

 Page 695

Towards Effective Bug Triage with Software Data Reduction

Techniques

Ch.Ramesh Kumar

Associate Professor & HOD,

Department of CSE,

Malla Reddy Engineering College & Management

Sciences, Kistapur, Medchal, Hyderabad.

Arige Sairam

M.Tech Student,

Department of CSE,

Malla Reddy Engineering College & Management

Sciences, Kistapur, Medchal, Hyderabad.

Abstract:

The process of fixing bug is bug triage that aims to

properly assign a developer to a brand new bug.

Software system firms pay most of their value in

managing these bugs. To reduce time and price of bug

triaging, we present an automatic approach to predict a

developer with relevant expertise to resolve the new

coming report. In proposed approach we have a

tendency to do data reduction of bug data set which

can reduce the dimensions of the data still as increase

the standard of the data .We are using instance

selection and feature selection technique at the same

time with historical bug data.

We have added a new module here which will describe

the status of the bug like whether it assigned to any

developer or not and it is rectified or not.. In addition,

the load between developers based on their experience

is re-balanced. The experimental results show that the

planned theme will effectively improve the detection

performance compared with previous methods.

Index Terms:

bug data reduction, feature selection technique,

instance selection technique, prediction for reduction

orders, bug triage, machine learning techniques.

INTRODUCTION:

A bug repository plays main position in managing

software bugs.

Many open source software projects have an open bug

repository that makes it possible for each developer

and users to publish defects or issues in the software,

suggest possible enhancements, and remark on existing

bug reports. In large open source software project have

the bug repository that store the details of the bug. For

large open source software project, the quantity of

every day bugs is so substantial which makes the

triaging process more challenging and difficult . There

are two challenges associated with bug data that will

have an effect on use of bug repositories in software

development tasks, specifically the large scale data and

low quality data. In a bug repository, a bug is kept up

as a bug report, which record in the form of text that

reproducing the bug and update as per the status of bug

fixing.

In software companies spend their time and cost in

dealing with the bug. The process of assigning a

potential developer for fixing bug is the bug triage.

Handling the software bug by bug triage is time

consuming. Manual bug triage is time consuming and

low in accuracy. To reduce the cost and increase the

accuracy of manually bug triaging in this paper

proposed an automatic bug triage. In this paper an

effective bug triage approach is proposed to reduce the

bug data to save the labor price of developer and

enhance the quality of bug data by eliminating the

repetitive and non useful bug reports.

 Page 696

LITERATURE SURVEY:

In [1] this paper, Software firms spend their time and

cost in dealing with software bugs. So that bug triage

use for fixing the bug, the goal of bug triage is bug

assign the potential developer. To reduce the time and

cost in manual work, proposed the automatic bug

triage. In this paper used data reduction technique to

reduce the data set and improve the quality of data set.

Here we combine two reduction techniques, namely

instance selection and feature selection. These

techniques are used to reduce the data scale on the bug

dimension and the word dimension. To focus the

request of applying instance selection and feature

selection, we extract attributes from historical bug data

sets and develop prescient model for new bug data set.

The outcome shows that data set can effectively reduce

by the data reduction techniques and also increase the

accuracy of bug triage. Our work gives approach to

leveraging techniques on data processing to form

reduced and high-quality bug data in software

improvement.

In [2] they mention Open supply development projects

most of the time aid an open bug repository to which

both developers and users can re-port bugs. The

experiences that appear on this repository ought to be

triaged to verify if the record is one which requires

attention and whether it is, which developer will be

assigned the responsibility of resolving the report.

Massive open supply developments are pressured by

using the rate at which new bug reports appear within

the bug repository. In this paper, we present a semi-

automated approach intended to ease one part of this

method, the assignment of reports to a developer.

In this paper used machine learning algorithm that

produced the classifier to classify the developers which

is potentially solve the report. With this procedure,

reach the accuracy level of 57% and 64% on the

Eclipse and Firefox development projects. We have

now additionally applied our method to the GCC open

source development with much less positive outcome.

We describe the gives approach to leveraging

techniques on data processing to form reduced and

high-quality bug data in software improvement.

stipulations below which the method is applicable and

also report on the lessons we learned about applying

machine learning to repositories used in open source

development. In [3] proposed the process of fixing the

bug is called bug triage which aim to assign the new

coming bug to the corrected developer. The existing

bug triage approach used machine learning algorithms,

which construct classifiers from the training sets of

bug reports. In observe, these strategies suffer from the

large-scale and low-quality training sets. In the

proposed work we used both instance selection and

feature selection techniques to reduce bug triage. In

this paper we studied the combination of feature

selection algorithm χ 2-test, instance selection

algorithm Iterative Case Filter. We use the eclipse to

calculate training set reduction on bug data. For the

training set, 70% phrases and 50% bug reports are

eliminated after the training set reduction. The

experimental results exhibit that the new and small

training sets can provide higher accuracy.

In [4] paper, As of late, machine learning classifiers

have risen as an approach to anticipate the presence of

a bug in a change made to a source code document.

The classifier is initially prepared on software history

data, and afterward used to foresee bugs. Two

drawbacks of existing classifier-based bug expectation

are conceivably lacking precision for handy utilize,

and utilization of countless. These extensive quantities

of components antagonistically affect adaptability and

exactness of the methodology. This paper proposes

feature selection technique pertinent to classification

based bug forecast. This method is connected to

foresee bugs in software changes, and execution of

Na¨ıve Bayes and Support Vector Machine (SVM)

classifiers is characterized. In [5] this paper, we

propose a semi-supervised text classification approach

for bug triage to stay away from the lack of labeled

bug reports in existing supervised approaches.

 Page 697

This new methodology joins naïve Bayes classifier and

desire augmentation to exploit both marked and

unlabeled bug reports. This methodology prepares a

classifier with a small amount of labeled bug reports.

At that point the methodology iteratively labels various

unlabeled bug reports and trains a new classifier with

marks of all the bug reports. We additionally utilize a

weighted proposal rundown to help the execution by

forcing the weights of multiple developers in training

the classifier. Trial results on bug reports of Eclipse

demonstrate that our new methodology outflanks

existing supervised approaches in terms of

classification exactness.

PROBLEM DEFINITION:

For reducing the affluent cost of manual bug triage we

used automatic bug triage method. To build a

predictive model for a new bug data sets that present

the problem of data reduction for bug triage.

EXISTING SYSTEM:

 To investigate the relationships in bug data,

Sandusky et al. form a bug report network to

examine the dependency among bug reports.

 Besides studying relationships among bug reports,

Hong et al. build a developer social network to

examine the collaboration among developers based

on the bug data in Mozilla project. This developer

social network is helpful to understand the

developer community and the project evolution.

 By mapping bug priorities to developers, Xuan et

al. identify the developer prioritization in open

source bug repositories. The developer

prioritization can distinguish developers and assist

tasks in software maintenance.

 To investigate the quality of bug data,

Zimmermann et al. design questionnaires to

developers and users in three open source projects.

Based on the analysis of questionnaires, they

characterize what makes a good bug report and

train a classifier to identify whether the quality of

a bug report should be improved.

 Duplicate bug reports weaken the quality of bug

data by delaying the cost of handling bugs. To

detect duplicate bug reports, Wang et al. design a

natural language processing approach by matching

the execution information.

LIMITATIONS:

 Traditional software analysis is not completely

suitable for the large-scale and complex data in

software repositories.

 In traditional software development, new bugs are

manually triaged by an expert developer, i.e., a

human triage. Due to the large number of daily

bugs and the lack of expertise of all the bugs,

manual bug triage is expensive in time cost and

low in accuracy.

PROPOSED SYSTEM:

 In this paper, we address the problem of data

reduction for bug triage, i.e., how to reduce the

bug data to save the labor cost of developers and

improve the quality to facilitate the process of bug

triage.

 Data reduction for bug triage aims to build a

small-scale and high-quality set of bug data by

removing bug reports and words, which are

redundant or non-informative.

 In our work, we combine existing techniques of

instance selection and feature selection to

simultaneously reduce the bug dimension and the

word dimension. The reduced bug data contain

fewer bug reports and fewer words than the

original bug data and provide similar information

over the original bug data. We evaluate the

reduced bug data according to two criteria: the

scale of a data set and the accuracy of bug triage.

 In this paper, we propose a predictive model to

determine the order of applying instance selection

and feature selection. We refer to such

determination as prediction for reduction orders.

 Drawn on the experiences in software metrics,1 we

extract the attributes from historical bug data sets.

Then, we train a binary classifier on bug data sets

 Page 698

with extracted attributes and predict the order of

applying instance selection and feature selection

for a new bug data set.

ADVANTAGES:

 Experimental results show that applying the

instance selection technique to the data set can

reduce bug reports but the accuracy of bug triage

may be decreased.

 Applying the feature selection technique can

reduce words in the bug data and the accuracy can

be increased.

 Meanwhile, combining both techniques can

increase the accuracy, as well as reduce bug

reports and words.

 Based on the attributes from historical bug data

sets, our predictive model can provide the

accuracy of 71.8 percent for predicting the

reduction order.

DATA REDUCTION FOR BUG TRIAGE:

Data reduction for bug triage aims to build a small

scale and high-quality set of bug data by removing bug

reports and words, which are unnecessary. In this

paper we are using feature selection and instance

selection with historical data for reducing the bug data

in bug repository so that we get quality data as well as

low scale data.

1) APPLYING INSTANCE SELECTION AND

FEATURE SELECTION:

In bug triage, a bug data set is converted into a text

matrix with two dimensions; they are the bug

dimension and the word dimension. In this paper, we

use the combination of instance selection and feature

selection to generate a reduced bug data set. We

change the original data set with the reduced data set

for bug triage. Instance selection and feature selection

are widely used techniques in data processing. In data

reduction for a given data set in a certain application,

instance selection is to obtain a subset of relevant

instances while feature selection is to obtain a subset

of relevant features.

2) BENEFITS OF DATA REDUCTION:

a) Reducing the data scale: In word dimension we use

feature selection to remove noisy or duplicate words in

a data set. Based on feature selection method, the

reduced data set can be handled more easily by

automatic techniques (e.g., bug triage approaches) than

the original data set. In bug triage, the reduced data set

can be further used for other software tasks after bug

triage (e.g., severity identification, time prediction, and

reopened bug analysis).

b)Improving Accuracy: In Word dimension by

removing meaningless words, feature selection

improves the accuracy of bug triage .This can recover

the accuracy loss by instance selection.

IMPLEMENTATION:

Dataset Collection:

To collect and/or retrieve data about activities, results,

context and other factors. It is important to consider

the type of information it want to gather from your

participants and the ways you will analyze that

information. The data set corresponds to the contents

of a single database table, or a single statistical data

matrix, where every column of the table represents a

particular variable. after collecting the data to store the

Database.

 Page 699

Preprocessing Method:

Data preprocessing or Data cleaning, Data is cleansed

through processes such as filling in missing values,

smoothing the noisy data, or resolving the

inconsistencies in the data. And also used to removing

the unwanted data. Commonly used as a

preliminary data mining practice, data preprocessing

transforms the data into a format that will be more

easily and effectively processed for the purpose of the

user.

Feature Selection/ Instance Selection:

The combination of instance selection and feature

selection to generate a reduced bug data set. We

replace the original data set with the reduced data set

for bug triage. Instance selection is a technique to

reduce the number of instances by removing noisy and

redundant instances. By removing uninformative

words, feature selection improves the accuracy of bug

triage. It recovers the accuracy loss by instance

selection.

Bug Data Reduction:

The data set can reduce bug reports but the accuracy of

bug triage may be decreased. It improves the accuracy

of bug triage. It tends to remove these words to reduce

the computation for bug triage. The bug data reduction

to reduce the scale and to improve the quality of data

in bug repositories. It reducing duplicate and noisy bug

reports to decrease the number of historical bugs.

Performance Evaluation:

In this Performance evaluation, algorithm can provide

a reduced data set by removing non-representative

instances. The quality of bug triage can be measured

with the accuracy of bug triage. to reduce noise and

redundancy in bug data sets.

CONCLUSION:

Bug triage is a vital step of software maintenance to

save labor cost and time cost. To decrease the

expensive cost of manual bug triage we used automatic

bug triage approach that appropriately assigns a

developer to a new bug for additional usage.

The main aim of this work is to reduce the large scale

of the training set and to remove the noisy and

redundant bug reports for bug triage. In this system

engrossed on reducing bug data set in order to have a

fewer scale of data and also superiority data. So

feature selection and instance selection are used for

shrink the scale of bug data sets and also increase the

data quality. Using instance selection and feature

selection for new bug data set, extract the attributes of

each bug data sets and also train a predictive model

which is based on historical data sets. For reduced and

high quality of data bug data, we used data

preprocessing.

FUTURE WORK:

The future work of the proposed system is to get better

the outcome of data reduction in bug triage to

investigate how to organize a high quality bug data set

and deal with a domain-specific software assignment.

For predicting reduction orders, aim to give attempts to

locate out the possible relationship among the

attributes of bug data sets and the reduction orders.

REFERENCES:

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who

should fix this bug?” in Proc. 28th Int. Conf. Softw.

Eng., May 2006, pp. 361–370.

[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and

explicit-state model checking,” IEEE Softw., vol. 36,

no. 4, pp. 474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort

of bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng.

Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical

models for text processing,” Knowl. Inform. Syst., vol.

36, no. 1, pp. 1–21, 2013.

[5] Bugzilla, (2014). [Online]. Avaialble:

 Page 700

http://bugzilla.org/

[6] K. Balog, L. Azzopardi, and M. de Rijke, “Formal

models for expert finding in enterprise corpora,” in

Proc. 29th Annu. Int. ACM SIGIR Conf. Res.

Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

[7] P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24,

no. 6, pp. 1146–1150, Jun. 2012.

[8] H. Brighton and C. Mellish, “Advances in instance

selection for instance-based learning algorithms,” Data

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172,

Apr. 2002.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information needs in bug reports: Improving

cooperation between developers and users,” in Proc.

ACM Conf. Comput. Supported Cooperative Work,

Feb. 2010, pp. 301–310.

[10] V. Bol_on-Canedo, N. S_anchez-Maro~no, and

A. Alonso-Betanzos, “A review of feature selection

methods on synthetic data,” Knowl. Inform. Syst., vol.

34, no. 3, pp. 483–519, 2013.

[11] V. Cerver_on and F. J. Ferri, “Another move

toward the minimum consistent subset: A tabu search

approach to the condensed nearest neighbor rule,”

IEEE Trans. Syst., Man, Cybern., Part B, Cybern., vol.

31, no. 3, pp. 408–413, Jun. 2001.

[12] D. _Cubrani_c and G. C. Murphy, “Automatic

bug triage using text categorization,” in Proc. 16th Int.

Conf. Softw. Eng. Knowl. Eng., Jun. 2004, pp. 92–97.

[13] Eclipse. (2014). [Online]. Available:

http://eclipse.org/

[14] B. Fitzgerald, “The transformation of open source

software,” MIS Quart., vol. 30, no. 3, pp. 587–598,

Sep. 2006.

Authors Biography

Arige sairam completed her B.Tech degree in Potti

Sriramulu College of Engg & Tech. 2012. He is

pursuing M.Tech. in Computer Science & Engineering

from Department of Computer Science & Engineering

in Malla Reddy Engineering College & Managemet

sciences, Kistapur, Medchal, Hyderabad. Affiliated to

JNTUH, HYDERABAD,TELANGANA.,India.. His

research interest include cloud, data mining, bigdata

and networking.

Ch.Ramesh Kumar, working as Assoc.Prof & Head

of the Department of Computer Science and

Engineering in Malla Reddy Engineering College &

Management Sciences, Kistapur, Medchal, Hyderabad.

Affiliated to JNTUH, HYDERABAD,TELANGANA.,

India. he has several international publications to his

credit. His research interests include Software reuse,

Software performance, Software testing ,Data Mining

and cloud computing.

http://bugzilla.org/
http://eclipse.org/

