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Abstract: 

Embedded cryptographic devices are vulnerable to 

power analysis attacks. Threshold Implementations 

provide provable security against first-order power 

analysis attacks for hardware and software 

implementations. Like masking, the approach relies on 

secret sharing but it differs in the implementation of 

logic functions. While masking can fail to provide 

protection due to glitches in the circuit, Threshold 

Implementations rely on few assumptions about the 

hardware and are fully compatible with standard 

design flows. We investigate two important properties 

of Threshold Implementations in detail and point out 

interesting trade-offs between circuit area and 

randomness requirements. We propose two new 

Threshold Implementations of AES that, starting from 

a common previously published implementation, 

illustrate possible trade-offs. We provide concrete 

ASIC implementation results for all three designs 

using the same library, and we evaluate the practical 

security of all three designs on the same FPGA 

platform. Our analysis allows us to directly compare 

the security provided by the different trade-offs, and to 

quantify the associated hardware cost.  
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I. INTRODUCTION: 

An increasing number of embedded devices implement 

some security functionality, for instance smart cards 

(banking, SIM, public transport, access control, 

passports), car keys, set-top boxes (pay TV), media 

players, mobile phones, tablets, medical implants, etc.  

 

These devices use cryptographic algorithms that are 

secure against mathematical cryptanalysis. This means 

that a system’s security relies on the secrecy of a so-

called cryptographic key, and that there are no 

mathematical shortcuts that allow breaking the system. 

However, in the late 90s the security of such devices 

has been shown to depend also on the algorithms’ 

implementation [1]. During the computation of an 

algorithm the device leaks information, for instance 

through its power consumption, electromagnetic 

emanations, etc. Side channel attacks (SCA) can reveal 

the key from these leakages and are often inexpensive; 

hence they are among the most relevant threats for the 

security of implementations of cryptographic 

algorithms.  

 

Certain countermeasures against SCA aim to introduce 

noise in the side channel, e.g. random delays, random 

order execution, dummy operations, etc., while 

masking conceals all sensitive intermediate values of a 

computation with random data. Different masking 

schemes, like additive [2], [3] and multiplicative [4], 

have been proposed in order to provide security 

against differential power analysis (DPA) attacks. 1 

Introduction The mass deployment of pervasive 

devices promises many benefits such as lower logistic 

costs, higher process granularity, optimized supply-

chains, or location based services among others. 

Besides these benefits, there are also many risks 

inherent in pervasive computing: many foreseen 

applications are security sensitive, such as wireless 

sensor networks for military, financial or automotive 

applications. With the widespread presence of 

embedded computers in such scenarios, security is a 

striving issue, because the potential damage of 
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malicious attacks also increases. An aggravating factor 

is that pervasive devices are usually not deployed in a 

controlled but rather in a hostile environment, i.e., an 

adversary has physical access to or control over the 

devices. This adds the whole field of physical attacks 

to the potential attack scenarios. Most notably are here 

socalled side-channel attacks, especially Simple, 

Differential and Correlation Power Analysis. 

 

II. EXISTING SYSTEM: 

A. RAW IMPLEMENTATION: 

This TI of the S-box (details will be given in the 

following section) requires four input shares; therefore 

we initially share the plaintext in four shares. We share 

the key in two shares and XOR them with two of the 

plaintext shares before the S box operation. More 

details about the key scheduling will be given later in 

this section. 

 

B. ADJUSTED IMPLEMENTATION:  

Each of the existing three shares is XORed with a 

random byte and the sum of these random bytes is 

taken as the fourth share. This also ensures uniformity 

of the S-box input. Together with the state, the number 

of shares for Mix Columns and Key XOR increases to 

three. 

 

III. EXISTING SYSTEM DRAWBACKS: 

 The longest critical path  

 The maximum area of occupancy 

 Low speed 

 

Proposed Work: 

Our first contribution is a description of the smallest 

hardware implementation of AES known to date. Our 

design goal was solely low area, and thus we were able 

to set the time-area and the power-area tradeoffs 

differently, and in favor for a more compact hardware 

realization, compared to [13] and [15]. To pursue our 

goal, we have taken a holistic approach that optimizes 

the total design, not every component individually. In 

total we achieved an implementation that requires only 

2400 GE and needs 226 clock cycles, which is to the 

best of our knowledge 23% smaller than any 

previously published implementations. As a second 

contribution, we investigate side-channel 

countermeasures for this lightweight AES 

implementation. It turns out that when using 

Canright’s representation, the only non-linear function 

is the multiplication in GF (2 2 ). An example for how 

to share this function using only three shares has been 

presented by Nikova et al. in [24]. Building on these 

findings, we applied the countermeasure to our 

unprotected AES implementation. For this architecture 

we conducted a complete side-channel evaluation 

based on real-world power traces that we obtain from 

SASEBO. We use a variety of different power analysis 

attacks to investigate the achieved level of resistance 

of our implementation against first order DPA attacks 

even if an attacker is capable of measuring 100 million 

power traces. 

 

Introduction to DPA: 

Smart cards and other types of pervasive devices 

performing cryptographic operations are seriously 

challenged by side-channel cryptanalysis. Several 

publications, e.g., [12] have stressed that such physical 

attacks are an extremely practical and powerful tool 

for recovering the secrets of unprotected cryptographic 

devices. In fact, these attacks exploit the information 

leaking through physical side channels and involved in 

sensitive computations to reveal the key materials. 

Amongst the known sources of side channels and the 

corresponding attacks most notable are power analysis 

attacks [18]. Many different kinds of power analysis 

attacks, e.g., simple and differential power analysis 

(SPA and DPA) [18], template-based attacks [2], and 

mutual information analysis [14], have been 

introduced while each one has its own advantages and 

is suitable in its special conditions. However, 

correlation power analysis (CPA) [6], which is a 

general form of DPA, got more attention since it is 

able to efficiently reveal the secrets by comparing the 

measurements to the estimations obtained by means of 

a theoretical power model which fits to the 

characteristics of the target implementation. 
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A Threshold Implementation of AES: 

If we share both the data path and the key schedule we 

obtain the threshold version.  For this profile we need 

four randomly generated masks (md1, md2, mk1, 

mk2), which are XORed to the data chunk and the key 

chunk. The unmasking step is performed by simply 

XORing all three shares yielding the output (data_out). 

The state of the masks also needs to be maintained, 

which leads to two more instantiations of both the 

State and the Key module (mask md1, mask md2, 

mask mk1 and mask mk2). Furthermore, the S-box is 

now replaced by a shared S-box module that contains 

five pipelining stages . This delays the computation of 

the round keys and, as a consequence, the pipeline 

needs to be emptied in every encryption round. Thus 

profile 2 needs 25 clock cycles for one round and uses 

a small FSM to derive the control signal. 

 

IV. IMPLEMENTATION: 

In this section we will discuss three different TIs of 

AES which we refer to as raw, adjusted and nimble 

implementations. All implementations share the same 

data flow and timing. The implementations differ 

mostly in the S-box calculation and/or the number of 

shares that are used in different blocks of the 

algorithm. The raw implementation is from our paper 

at Africa Crypt 2014 [17] and forms the basis of the 

other two implementations. Hence, we will mainly 

describe the raw implementation and point out the 

differences with the other two. The main feature of the 

raw implementation is that it uses the smallest possible 

number of shares for each function, except the linear 

transformations in the S-box, provided that the shared 

functions are uniform. In other words, all nonlinear 

operations are performed with n > 2 shares such that 

the circuits are uniform and n is as small as possible. 

The linear operations outside the S-box are performed 

with two shares, whereas the linear operations in the S-

box use two, three or four shares. The adjusted 

implementation on the other hand ensures that at least 

three shares are used in every operation, including the 

linear ones. With this implementation we intend to 

observe the effect of moving from at least two shares 

to at least three shares in linear operations on the 

resistance against higher order DPA, and to quantify 

the associated cost. In the nimble implementation the 

number of shares is always minimal, i.e. n = d+1 

where d is the degree of the unshared function, even if 

the resulting shared function is not uniform. The 

uniformity of the circuit is satisfied by re-masking. 

 

General Data Flow: 

We use a serial implementation for round operations 

and key schedule as proposed in [16], [17] which 

requires only one Sbox instance and loads the plaintext 

and key byte-wise in row wise order. We also use one 

Mix Columns instance that operates on the whole 

column and provides an output in one clock cycle. Due 

to this extreme serialization, one round requires at least 

21 clock cycles even for the unprotected 

implementation [16]. All our TIs execute one round in 

23 clock cycles. In the first 16 clock cycles, the 

plaintext is XORed with the key and sent to the S-box. 

Its output will be taken from the 3rd to the 18th clock 

cycles and stored in the state registers, i.e. the S-box is 

executed in three clock cycles. The Shift Rows 

operation is performed in the 19th clock cycle 

followed by four cycles of Mix Columns calculation. 

The S-box takes its input from the key schedule for 

four cycles starting from the 18th cycle. In the 17th, 

22nd and 23rd clock cycles, the S-box inputs and 

unused random bits are set to 0. Therefore, the 

calculation of AES takes 23×10+16 = 246 clock 

cycles, including 16 cycles to output the cipher text. 

 

1) Raw implementation: 

We use two sets of state registers, each consisting of 

sixteen 16-bit registers, corresponding to the two 

shares of the state. The MixColumns and the Key 

XOR operations are also performed with two shares.  

This can be seen in Fig. 1, as the key and the state 

registers are 256 bits implying the two shares. 
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This TI of the S-box (details will be given in the 

following section) requires four input shares, therefore 

we initially share the plaintext in four shares. We share 

the key in two shares and XOR them with two of the 

plaintext shares before the Sbox operation. More 

details about the key scheduling will be given later in 

this section. Besides the shared input, the S-box needs 

20-bits of randomness r.  

 

The first two output shares sbout1,2 are written to the 

state register S33 (Fig. 2) whereas the remaining share 

sbout3 is written to register P3. The data in the state 

registers are shifted to the left for the following 16 

cycles so that the next output of the S-box can be 

stored in the same registers. During this shift, the data 

in P3 (pout in Fig. 1) is XORed with the second share 

of the S-box output, which is in the state register S33, 

to reduce the number of shares from three to two. To 

achieve this signal sig2 is active from the 4th to the 

19th clock cycle. 

 
Figure 2: Architecture of the state (top) and key 

(bottom) arrays for our raw implementation where Si, 

Ki and P0 hold two shares and P3 holds one share. The 

registers P0 and P3 are used by the state and the key 

array. The XOR of the value in P3 and S33 (resp. K30) 

is on one share of the value in register S33 (resp. K30) 

whereas all the other combinational operations are on 

two shares. 

 

2) Adjusted implementation: 

This version works on three shares for both the state 

and the key schedule which increases the area 

significantly. The S-box still requires four input shares 

and outputs three shares, hence the register P0 is 

reduced to 8-bits (one share) and the register P3 is not 

required. Similar to the raw implementation, we use 

24-bits of randomness to increase the number of shares 

from three to four one cycle before the S-box, i.e. each 

of the existing three shares is XORed with a random 

byte and the sum of these random bytes is taken as the 

fourth share. This also ensures uniformity of the S-box 

input. Together with the state, the number of shares for 

MixColumns and Key XOR increases to three. 

 

3) Nimble implementation: 

Similar to the raw implementation, this one also uses 

two shares for the state and key arrays. The main 

difference is that the S-box needs three input shares 

instead of four.  
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Hence the size of the register P0 is reduced to 8-bits 

(one share). As a result, we need only 16bits of 

randomness to increase the number of shares from two 

to three before the S-box operation, i.e. each share is 

XORed with one byte of randomness and the XOR of 

the random bytes is taken as the third share. The S-box 

requires 16-bits of extra randomness per iteration and 

outputs three shares. Hence the logic of the register P3 

to reduce the number of shares back to two stays the 

same. 

 

TI of the AES S-box: 

 The S-box implementations in [16] use the tower field 

approach up to GF(22) for a small implementation. 

Therefore, the only nonlinear operation is GF(22) 

multiplication which must be followed by registers and 

re-masking to avoid first order leakages. We also chose 

to use the tower field approach, however, we decided 

to go until GF(24) instead of GF(22). With this 

approach, the GF(24) inverter (algebraic normal form 

provided in Appendix B) can be seen as a four bit 

permutation and the GF(24) multiplier (algebraic 

normal form provided in Appendix A) as a four bit 

multiplication both of which are well studied in [22]. 

Therefore, we can find uniform TIs for each of these 

nonlinear functions. This might allow us to reduce the 

number of fresh random bits needed since we will have 

fewer nonlinear blocks compared to [22] hence 

possibly require less re-masking in order to use their 

outputs. Moreover, with this approach the S-box 

calculation takes three clock cycles instead of five. 

 

1) Raw implementation: 

The uniformity of each function is individually 

satisfied. The uniform sharing with four input and 

three output shares that is used to share each term in 

the multiplication is provided in Appendix C. For the 

inversion, which belongs to class C4282 [14], we 

consider two options. Either using four shares, which 

is the minimum number of shares necessary for a 

uniform implementation in that class, and 

decomposing the function into three uniform sub-

functions as Inv(x) = F(G(H(x))), or using five shares 

without any decomposition.  

Our experiments show that both versions have similar 

area requirements but need a different number of clock 

cycles. To reduce the number of cycles, we chose the 

version with five shares, generated by applying the 

formula in Appendix F to each term of the inversion. 

This sharing is found by using the method described in 

[9] which is slightly different from the direct sharing 

[14]. We chose this sharing since it can be 

implemented in hardware with less logic gates 

compared to the direct sharing. 

 
Even though it is enough to use only two shares for 

linear operations, we sometimes chose to work on 

more than two shares to avoid the need of extra 

random bits. The linear map of the tower-field S-box 

operates on four shares since the multiplication needs 

four input shares. The inverter requires five input 

shares and the multiplication outputs only three shares, 

therefore we use two shares for the square scalar to 

have five shares in the beginning of the 2nd phase. We 

use three shares for the inverse linear map of the 

tower-field S-box since the multiplication outputs three 

shares.  

 

For all the linear operations, the shared functions are 

created as instantiations of the unshared function for 

the first share and as unshared function without the 

constant term for the other shares. During the 

combination of these uniform circuits, we face the 

challenges described in Section II-E to keep the 

uniformity in the pipeline registers. We apply re-

masking on the first pipeline register where we 

combine the two output shares of the square scaler and 

the three output shares of the multiplier to generate 

five shares.  
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Note that this combination also acts as the XOR of the 

outputs of the square scaler and the multiplier. By 

Theorem 4, it is enough to re-mask only the output 

shares of one of the functions to achieve uniformity. 

We choose to re-mask the output of the square scaler 

since it operates on less shares, hence requires less 

random bits. The correction mask,i.e. the XOR of the 

masks, is XORed to one of the output shares of the 

multiplier to achieve correctness. 

 

2) Adjusted implementation: 

As mentioned in the earlier sections, the only 

difference between the raw and the adjusted 

implementation is that the adjusted implementation 

requires at least three shares for all the blocks 

including the linear operations in the S-box. For that 

reason, the shared square scaler circuit is instantiated 

with three shares. This Sbox also requires 44-bits of 

randomness per iteration. 

 

 
 

3) Nimble implementation: 

As can be observed in Figs. 3 and 4, we use fresh 

randomness at the end of the 1st phase to satisfy 

uniformity during the combination of the square 

scaler’s and the multiplier’s outputs, and after the 

inverter to break the dependency between the inputs of 

the multipliers in the 3rd phase. Since these re-

masking steps conserve the uniform it y property and 

the security of each block is achieved only by the 

correctness and non-completeness properties 

(Observation 1), we can discard the uniformity 

property and implement these nonlinear functions with 

the smallest number of shares ns.t. n > d, i.e. n = d + 1, 

where d is the degree of the unshared functions.  

We use the sharing with three input and output shares 

provided in Appendix D for each term of the multiplier 

and the sharing with four input and output shares 

provided in Appendix E for each term of the inverter. 

With this new construction, it is enough to have three 

input shares to the S-box since the multiplier block 

requires only three shares. We need to reduce the 

number of shares from five to four at the end of the 1st 

phase for the inverter and from four to three at the end 

of the 2nd phase for the following multipliers. This 

construction requires only 32-bits of extra randomness 

per S-box calculation, including increasing the number 

of shares for the S-box input. 

 
Performance: 

Like any other DPA countermeasure, TI also allows 

tradeoffs between area, randomness and the resistance 

against DPA. In Table III, we provide the area costs 

(GE) and randomness requirements (bits) for the 

different S-box implementations. For all the 

implementations, we performed two different 

compilation methods. The first one is are gular 

compilation with the compile command,that does not 

optimize or merge modules, performed on the whole 

implementation. The second method on the other hand 

uses the compile ultra command for each module to let 

the tool optimize each of them individually and 

combine the result. It is very important that the 

modules are not merged for area optimization in this 

step, to not violate the non-completeness property. 
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Table: Synthesis results for different versions of S-

box TI with compile / compile ultra commands. 

 

In our implementations, the S-box occupies 30% to 

40% of the total area. Compared to the implementation 

in [16] our S-boxes with uniform blocks are 13% 

smaller and our Sbox with non-uniform blocks is 33% 

smaller. These results show a significant area and 

randomness improvement for the nimble 

implementation, indicating that using non uniform 

shared functions can be advantageous if the uniformity 

of the circuit is satisfied by re-masking. 

 

V. RESULTS: 

 

 
 

Adjusted simulation 

 
 

Nibble implementation synthesis 

 
 

 

 

 

 

 

 

 



 

  
                                                                                                                                                                                                                    Page 1007 

 

Nibble implementation simulation 

 
 

Raw implementation simulation 

 
Raw implementation synthesis 

 

VI. APPLICATIONS: 

 ATM machines 

 Wireless communication 

 Mobile Phones 

 Image processing and Network security 

 

VII. HARDWARE REQUIREMENT: 

 FPGA Spartan 6 

 

VIII. SOFTWARE REQUIREMENT: 

 ModelSim 6.4c 

 Xilinx 9.1/13.2 

 

 

 

IX. FUTURE ENHANCEMENT: 

The advanced encryption standard (AES) is a 

specification for the encryption of electronic data. The 

AES algorithm is a symmetric block cipher that can 

encrypt (encipher) and decrypt (decipher) information. 

Encryption converts data to an unintelligible form 

called cipher text; decrypting the cipher text converts 

the data back into its original form, called plaintext.We 

will implement the nimble implementation in AES 

Encryption.  

 

X. CONCLUSION: 

 We discuss three different versions of TIs of AES. We 

show that it is possible to achieve first-order DPA 

resistance with non-uniform shared functions ifre-

masking is applied properly. In the case of AES, our 

“non-uniform” nimble implementation requires less 

randomness than our “uniform” raw implementation, 

due to the decreased number of shares. However, for 

other algorithms and other S-boxes, re-masking may 

increase the amount of randomness required. This idea 

can be used to trade-off between the randomness and 

area requirements. Moreover, we empirically confirm 

that increasing the number of shares has a significant 

impact on the performance of higher-order attacks, 

which provides another trade-off between area and 

DPA resistance. Our most efficient implementation is 

approximately 8k GE small and requires only 32 bits 

of fresh randomness per S-box calculation, which is a 

significant improvement over all previous works. 
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