

 Page 1106

A Framework to Enhance the Data Security in Cloud Storage

Auditing With Key Abstraction

J.Navaneetha

Associate Professor

Department of CSE

Tirumala Engineering College.

H.K.Maheshwari

Associate Professor

Department of CSE

Tirumala Engineering College.

M.Paramesh

M.Tech Student

Department of CSE

Tirumala Engineering College.

ABSTRACT

To protect outsourced data in cloud storage against

corruptions, adding fault tolerance to cloud storage

together with data integrity checking and failure

reparation becomes critical. Recently, regenerating

codes have gained popularity due to their lower

repair bandwidth while providing fault tolerance.

Existing remote checking methods for regenerating-

coded data only provide private auditing, requiring

data owners to always stay online and handle

auditing, as well as repairing, which is sometimes

impractical. In this paper, we propose a public

auditing scheme for the regenerating-code-based

cloud storage. To solve the regeneration problem of

failed authenticators in the absence of data owners,

we introduce a proxy, which is privileged to

regenerate the authenticators, into the traditional

public auditing system model. Moreover, we design a

novel public verifiable authenticator, which is

generated by a couple of keys and can be regenerated

using partial keys. Thus, our scheme can completely

release data owners from online burden. In addition,

we randomize the encode coefficients with a

pseudorandom function to preserve data privacy.

Extensive security analysis shows that our scheme is

provable secure under random oracle model and

experimental evaluation indicates that our scheme is

highly efficient and can be feasibly integrated into

the regenerating code- based cloud storage.

INTRODUCTION

Cloud storage is now gaining popularity because it

offers a flexible on-demand data outsourcing service

with appealing benefits: relief of the burden for storage

management, universal data access with location

independence, and avoidance of capital expenditure on

hardware, software, and personal maintenances, etc.,.

Nevertheless, this new paradigm of data hosting

service also brings new security threats toward users

data, thus making individuals or enterprisers still feel

hesitant. It is noted that data owners lose ultimate

control over the fate of their outsourced data; thus, the

correctness, availability and integrity of the data are

being put at risk. On the one hand, the cloud service is

usually faced with a broad range of internal/external

adversaries, who would maliciously delete or corrupt

users’ data; on the other hand, the cloud service

providers may act dishonestly, attempting to hide data

loss or corruption and claiming that the files are still

correctly stored in the cloud for reputation or monetary

reasons.

Thus it makes great sense for users to implement an

efficient protocol to perform periodical verifications of

their outsourced data to ensure that the cloud indeed

maintains their data correctly. Many mechanisms

dealing with the integrity of outsourced data without a

local copy have been proposed under different system

and security models up to now. The most significant

work among these studies are the PDP (provable data

possession) model and POR (proof of retrievability)

model, which were originally proposed for the single-

server scenario by Ateniese et al. and Juels and

Kaliski, respectively. Considering that files are usually

striped and redundantly stored across multi-servers or

multi-clouds, explore integrity verification schemes

suitable for such multi-servers or multi-clouds setting

with different redundancy schemes, such as

replication, erasure codes, and, more recently,

regenerating codes

 Page 1107

In this paper, we focus on the integrity verification

problem in regenerating-code-based cloud storage,

especially with the functional repair strategy. Similar

studies have been performed by Chen et al. and Chen

and Lee separately and independently. extended the

single-server CPOR scheme to the regeneratingcode-

scenario; designed and implemented a data integrity

protection scheme for FMSR -based cloud storage and

the scheme is adapted to the thin-cloud setting.1

However, both of them are designed for private audit,

only the data owner is allowed to verify the integrity

and repair the faulty servers. Considering the large size

of the outsourced data and the user’s constrained

resource capability, the tasks of auditing and

reparation in the cloud can be formidable and

expensive for the users.

The overhead of using cloud storage should be

minimized as much as possible such that a user does

not need to perform too many operations to their

outsourced data (in additional to retrieving it). In

particular, users may not want to go through the

complexity in verifying and reparation. The auditing

schemes in and imply the problem that users need to

always stay online, which may impede its adoption in

practice, especially for long-term archival storage. To

fully ensure the data integrity and save the users’

computation resources as well as online burden, we

propose a public auditing scheme for the regenerating-

code-based cloud storage, in which the integrity

checking and regeneration (of failed data blocks and

authenticators) are implemented by a third-party

auditor and a semi-trusted proxy separately on behalf

of the data owner. Instead of directly adapting the

existing public auditing scheme to the multi-server

setting, we design a novel authenticator, which is more

appropriate for regenerating codes.

EXISTING SYSTEM:

Cloud storage is now gaining popularity because it

offers a flexible on-demand data outsourcing service

with appealing benefits: relief of the burden for storage

management, universal data access with location

independence, and avoidance of capital expenditure on

hardware, software, and personal maintenances.

DISADVANTAGES:

It is noted that data owners lose ultimate control over

the fate of their outsourced data; thus, the correctness,

availability and integrity of the data are being put at

risk.

PROPOSED SYSTEM:

The integrity of outsourced data without a local copy

have been proposed under different system and

security models up to now. The most significant work

among these studies are the PDP (provable data

possession) model and POR (proof of retrievability)

model, which were originally proposed for the single-

server scenario by Considering that files are usually

striped and redundantly stored across multi-servers or

multi-clouds, explore integrity verification schemes

suitable for such multi-servers or multi clouds setting

with different redundancy schemes, such as

replication, erasure codes, and, more recently,

regenerating codes.

ADVANTAGES:

We focus on the integrity verification problem in

regenerating-code-based cloud storage, especially with

the functional repair strategy.

SYSTEM ARCHITECTURE:

 Page 1108

IMPLEMENTATION

MODULES:

1. Regenerating Codes:

2. Design Goals

3. Definitions of Our Auditing Scheme

4. Enabling Privacy-Preserving Auditable

MODULES DESCRIPTION:

Regenerating Codes:

Regenerating codes are first introduced for distributed

storage to reduce the repair bandwidth. Viewing cloud

storage to be a collection of n storage servers, data file

F is encoded and stored redundantly across these

servers. Then F can be retrieved by connecting to any

k-out-of-n servers, which is termed the MDS2-

property. When data corruption at a server is detected,

the client will contact ℓ healthy servers and download

β′ bits from each server, thus regenerating the

corrupted blocks without recovering the entire original

file.

Design Goals:

To correctly and efficiently verify the integrity of data

and keep the stored file available for cloud storage, our

proposed auditing scheme should achieve the

following properties:

 Public Auditability: to allow TPA to verify the

intactness of the data in the cloud on demand

without introducing additional online burden

to the data owner.

 Storage Soundness: to ensure that the cloud

server can never pass the auditing procedure

except when it indeed manage the owner’s

data intact.

 Privacy Preserving: to ensure that neither the

auditor nor the proxy can derive users’ data

content from the auditing and reparation

process.

 Authenticator Regeneration: the authenticator

of the repaired blocks can be correctly

regenerated in the absence of the data owner.

 Error Location: to ensure that the wrong server

can be quickly indicated when data corruption

is detected.

Definitions of Our Auditing Scheme

Our auditing scheme consists of three procedures:

Setup, Audit and Repair. Each procedure contains

certain polynomial-time algorithms as follows:

Setup: The data owner maintains this procedure to

initialize the auditing scheme. KeyGen(1κ) → (pk, sk):

This polynomial-time algorithm is run by the data

owner to initialize its public and secret parameters by

taking a security parameter κ as input.

Degelation(sk) → (x): This algorithm represents the

interaction between the data owner and proxy. The

data owner delivers partial secret key x to the proxy

through a secure approach.

Sig And BlockGen (sk, F) → (_, , t): This polynomial

time algorithm is run by the data owner and takes the

secret parameter sk and the original file F as input, and

then outputs a coded block set , an authenticator set _

and a file tag t.

Audit: The cloud servers and TPA interact with one

another to take a random sample on the blocks and

check the data intactness in this procedure.

Challenge(Finfo) → (C): This algorithm is performed

by the TPA with the information of the file Finfo as

input and a challenge C as output.

ProofGen(C,_,) → (P): This algorithm is run by each

cloud server with input challenge C, coded block set

and authenticator set _, then it outputs a proof P.

 Verify(P, pk, C) → (0, 1): This algorithm is run by

TPA immediately after a proof is received. Taking the

proof P, public parameter pk and the corresponding

challenge C as input, it outputs 1 if the verification

passed and 0 otherwise.

Repair: In the absence of the data owner, the proxy

interacts with the cloud servers during this procedure

to repair the wrong server detected by the auditing

process.

Enabling Privacy-Preserving Auditable:

The privacy protection of the owner’s data can be

easily achieved through integrating with the random

 Page 1109

proof blind technique or other technique . However,

all these privacy-preservation methods introduce

additional computation overhead to the auditor, who

usually needs to audit for many clouds and a large

number of data owners; thus, this could possibly make

it create a performance bottleneck. Therefore, we

prefer to present a novel method, which is more light-

weight, to mitigate private data leakage to the auditor.

Notice that in a regenerating-code-based cloud storage,

data blocks stored at servers are coded as linear

combinations of the original blocks Supposing that the

curious TPA has recovered m coded blocks by

elaborately performing Challenge-Response

procedures and solving systems of linear equations],

the TPA still requies to solve another group of m

linearly independent equations to derive the m native

blocks.

SCREEN SHOTS

Homepage:

Registration page:

Owner login:

File upload page:

Auditor Login:

File Auditing Page:

 Page 1110

CONCLUSION

We propose a public auditing scheme for the

regenerating-code-based cloud storage system, where

the data owners are privileged to delegate TPA for

their data validity checking. To protect the original

data privacy against the TPA, we randomize the

coefficients in the beginning rather than applying the

blind technique during the auditing process.

Considering that the data owner cannot always stay

online in practise, in order to keep the storage

available and verifiable after a malicious corruption,

we introduce a semi-trusted proxy into the system

model and provide a privilege for the proxy to handle

the reparation of the coded blocks and authenticators.

To better appropriate for the regenerating-code-

scenario, we design our authenticator based on the

BLS signature. This authenticator can be efficiently

generated by the data owner simultaneously with the

encoding procedure. Extensive analysis shows that our

scheme is provable secure, and the performance

evaluation shows that our scheme is highly efficient

and can be feasibly integrated into a regenerating-

code-based cloud storage system.

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A Berkeley

view of cloud computing,” Dept. Elect. Eng. Comput.

Sci., Univ. California, Berkeley, CA, USA, Tech. Rep.

UCB/EECS-2009-28, 2009.

[2] G. Ateniese et al., “Provable data possession at

untrusted stores,” in Proc. 14th ACM Conf. Comput.

Commun. Secur. (CCS), New York, NY, USA, 2007,

pp. 598–609.

[3] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of

retrievability for large files,” in Proc. 14th ACM Conf.

Comput. Commun. Secur., 2007, pp. 584–597.

[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese,

“MR-PDP: Multiple-replica provable data possession,”

in Proc. 28th Int. Conf. Distrib. Comput. Syst.

(ICDCS), Jun. 2008, pp. 411–420.

[5] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A

high-availability and integrity layer for cloud storage,”

in Proc. 16th ACM Conf. Comput. Commun. Secur.,

2009, pp. 187–198.

[6] J. He, Y. Zhang, G. Huang, Y. Shi, and J. Cao,

“Distributed data possession checking for securing

multiple replicas in geographicallydispersed clouds,” J.

Comput. Syst. Sci., vol. 78, no. 5, pp. 1345–1358,

2012.

[7] B. Chen, R. Curtmola, G. Ateniese, and R. Burns,

“Remote data checking for network coding-based

distributed storage systems,” in Proc. ACM Workshop

Cloud Comput. Secur. Workshop, 2010, pp. 31–42.

[8] H. C. H. Chen and P. P. C. Lee, “Enabling data

integrity protection in regenerating-coding-based cloud

storage: Theory and implementation,” IEEE Trans.

Parallel Distrib. Syst., vol. 25, no. 2, pp. 407–416, Feb.

2014.

[9] K. Yang and X. Jia, “An efficient and secure

dynamic auditing protocol for data storage in cloud

computing,” IEEE Trans. Parallel Distrib. Syst., vol.

24, no. 9, pp. 1717–1726, Sep. 2013.

[10] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu,

“Cooperative provable data possession for integrity

verification in multicloud storage,” IEEE Trans.

Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231–2244,

Dec. 2012.

[11] A. G. Dimakis, K. Ramchandran, Y. Wu, and C.

Suh, “A survey on network codes for distributed

storage,” Proc. IEEE, vol. 99, no. 3, pp. 476–489, Mar.

2011.

[12] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Advances in Cryptology. Berlin,

Germany: Springer-Verlag, 2008, pp. 90–107.

[13] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang,

“NCCloud: Applying network coding for the storage

 Page 1111

repair in a cloud-of-clouds,” in Proc. USENIX FAST,

2012, p. 21.

[14] C. Wang, Q. Wang, K. Ren, and W. Lou,

“Privacy-preserving public auditing for data storage

security in cloud computing,” in Proc. IEEE

INFOCOM, Mar. 2010, pp. 1–9.

[15] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and

W. Lou, “Privacy-preserving public auditing for secure

cloud storage,” IEEE Trans. Comput., vol. 62, no. 2,

pp. 362–375, Feb. 2013.

