

 Page 1000

A High-Performance VLSI Architecture for Threshold

Implementations Illustrated on AES
K.Anusha

M.Tech,

VLSI System Design,

GNIT JNT University, Hyd.

anushashankar93@gmail.com

M.Suman Kumar

Associate Professor,

GNIT JNT University, Hyd.

Sumankumar.gnit@gmail.com

B.Kedarnath

HOD,

Dept of ECE,

GNIT JNT University, Hyd.

bkedarnath@gmail.com

Dr.S.Sreenatha Reddy

Principal,

GNIT JNT University, Hyd.

Sreenath_sakkamm@yahoo.com

Abstract:

Embedded cryptographic devices are vulnerable to

power analysis attacks. Threshold Implementations

provide provable security against first-order power

analysis attacks for hardware and software

implementations. Like masking, the approach relies on

secret sharing but it differs in the implementation of

logic functions. While masking can fail to provide

protection due to glitches in the circuit, Threshold

Implementations rely on few assumptions about the

hardware and are fully compatible with standard

design flows. We investigate two important properties

of Threshold Implementations in detail and point out

interesting trade-offs between circuit area and

randomness requirements. We propose two new

Threshold Implementations of AES that, starting from

a common previously published implementation,

illustrate possible trade-offs. We provide concrete

ASIC implementation results for all three designs

using the same library, and we evaluate the practical

security of all three designs on the same FPGA

platform. Our analysis allows us to directly compare

the security provided by the different trade-offs, and to

quantify the associated hardware cost.

Keywords:

Threshold Implementation, First-order DPA, Higher

order DPA, Glitches, Sharing, AES, S-box.

I. INTRODUCTION:

An increasing number of embedded devices implement

some security functionality, for instance smart cards

(banking, SIM, public transport, access control,

passports), car keys, set-top boxes (pay TV), media

players, mobile phones, tablets, medical implants, etc.

These devices use cryptographic algorithms that are

secure against mathematical cryptanalysis. This means

that a system’s security relies on the secrecy of a so-

called cryptographic key, and that there are no

mathematical shortcuts that allow breaking the system.

However, in the late 90s the security of such devices

has been shown to depend also on the algorithms’

implementation [1]. During the computation of an

algorithm the device leaks information, for instance

through its power consumption, electromagnetic

emanations, etc. Side channel attacks (SCA) can reveal

the key from these leakages and are often inexpensive;

hence they are among the most relevant threats for the

security of implementations of cryptographic

algorithms.

Certain countermeasures against SCA aim to introduce

noise in the side channel, e.g. random delays, random

order execution, dummy operations, etc., while

masking conceals all sensitive intermediate values of a

computation with random data. Different masking

schemes, like additive [2], [3] and multiplicative [4],

have been proposed in order to provide security

against differential power analysis (DPA) attacks. 1

Introduction The mass deployment of pervasive

devices promises many benefits such as lower logistic

costs, higher process granularity, optimized supply-

chains, or location based services among others.

Besides these benefits, there are also many risks

inherent in pervasive computing: many foreseen

applications are security sensitive, such as wireless

sensor networks for military, financial or automotive

applications. With the widespread presence of

embedded computers in such scenarios, security is a

striving issue, because the potential damage of

 Page 1001

malicious attacks also increases. An aggravating factor

is that pervasive devices are usually not deployed in a

controlled but rather in a hostile environment, i.e., an

adversary has physical access to or control over the

devices. This adds the whole field of physical attacks

to the potential attack scenarios. Most notably are here

socalled side-channel attacks, especially Simple,

Differential and Correlation Power Analysis.

II. EXISTING SYSTEM:

A. RAW IMPLEMENTATION:

This TI of the S-box (details will be given in the

following section) requires four input shares; therefore

we initially share the plaintext in four shares. We share

the key in two shares and XOR them with two of the

plaintext shares before the S box operation. More

details about the key scheduling will be given later in

this section.

B. ADJUSTED IMPLEMENTATION:

Each of the existing three shares is XORed with a

random byte and the sum of these random bytes is

taken as the fourth share. This also ensures uniformity

of the S-box input. Together with the state, the number

of shares for Mix Columns and Key XOR increases to

three.

III. EXISTING SYSTEM DRAWBACKS:

 The longest critical path

 The maximum area of occupancy

 Low speed

Proposed Work:

Our first contribution is a description of the smallest

hardware implementation of AES known to date. Our

design goal was solely low area, and thus we were able

to set the time-area and the power-area tradeoffs

differently, and in favor for a more compact hardware

realization, compared to [13] and [15]. To pursue our

goal, we have taken a holistic approach that optimizes

the total design, not every component individually. In

total we achieved an implementation that requires only

2400 GE and needs 226 clock cycles, which is to the

best of our knowledge 23% smaller than any

previously published implementations. As a second

contribution, we investigate side-channel

countermeasures for this lightweight AES

implementation. It turns out that when using

Canright’s representation, the only non-linear function

is the multiplication in GF (2 2). An example for how

to share this function using only three shares has been

presented by Nikova et al. in [24]. Building on these

findings, we applied the countermeasure to our

unprotected AES implementation. For this architecture

we conducted a complete side-channel evaluation

based on real-world power traces that we obtain from

SASEBO. We use a variety of different power analysis

attacks to investigate the achieved level of resistance

of our implementation against first order DPA attacks

even if an attacker is capable of measuring 100 million

power traces.

Introduction to DPA:

Smart cards and other types of pervasive devices

performing cryptographic operations are seriously

challenged by side-channel cryptanalysis. Several

publications, e.g., [12] have stressed that such physical

attacks are an extremely practical and powerful tool

for recovering the secrets of unprotected cryptographic

devices. In fact, these attacks exploit the information

leaking through physical side channels and involved in

sensitive computations to reveal the key materials.

Amongst the known sources of side channels and the

corresponding attacks most notable are power analysis

attacks [18]. Many different kinds of power analysis

attacks, e.g., simple and differential power analysis

(SPA and DPA) [18], template-based attacks [2], and

mutual information analysis [14], have been

introduced while each one has its own advantages and

is suitable in its special conditions. However,

correlation power analysis (CPA) [6], which is a

general form of DPA, got more attention since it is

able to efficiently reveal the secrets by comparing the

measurements to the estimations obtained by means of

a theoretical power model which fits to the

characteristics of the target implementation.

 Page 1002

A Threshold Implementation of AES:

If we share both the data path and the key schedule we

obtain the threshold version. For this profile we need

four randomly generated masks (md1, md2, mk1,

mk2), which are XORed to the data chunk and the key

chunk. The unmasking step is performed by simply

XORing all three shares yielding the output (data_out).

The state of the masks also needs to be maintained,

which leads to two more instantiations of both the

State and the Key module (mask md1, mask md2,

mask mk1 and mask mk2). Furthermore, the S-box is

now replaced by a shared S-box module that contains

five pipelining stages . This delays the computation of

the round keys and, as a consequence, the pipeline

needs to be emptied in every encryption round. Thus

profile 2 needs 25 clock cycles for one round and uses

a small FSM to derive the control signal.

IV. IMPLEMENTATION:

In this section we will discuss three different TIs of

AES which we refer to as raw, adjusted and nimble

implementations. All implementations share the same

data flow and timing. The implementations differ

mostly in the S-box calculation and/or the number of

shares that are used in different blocks of the

algorithm. The raw implementation is from our paper

at Africa Crypt 2014 [17] and forms the basis of the

other two implementations. Hence, we will mainly

describe the raw implementation and point out the

differences with the other two. The main feature of the

raw implementation is that it uses the smallest possible

number of shares for each function, except the linear

transformations in the S-box, provided that the shared

functions are uniform. In other words, all nonlinear

operations are performed with n > 2 shares such that

the circuits are uniform and n is as small as possible.

The linear operations outside the S-box are performed

with two shares, whereas the linear operations in the S-

box use two, three or four shares. The adjusted

implementation on the other hand ensures that at least

three shares are used in every operation, including the

linear ones. With this implementation we intend to

observe the effect of moving from at least two shares

to at least three shares in linear operations on the

resistance against higher order DPA, and to quantify

the associated cost. In the nimble implementation the

number of shares is always minimal, i.e. n = d+1

where d is the degree of the unshared function, even if

the resulting shared function is not uniform. The

uniformity of the circuit is satisfied by re-masking.

General Data Flow:

We use a serial implementation for round operations

and key schedule as proposed in [16], [17] which

requires only one Sbox instance and loads the plaintext

and key byte-wise in row wise order. We also use one

Mix Columns instance that operates on the whole

column and provides an output in one clock cycle. Due

to this extreme serialization, one round requires at least

21 clock cycles even for the unprotected

implementation [16]. All our TIs execute one round in

23 clock cycles. In the first 16 clock cycles, the

plaintext is XORed with the key and sent to the S-box.

Its output will be taken from the 3rd to the 18th clock

cycles and stored in the state registers, i.e. the S-box is

executed in three clock cycles. The Shift Rows

operation is performed in the 19th clock cycle

followed by four cycles of Mix Columns calculation.

The S-box takes its input from the key schedule for

four cycles starting from the 18th cycle. In the 17th,

22nd and 23rd clock cycles, the S-box inputs and

unused random bits are set to 0. Therefore, the

calculation of AES takes 23×10+16 = 246 clock

cycles, including 16 cycles to output the cipher text.

1) Raw implementation:

We use two sets of state registers, each consisting of

sixteen 16-bit registers, corresponding to the two

shares of the state. The MixColumns and the Key

XOR operations are also performed with two shares.

This can be seen in Fig. 1, as the key and the state

registers are 256 bits implying the two shares.

 Page 1003

This TI of the S-box (details will be given in the

following section) requires four input shares, therefore

we initially share the plaintext in four shares. We share

the key in two shares and XOR them with two of the

plaintext shares before the Sbox operation. More

details about the key scheduling will be given later in

this section. Besides the shared input, the S-box needs

20-bits of randomness r.

The first two output shares sbout1,2 are written to the

state register S33 (Fig. 2) whereas the remaining share

sbout3 is written to register P3. The data in the state

registers are shifted to the left for the following 16

cycles so that the next output of the S-box can be

stored in the same registers. During this shift, the data

in P3 (pout in Fig. 1) is XORed with the second share

of the S-box output, which is in the state register S33,

to reduce the number of shares from three to two. To

achieve this signal sig2 is active from the 4th to the

19th clock cycle.

Figure 2: Architecture of the state (top) and key

(bottom) arrays for our raw implementation where Si,

Ki and P0 hold two shares and P3 holds one share. The

registers P0 and P3 are used by the state and the key

array. The XOR of the value in P3 and S33 (resp. K30)

is on one share of the value in register S33 (resp. K30)

whereas all the other combinational operations are on

two shares.

2) Adjusted implementation:

This version works on three shares for both the state

and the key schedule which increases the area

significantly. The S-box still requires four input shares

and outputs three shares, hence the register P0 is

reduced to 8-bits (one share) and the register P3 is not

required. Similar to the raw implementation, we use

24-bits of randomness to increase the number of shares

from three to four one cycle before the S-box, i.e. each

of the existing three shares is XORed with a random

byte and the sum of these random bytes is taken as the

fourth share. This also ensures uniformity of the S-box

input. Together with the state, the number of shares for

MixColumns and Key XOR increases to three.

3) Nimble implementation:

Similar to the raw implementation, this one also uses

two shares for the state and key arrays. The main

difference is that the S-box needs three input shares

instead of four.

 Page 1004

Hence the size of the register P0 is reduced to 8-bits

(one share). As a result, we need only 16bits of

randomness to increase the number of shares from two

to three before the S-box operation, i.e. each share is

XORed with one byte of randomness and the XOR of

the random bytes is taken as the third share. The S-box

requires 16-bits of extra randomness per iteration and

outputs three shares. Hence the logic of the register P3

to reduce the number of shares back to two stays the

same.

TI of the AES S-box:

 The S-box implementations in [16] use the tower field

approach up to GF(22) for a small implementation.

Therefore, the only nonlinear operation is GF(22)

multiplication which must be followed by registers and

re-masking to avoid first order leakages. We also chose

to use the tower field approach, however, we decided

to go until GF(24) instead of GF(22). With this

approach, the GF(24) inverter (algebraic normal form

provided in Appendix B) can be seen as a four bit

permutation and the GF(24) multiplier (algebraic

normal form provided in Appendix A) as a four bit

multiplication both of which are well studied in [22].

Therefore, we can find uniform TIs for each of these

nonlinear functions. This might allow us to reduce the

number of fresh random bits needed since we will have

fewer nonlinear blocks compared to [22] hence

possibly require less re-masking in order to use their

outputs. Moreover, with this approach the S-box

calculation takes three clock cycles instead of five.

1) Raw implementation:

The uniformity of each function is individually

satisfied. The uniform sharing with four input and

three output shares that is used to share each term in

the multiplication is provided in Appendix C. For the

inversion, which belongs to class C4282 [14], we

consider two options. Either using four shares, which

is the minimum number of shares necessary for a

uniform implementation in that class, and

decomposing the function into three uniform sub-

functions as Inv(x) = F(G(H(x))), or using five shares

without any decomposition.

Our experiments show that both versions have similar

area requirements but need a different number of clock

cycles. To reduce the number of cycles, we chose the

version with five shares, generated by applying the

formula in Appendix F to each term of the inversion.

This sharing is found by using the method described in

[9] which is slightly different from the direct sharing

[14]. We chose this sharing since it can be

implemented in hardware with less logic gates

compared to the direct sharing.

Even though it is enough to use only two shares for

linear operations, we sometimes chose to work on

more than two shares to avoid the need of extra

random bits. The linear map of the tower-field S-box

operates on four shares since the multiplication needs

four input shares. The inverter requires five input

shares and the multiplication outputs only three shares,

therefore we use two shares for the square scalar to

have five shares in the beginning of the 2nd phase. We

use three shares for the inverse linear map of the

tower-field S-box since the multiplication outputs three

shares.

For all the linear operations, the shared functions are

created as instantiations of the unshared function for

the first share and as unshared function without the

constant term for the other shares. During the

combination of these uniform circuits, we face the

challenges described in Section II-E to keep the

uniformity in the pipeline registers. We apply re-

masking on the first pipeline register where we

combine the two output shares of the square scaler and

the three output shares of the multiplier to generate

five shares.

 Page 1005

Note that this combination also acts as the XOR of the

outputs of the square scaler and the multiplier. By

Theorem 4, it is enough to re-mask only the output

shares of one of the functions to achieve uniformity.

We choose to re-mask the output of the square scaler

since it operates on less shares, hence requires less

random bits. The correction mask,i.e. the XOR of the

masks, is XORed to one of the output shares of the

multiplier to achieve correctness.

2) Adjusted implementation:

As mentioned in the earlier sections, the only

difference between the raw and the adjusted

implementation is that the adjusted implementation

requires at least three shares for all the blocks

including the linear operations in the S-box. For that

reason, the shared square scaler circuit is instantiated

with three shares. This Sbox also requires 44-bits of

randomness per iteration.

3) Nimble implementation:

As can be observed in Figs. 3 and 4, we use fresh

randomness at the end of the 1st phase to satisfy

uniformity during the combination of the square

scaler’s and the multiplier’s outputs, and after the

inverter to break the dependency between the inputs of

the multipliers in the 3rd phase. Since these re-

masking steps conserve the uniform it y property and

the security of each block is achieved only by the

correctness and non-completeness properties

(Observation 1), we can discard the uniformity

property and implement these nonlinear functions with

the smallest number of shares ns.t. n > d, i.e. n = d + 1,

where d is the degree of the unshared functions.

We use the sharing with three input and output shares

provided in Appendix D for each term of the multiplier

and the sharing with four input and output shares

provided in Appendix E for each term of the inverter.

With this new construction, it is enough to have three

input shares to the S-box since the multiplier block

requires only three shares. We need to reduce the

number of shares from five to four at the end of the 1st

phase for the inverter and from four to three at the end

of the 2nd phase for the following multipliers. This

construction requires only 32-bits of extra randomness

per S-box calculation, including increasing the number

of shares for the S-box input.

Performance:

Like any other DPA countermeasure, TI also allows

tradeoffs between area, randomness and the resistance

against DPA. In Table III, we provide the area costs

(GE) and randomness requirements (bits) for the

different S-box implementations. For all the

implementations, we performed two different

compilation methods. The first one is are gular

compilation with the compile command,that does not

optimize or merge modules, performed on the whole

implementation. The second method on the other hand

uses the compile ultra command for each module to let

the tool optimize each of them individually and

combine the result. It is very important that the

modules are not merged for area optimization in this

step, to not violate the non-completeness property.

 Page 1006

Table: Synthesis results for different versions of S-

box TI with compile / compile ultra commands.

In our implementations, the S-box occupies 30% to

40% of the total area. Compared to the implementation

in [16] our S-boxes with uniform blocks are 13%

smaller and our Sbox with non-uniform blocks is 33%

smaller. These results show a significant area and

randomness improvement for the nimble

implementation, indicating that using non uniform

shared functions can be advantageous if the uniformity

of the circuit is satisfied by re-masking.

V. RESULTS:

Adjusted simulation

Nibble implementation synthesis

 Page 1007

Nibble implementation simulation

Raw implementation simulation

Raw implementation synthesis

VI. APPLICATIONS:

 ATM machines

 Wireless communication

 Mobile Phones

 Image processing and Network security

VII. HARDWARE REQUIREMENT:

 FPGA Spartan 6

VIII. SOFTWARE REQUIREMENT:

 ModelSim 6.4c

 Xilinx 9.1/13.2

IX. FUTURE ENHANCEMENT:

The advanced encryption standard (AES) is a

specification for the encryption of electronic data. The

AES algorithm is a symmetric block cipher that can

encrypt (encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form

called cipher text; decrypting the cipher text converts

the data back into its original form, called plaintext.We

will implement the nimble implementation in AES

Encryption.

X. CONCLUSION:

 We discuss three different versions of TIs of AES. We

show that it is possible to achieve first-order DPA

resistance with non-uniform shared functions ifre-

masking is applied properly. In the case of AES, our

“non-uniform” nimble implementation requires less

randomness than our “uniform” raw implementation,

due to the decreased number of shares. However, for

other algorithms and other S-boxes, re-masking may

increase the amount of randomness required. This idea

can be used to trade-off between the randomness and

area requirements. Moreover, we empirically confirm

that increasing the number of shares has a significant

impact on the performance of higher-order attacks,

which provides another trade-off between area and

DPA resistance. Our most efficient implementation is

approximately 8k GE small and requires only 32 bits

of fresh randomness per S-box calculation, which is a

significant improvement over all previous works.

REFERENCES:

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential

power analysis,” in CRYPTO, ser. LNCS, vol. 1666.

Springer, 1999, pp. 388–397.

[2] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi,

“Towards sound approaches to counteract power-

analysis attacks,” in CRYPTO, ser. LNCS, vol. 1666.

Springer, 1999, pp. 398–412.

[3] L. Goubin and J. Patarin, “DES and differential

power analysis the “duplication” method,” in CHES,

ser. LNCS, vol. 1717. Springer, 1999, pp. 158–172.

 Page 1008

[4] T. S. Messerges, “Securing the AES finalists

against power analysis attacks,” in FSE, ser. LNCS,

vol. 1978. Springer, 2000, pp. 150–164.

[5] S. Mangard, T. Popp, and B. M. Gammel, “Side-

channel leakage of masked CMOS gates,” in CT-RSA,

ser. LNCS, vol. 3376. Springer, 2005, pp. 351–365.

[6] S. Mangard, N. Pramstaller, and E. Oswald,

“Successfully attacking masked AES hardware

implementations,” in CHES, ser. LNCS, vol. 3659.

Springer, 2005, pp. 157–171.

[7] A. Moradi, O. Mischke, and T. Eisenbarth,

“Correlation-enhanced power analysis collision

attack,” in CHES, ser. LNCS, vol. 6225. Springer,

2010, pp. 125–139.

[8] S. Nikova, C. Rechberger, and V. Rijmen,

“Threshold implementations against side-channel

attacks and glitches,” in ICICS, ser. LNCS, vol. 4307.

Springer, 2006, pp. 529–545.

[9] S. Nikova, V. Rijmen, and M. Schl¨affer, “Secure

hardware implementation of nonlinear functions in the

presence of glitches,” J. Cryptology, vol. 24, no. 2, pp.

292–321, 2011.

[10] E. Prouff and T. Roche, “Higher-order glitches

free implementation of the AES using secure multi-

party computation protocols,” in CHES, ser. LNCS,

vol. 6917. Springer, 2011, pp. 63–78.

