enhance the strength

of register records to delicate mistakes, particularly

attractive for processors that interest high enrolls

document trustworthiness under stringent

requirements.

Our contributions within this paper are as follows:

(1) We introduce a procedure for enhancing the

resistance of register records against delicate

blunders by putting away the ECC in the

unused bits of a register.

(2) We take care of the issue of the territory and

power overhead that normally comes as a

negative reaction in register file insurance by

accomplishing high range and power sparing

with a slight corrupting in the register

document weakness decrease (7%) contrasted

with a full security plan.

Whatever remains of this paper is sorted out as takes

after. Area 2 condenses the past work while Section 3

shows our proposed strategy. Area 4 displays the usage

points of interest and Section 5 assesses the register

document powerlessness decrease and gives a

correlation with the cutting edge. At last, Section 6

finishes up the paper.

II. RELATED WORK AND BACKGROUND

The most punctual plans of register record assurance,

for example, Triple Modular Redundancy (TMR) and

ECC can accomplish an abnormal state of adaptation

to internal failure however they may not be reasonable

arrangements in implanted frameworks because of

their energy and zone overheads. As of late, Fazeli et

al. [14] demonstrated that ensuring the entire register

document with SEC-DED accompanies around 20%

power overhead. The proposed approach in [15] uses

the Cross-equality check as a strategy for redressing

different mistakes in the register documents. Spica et

al. [16] demonstrated that there is an almost no

addition (only 2%) in adaptation to internal failure for

reserves on the off chance that they increment the

security to Double Error Correction while the

overhead for that increase is impressive. Expanding on

the idea of Architectural Vulnerability Factor (AVF),

presented by Mukherjee [3], Yan et al. [19] proposed

the Register Vulnerability Factor (RVF) to portray the

probability that a delicate mistake in registers can be

spread to other framework parts. When all is said in

done, a quality is built into a register, then it is perused

much of the time, and later another worth is composed

once more. In this manner, any delicate blunder

happening amid "compose" or "read-compose"

interims will have no impact on the framework; since

it will be revised consequently by the following

compose operation. Then again, "compose read" and

"read-read" interims are viewed as helpless interims as

is portrayed in Fig. 1. The RVF of a register is

characterized as the total of the lengths of all its

helpless interims partitioned by the total of the lengths

of every one of its lifetimes [19].

At long last, the aggregate helplessness of the register

document is expected as the whole of powerlessness of

all registers. [21].

Fig. 1.Different Register Access Intervals [19].

 Page 777

The unadulterated programming approach at aggregate

level presented by Yan et al. [19] re-plans the

directions keeping in mind the end goal to diminish

the RVF of a register document however the proposed

system is not generally exceptionally powerful on the

grounds that it might build the execution cycles and

even the RVF in a few benchmarks [19]. In an offer to

decrease the territory and force punishments, Yan et

al. [19] proposed to secure a subset of the registers

rather than full assurance plots and adjust the register

distribution calculation to dole out the most delicate

registers against delicate blunders to the ensured

registers. The accomplished RVF diminished is 23%,

41%, 67% and 93% for securing 2, 4, 8 and 16 out of

32 registers individually. Montesano's et al. [9] settle

on a choice of which register qualities ought to be

ensured at runtime by equipment rationale however

the run time expectation is immoderate as far as

vitality [22]. Lee et al. [7] exhibited an assemble

method to diminish RVF by securing a little piece of

memory and compose the defenseless enlist values in

this memory by embedding load/store guidelines yet it

increments both run time and code size.

Another imperative methodology is In-Register

Replication "IRR" [17], which misuses the way that a

huge portion of register qualities are not exactly or

equivalent to 16 bits wide for 32-bit structures. Such

values can be imitated in the same register for

expanding the invulnerability against delicate

blunders. The principal struggle is that, while

augmenting register record in susceptibility against

delicate mistakes by diminishing the defenselessness

of the register document, this lessening (either with

full or halfway assurance plans) builds the range and

power overheads.

III. PROPOSED SELF-IMMUNITY

TECHNIQUE

We propose to misuse the register values that don't

require the majority of the bits of a register to speak to

certainvalue. At that point, the upper unused bits of a

register can be misused to expand the register's

resistance by putting away the relating SEC Hamming

Code [11] without the requirement for additional bits.

The Hamming Code is characterized by k, the quantity

of bits in the first word and p, the requiredthe required

number of equality bits (roughly log2K).Thus, the

codewill be (K + log2K + 1) [23]. In our

proposedtechnique, the ideal estimation of k is the

quality which ensures that w, the bit - width of the

register document, can cover both k, the required

number of bits to speak to the worth, and the

comparing ECC bits of that worth. At the end of the

day, the worth and its ECC ought to be put away

together inside the bit-width of a register. Therefore,

the accompanying condition ought to be substantial

(K+ log2K + 1 ≤W). Along these lines, the ideal

estimation of k is 26 in 32-bit designs and 57 in 64-bit

architectures.And57 in 64-bit architectures.For

occasion, when examining 32-bit structures, where

every register can speak to a 32-bit esteem, we may

misuse the register values, which require not exactly or

equivalent to 26 bits by putting away the comparing

ECC bits in the upper unused six bits of that register to

improve the register record invulnerability against

delicate errors1.

We call this procedure Self-Immunity and we call such

values"26-bit"values. On theother hand, we call

register values which require more than 26 bits to be

spoken to "more than 26-bit" register values. Fig. 2

demonstrates the rate of register qualities utilization

for various uses of the MiBench Benchmark [12]

ordered for MIPS architectureAs it can be seen, in all

benchmarks the vast majority of the register qualities

are "26-bit" values. As such, the upper six bits of 88%

of the put away information in the register record are

really unused. Thusly, we can store the comparing

ECC in these accessible bits and increment the

register's resistance. In addition to the previous key

observation, the contribution of “26-bit” register

values in the total vulnerable intervals is much more

than the contribution of“over-26-bit” register values.

In Fig. 3, the fraction of vulnerable intervals of each

benchmark is reported. As is demonstrated, the part of

helpless interims of "26-bit" qualities is 93% by and

large.

 Page 778

Fig. 2. “26-bit” register values and “over-2

bit” register values I different benchmarks.

Fig. 3. The fraction of vulnerable intervals of

“26-bit” register values and “over-26-bit”

register values in different benchmarks.

A. Problem Description:

1) Goal: The objective of our procedure is to

diminish the register record weakness with least effect

on both region and power overhead. Give N a chance

to be the aggregate number of registers and V the

powerlessness of a register, then the helplessness of

the register document is (ViN
i=1). Since the force

overhead2 for the most part originates from getting to

the encoder and decoder, it can roughly be displayed

through the quantity of gets to [22]. Let M is the

quantity of secured register values and A the quantity

of gets to, then the aggregate power overhead can be

evaluated as (AiM
i=1). Thus the general objective can

be figured as Minimize p= (ViN
i=1).,Minimize

p=(ViN
i=1).

2) Effectiveness of Our Technique:

In a full insurance plot, an ECC era is performed with

each compose operation and comparably ECC

checking is performed with every perused operation.

Our system chooses to ensure the quality depending in

the event that it is substantial for self-Immunity, then it

actuates the ECC generator to figure the ECC bits.

Something else, the ECC era is skipped. So also, on

each register read operation, rather than continually

checking ECC, our strategy checks whether the ECC is

being inserted in the register esteem, and just in the

event that it is, ECC checking is performed. As is

shown in Fig. 2, all things considered 12% of the

information will be put away in the register document

without insurance. Accordingly, our strategy

diminishes M and it might prompt decrease the

devoured power. As is appeared in Fig. 3, when

contemplating 32-bit models, 93% (by and large) of

the aggregate vulnerable intervals are powerless

interims of legitimate register values for our strategy.

At the end of the day, around 93% of vulnerable

intervals will conceivably be immune. In this way, our

technique guarantees to lessen the helplessness of the

register record considerably. Engineering for Our

Proposed Technique. The key test in recognizing

whether the ECC bits are inserted in the register

esteem or not, is that the processor does not have

adequate data to settle on this choice when perusing a

worth from a register. Therefore, we have to recognize

"26-bit" register values from "more than 26-bit"

register values. To do that, a self-π bit is connected

with every register and we at first clear all self-π bits

to show the nonappearance of any Self - Immunity.

For effortlessness, we clarify the proposed design with

the required calculations in two unique strides.

Writing into a register:

Fig. 4 represents that whenever an guideline

composes a quality into a register it checks the

upper six bits of that worth on the off chance that

they are "0" or not. In the event that they are (26 -

bit register esteem case), the relating self-π bit is set

to "1" showing the presence of Self-Immunity. The

ECC worth is produced and put away in the upper

unused bits of the register. Consequently, the

information worth and its ECC are put away

together in that register. In the second case (over -

26-bit register esteem), the relating self-π bit is set

to "0" and the worth is built into the register without

encoding.

 Page 779

Fig. 4.Microarchitectural support for writing a

register value.

Reading from a register:

In read operations, this lf-πbit is utilized to recognize a

Self-Immunity case and a non self-Immunity case. In

the principal case, the worth and the comparing ECC

are put away together in that register and thus the read

quality ought to be decoded. In the second case, the

put away esteem is not encoded and thus there is no

should be decoded as is shown in Fig.5.

Fig. 5.Microarchitectural support for reading a

register value.

C. Potential Power Saving:

In this area we clarify why our proposed design

guarantees to expend less power. In our proposed

engineering, "more than 26-bit" register qualities are

neither encoded nor decoded and thus the encoding

and translating operations are not performed with

every perused and compose operation as it happens in

a full insurance plan. This may lessen the force

utilization of our proposed engineering in light of the

fact that the encoding and deciphering operations are

performed just on account of "26-bit" register values.

Fig. 6 exhibits that by and large 12% and 13% of the

aggregate number of read and compose operations,

individually, are happened on account of "more than

26 - bit" register values. Therefore, our proposed

design may expend less power in light of the fact that

the encoder and decoder are lesser times got to.

Fig. 6. The percentage of read and write operations

in the case of “over-26-bit” register values.

Since the contribution of the sent encoder in our

design is 26 bits rather than 32 bits, it produces 5

equality bits rather than 6 equality bits. In like manner,

the utilized decoder as a part of our design takes 31

bits (26 bits for information + 5 bits for ECC) as a

contribution rather than 38 bits. At the end of the day,

our proposed design utilizes a less intricate encoder

and decoder. This may likewise prompt a further

sparing in the terms of the force utilization. At last, our

proposed design lessens the aggregate number of bits

of a shielded register from 38 bits to 33 bits and thus

the devoured exchanging force is lower. To put it

plainly, the force sparing is mostly because of the less

ECC operations, the utilization of a less minds

boggling ECC generator and checker, and the

nonattendance of extra stockpiling for ECC.

IV.IMPLEMENTATION DETAILS:

Since the likelihood of numerous piece mistakes is to a

great extent lower than the single piece - blunder [20],

a solitary piece mistake model has been considered in

this paper.

 Page 780

In our issue infusion environment, flaws are infused on

the fly while the processor executes an application. In

every flaw infusion reproduction, one of the 32

registers is chosen arbitrarily and a bit in that register

is picked haphazardly and after that flipped. Notice

that a compose operation gets out the past infused

blunder into that register. In like manner, by utilizing a

uniform dispersion, an arbitrary cycle is picked as the

time that delicate blunder happens. This ensures the

issues will be infused just when the system is executed

[20]. Since an infused shortcoming may deliver an

interminable circle, a guard dog clock was actualized

for the required number of execution cycles.

We stop the reproduction when the cycle check

surpasses two times the quantity of cycles in the flaw

free case. Towards assessing our proposed strategy, we

utilize distinctive applications from MiBench

Benchmark aggregated for MIPS engineering [12] to

check diverse conceivable situations for register usage.

Recreations were directed utilizing the MIPS model

test system [18]. At the point when a recreation ends,

the relating yield data (last results, substance of the

register document, execution time and condition of the

processor) are put away and used to order the

reenactment. For the arrangement, we abuse the

accompanying classes proposed in [10] [20]:

 Wrong Answer: The application ends normally

but the outcomes created are not right.

 Latent: The application ends ordinarily, the

results are amend yet toward the end of

reenactment the substance of the register

document are unique in relation to that of flaw

free case.

 Effect-Less: The application ends typically,

the outcomes are right, and the substance of

the register document is like that of issue free

case.

 Exception: The processor distinguished the

infused blame and created a special case (e.g.,

invalid location exemption).

 Timed-Out: The application neglected to end

and deliver results with a predefined time

limit.

 Stalling: The processor figured the normal

results in a period more prominent than the

season of flaw free case.

 Crashing: The processor neglects to end

typically.

Every benchmark was mimicked 10,000 times. Thus,

10,000 delicate mistakes were infused haphazardly in

the register record. This number follows those utilized

by other examination to keep the aggregate time of

recreations sensible. For a reasonable correlation, we

consider three models of the processor:

Base: a typical processor (without actualizing any

security strategy).

IRR: a fault tolerant model, where an In-Register

Replication strategy [17] is executed. This strategy has

been picked here on the grounds that it tries to

accomplish a comparative objective as our proposed

system.

SI: a fault tolerant version, where our proposed

technique, Self-Immunity, is implemented.

V. EXPERIMENTAL RESULTS AND

EVALUATION

Of course, our proposed strategy keeps up elevated

amounts of adaptation to internal failure contrasted

with the "Base" case. As is delineated in Table 1, our

proposed strategy enhances the register record

respectability adequately by lessening to a great extent

the quantity of blunders in every classification.

Besides, the quantity of mistakes achieves zero in a

few benchmarks.

 Page 781

All things considered, our proposed method lessens the

quantity of blunder by 100%, 87%, 93%, 93%, and

100% for the accompanying classes: Exception,

Timed-Out, Crashing, Wrong Answer, and Stalling

individually as is appeared in Fig. 7.Since dormant

blunders have no impact on the yield of an application,

and they are less destructive. This implies we can

securely include the "Idle" classification to the "Impact

less" class [20] since in both classes the last results are

still totally right. For this situation, all things

considered the framework deficiency scope in the

wake of actualizing our strategy comes to all things

considered 98% and up to 100% as is appeared in Fig.

8. Towards further assessment the impact of our

method regarding Register Vulnerability Factor

(RVF), which is a broadly utilized metric [7][9][19],

Fig. 9 demonstrates that the potential RVF decrease is

constantly high. It achieves 93% by and large and up

to 100%. Moreover, we accomplish the best result

contrasted with the IRR procedure [17]. As specified

before in Section 2, Yan et al. [19] proposed a halfway

ECC insurance strategy as opposed to securing the

entire register record "Completely ECC" to

accomplish.

Table. 1. Processor behavior for single error

injection after implementing our proposed

technique.

Fig. 7. Percentage of error rate reduction after

implementing our proposed technique.

Since inactive mistakes have no impact on the yield of

an application, they are less destructive. This implies

we can securely include the "Inactive" classification to

the "Impact Less" class [20] since in both classes the

last results are still totally right. For this situation, all

things considered, the framework issue scope in the

wake of actualizing our procedure comes to by and

large 98% and up to 100% as is appeared in Fig.8.

Towards further assessment the impact of our system

regarding Register Vulnerability Factor (RVF), which

is a generally utilized metric [7][9][19], Fig. 9

demonstrates that the potential RVF lessening is

constantly high. It achieves 93% overall and up to

100%. In addition, we accomplish the best result

contrasted with the IRR strategy [17]. As said before

in Section 2, Yan et al. [19] proposed a fractional ECC

security method as opposed to ensuring the entire

register document "Completely ECC" to achieve area

and power sparing while expanding the register file

vulnerability reduction.

Fig. 8. System fault coverage comparison for

different benchmarks.

Fig. 9.Comparison of Register Vulnerability

Factor Reduction.

To examine the benefits of utilizing our proposed

strategy as a part of terms of territory overhead against

"Completely ECC" and against the mostly assurance,

we executed and integrated for a Xilinx XC2V600

distinctive variants of a 32-bit, 32-section, double read

 Page 782

ports, single compose port register record. Fig. 10

demonstrates the examination results as far as RVF

lessening and region overhead. As is seen, our method

accomplishes a decent territory sparing with slight

corruption (7%) in the register record defenselessness

lessening contrasted with "Completely ECC".

Moreover, securing 16 out of 32 registers "16ECCs"

can accomplish comparative RVF decrease to our

outcome however our procedure involves 31% less

zone. Then again, securing 4 registers "4ECCs"

accompanies a range overhead comparative as our

strategy yet our method accomplishes 1.3X change as

far as RVF decrease.

Since the fundamental focus of this paper is 32-bit

inserted processors, a synthesizable VHDL model of

the DLX processor is utilized to research the execution

and force punishments for every system. Additionally

the Xpower device from Xilinx is utilized to appraise

the aggregate force utilization in each of the distinctive

processor variants for the adcpm decoder benchmark

application. Since the utilized encoder and decoder are

fewer minds boggling as clarified before, the basic

way in our proposed design is shorter. Thus, our

strategy enhances the execution contrasted with

different contenders. As indicated Fig. 11, our strategy

accompanies a base effect on both execution and force.

It accomplishes 54% postponement decrease and

devours with 94% less power contrasted with

"Completely ECC". Besides, securing 16 out of 32

registers "16 ECCs" accomplishes comparable RVF

diminishment as specified some time recently;

however our method accomplishes a 47% execution

change and devours 87% less power. Then again, our

system devours 75% less power and accomplishes

29% change as far as postponement overhead

contrasted with "4ECCs" 4. It can be inferred that our

system accomplishes the best general result contrasted

with cutting edge in register document defenselessness

diminishment.

Fig. 10. Reduction of RVF (Register Vulnerability

Factor) and area overhead.

Fig. 11.The performance and power overhead

comparison.

VI. CONCLUSION:

For implanted frameworks under stringent cost

imperatives, where region, execution, force and

unwavering quality can't be just traded off, we propose

a delicate blunder moderation procedure for register

documents. Our analyses on various implanted

framework applications exhibit that our proposed Self-

Immunity strategy diminishes the register document

helplessness successfully and accomplishes high

framework shortcoming scope. In addition, our system

is non specific as it can be actualized into assorted

models with least effect on the expense.

VII.REFERENCES:

[1] Greg Bronevetsky and Bronis R. de Supinski,

”Soft Error Vulnerability of Iterative Linear

Algebra Methods,” in the 22nd annual

international conference on Supercomputing, pp.

155-164, 2008.

[2] J.L. Autran, P. Roche, S. Sauze, G. Gasiot, D.

Munteanu, P. Loaiza, M. Zampaolo and J. Borel,

“Real-time neutron and alpha soft-error rate

testing of CMOS 130nm SRAM: Altitude versus

 Page 783

underground measurements,” in ICICDT„08, pp.

233–236, 2008.

[3] S.S. Mukherjee, C. Weaver, J. Emer, S.K.

Reinhardt and T. Austin, “A Systematic

Methodology to Compute the Architectural

Vulnerability Factors for a High-Performance

Microprocessor,” in International Symposium on

Microarchitecture (MICRO-36), pp. 29-40, 2003.

[4] T.J. Dell, “A whitepaper on the benefits of

Chippkill-Correct ECC for PC server main

memory,” in IBM Microelectonics division Nov

1997.

[5] S. Kim and A.K. Somani, “An adaptive write error

detection technique in on-chip caches of multi-

level cache systems,” in Journal of

microprocessors and microsystems, pp. 561-570,

March 1999.

[6] G. Memik, M.T. Kandemir and O. Ozturk,

“Increasing register file immunity to transient

errors,” in Design, Automation and Test in

Europe, pp. 586-591, 2005.

[7] Jongeun Lee and AviralShrivastava, “A Compiler

Optimization to Reduce Soft Errors in Register

Files,” in LCTES 2009.

[8] Jason A. Blome, Shantanu Gupta, ShuguangFeng,

and Scott Mahlke, “Cost-efficient soft error

protection for embedded microprocessors,” in

CASES ‟06, pp. 421–431, 2006.

[9] P. Montesinos, W. Liu, and J. Torrellas, “Using

register lifetime predictions to protect register files

against soft errors,” in Dependable Systems and

Networks, pp. 286–296, 2007.

[10] M. Rebaudengo, M. S. Reorda, and

M.Violante, “An Accurate Analysis of the Effects

of Soft Errors in the Instruction and Data Caches

of a Pipelined Microprocessor,” in DATE‟03, pp.

602-607, 2003.

[11] I. Koren and C. M. Krishna, Fault-Tolerant

Systems. San Mateo, CA: Morgan Kaufmann,

2007.

[12] MiBench(http://www.eecs.umich.edu/mibench

/).

[13] T. Slegel et al, “IBM‟s S/390 G5

microprocessor design,” in IEEE Micro, 19, pp.

12-23, 1999.

[14] M. Fazeli, A. Namazi, and S.G. Miremadi “An

energy efficient circuit level technique to protect

register file from MBUs and SETs in embedded

processors,” in Dependable Systems & Networks

2009, pp. 195–204, DNS‟09.

[15] K. Walther, C. Galke and H.T. VIERHAUS,

“On-Line Techniques for Error Detection and

Correction in Processor Registers with Cross-

Parity Check,” in Journal of Electronic Testing:

Theory and Applications 19, pp.501-510, 2003.

[16] M. Spica and T.M. Mak, “Do we need

anything more than single bit error correction

(ECC)?,“ in Memory Technology, Design and

Testing, Records of the International Workshop on

9-10, pp. 111– 116, 2004.

[17] M. Kandala, W. Zhang, and L. Yang, “An

area-efficient approach to improving register file

reliability against transient errors,” in Advanced

Information Networking and Applications

Workshops, AINAW '07, pp. 798–803, 2007.

[18] http://archc.sourceforge.net/.

[19] Jun Yan and Wei Zhang, “Compiler-guided

register reliability improvement against soft

errors,” in EMSOFT ‟05, pp. 203–209, 2005.

 Page 784

[20] E. Touloupis, J.A. Flint, V.A. Chouliaras and

D.D. Ward, “Efficient protection of the pipeline

core for safety-critical processor-based systems,”

in IEEE workshop on Signal Processing Systems

Design and Implementation, pp. 188-192, 2005.

[21] Jongeun Lee and A. Shrivastava, “A

Compiler-Microarchitecture Hybrid Approach to

Soft Error Reduction for Register Files,” in

Computer-Aided Design of Integrated Circuits and

Systems, pp. 1018-1027, 2010.

[22] Jongeun Lee and A. Shrivastava, “Compiler-

managed register file protection for energy-

efficient soft error reduction,” in ASP-DAC, pp.

618–623, 2009.

[23] RiazNaseer, RashedZafarBhatti, and Jeff

Draper, “Analysis of Soft Error Mitigation

Techniques for Register Files in IBM Cu-08 90nm

Technology,” in MWSCAS‟06, pp. 515-519,

2006.

