
 

  
                                                                                                                                                                                                                    Page 929 

 

Distributed and Concurrent Technique to Access Cloud Databases 
K.Siva Prasad 

PG Scholar, 

Dept of CSE, 

St.Mark Educational Institution 

Society Group of Institutions,  

AP, India. 

M.Venkatesh Naik 

Assistant Professor, 

Dept of CSE, 

St.Mark Educational Institution 

Society Group of Institutions,  

AP, India. 

Ms.M.Shiva lakshmi 

Assistant Professor, 

Dept of CSE, 

St.Mark Educational Institution 

Society Group of Institutions,  

AP, India. 

 

Abstract: 

Placing critical data in the hands of a cloud provider 

should come with the guarantee of security and 

availability for data at rest, in motion, and in use. 

Several alternatives exist for storage services, while 

data confidentiality solutions for the database as a 

service paradigm are still immature. We propose a 

novel architecture that integrates cloud database 

services with data confidentiality and the possibility of 

executing concurrent operations on encrypted data. 

This is the first solution supporting geographically 

distributed clients to connect directly to an encrypted 

cloud database, and to execute concurrent and 

independent operations including those modifying the 

database structure. The proposed architecture has the 

further advantage of eliminating intermediate proxies 

that limit the elasticity, availability, and scalability 

properties that are intrinsic in cloud-based solutions. 

The efficacy of the proposed architecture is evaluated 

through theoretical analyses and extensive 

experimental results based on a prototype 

implementation subject to the TPC-C standard 

benchmark for different numbers of clients and 

network latencies. 

 

1. INTRODUCTION: 

In a cloud context, where critical information is placed 

in infrastructures of untrusted third parties, ensuring 

data confidentiality is of paramount importance [1], 

[2]. This requirement imposes clear data management 

choices: original plain data must be accessible only by 

trusted parties that do not include cloud providers, 

intermediaries, Internet; in any untrusted context data 

must be encrypted.  

 

 

Satisfying these goals has different levels of 

complexity depending on the type of cloud service. 

There are several solutions ensuring confidentiality for 

the storage as a service paradigm (e.g., [3]–[5]), while 

guaranteeing confidentiality in the database as a 

service (DBaaS) paradigm [6] is still an open research 

area. In this context, we propose Secure DBaaS as the 

first solution that allows cloud tenants to take full 

advantage of DBaaS qualities, such as availability, 

reliability, elastic scalability, without exposing 

unencrypted data to the cloud provider. The 

architecture design was motivated by a threefold goal: 

to allow multiple, independent, and geographically 

distributed clients to execute concurrent operations on 

encrypted data, including SQL statements that modify 

the database structure; to preserve data confidentiality 

and consistency at the client and cloud level; to 

eliminate any intermediate server between the cloud 

client and the cloud provider. 

 

The possibility of combining availability, elasticity, 

and scalability of a typical cloud DBaaS with data 

confidentiality are demonstrated through a prototype 

of SecureDBaaS that supports the execution of 

concurrent and independent operations to the remote 

encrypted database from many geographically dis-

tributed clients as in any unencrypted DBaaS setup. To 

achieve these goals, SecureDBaaS integrates existing 

cryptographic schemes, isolation mechanisms, and 

novel strategies for management of encrypted 

metadata on the untrusted cloud database. This paper 

contains a theoretical discussion about solutions for 

data consistency issues due to concurrent and 

independent client accesses to encrypted data.  



 

  
                                                                                                                                                                                                                    Page 930 

 

In this context, we cannot apply fully homomorphic 

encryption schemes [7] because of their excessive 

computational complexity. The SecureDBaaS 

architecture is tailored to cloud platforms and does not 

introduce any intermediary proxy or broker server 

between the client and the cloud provider. Eliminating 

any trusted intermediate server allows SecureDBaaS to 

achieve the same availability, reliability and elasticity 

levels of a cloud DBaaS. Other proposals (e.g., [8]–

[11]) based on intermediate server(s) were considered 

impracticable for a cloud-based solution because any 

proxy represents a single point of failure and a system 

bottleneck that limits the main benefits (e.g., 

scalability, availability, elasticity) of a database service 

deployed on a cloud platform. Unlike SecureDBaaS, 

architectures relying on a trusted intermediate proxy 

do not support the most typical cloud scenario where 

geographically dispersed clients can concurrently issue 

read/write operations and data structure modifications 

to a cloud database.  

 

A large set of experiments based on real cloud 

platforms demonstrate that Secure DBaaS is 

immediately applicable to any DBMS because it 

requires no modification to the cloud database 

services. Other studies where the proposed architecture 

is subject to the TPC-C standard benchmark for 

different numbers of clients and network latencies 

show that the performance of concurrent read and 

write operations not modifying the Secure DBaaS 

database structure is comparable to that of unencrypted 

cloud database. Workloads including modifications to 

the database structure are also supported by Secure 

DBaaS, but at the price of overheads that seem 

acceptable to achieve the desired level of data 

confidentiality. The motivation of these results is that 

network latencies, which are typical of cloud 

scenarios, tend to mask the performance costs of data 

encryption on response time. The overall conclusions 

of this paper are important because for the first time 

they demonstrate the applicability of encryption to 

cloud database services in terms of feasibility and 

performance.  

The remaining part of this paper is structured as 

following. Section 2 compares our proposal to existing 

solutions related to confidentiality in cloud database 

services. Section 3 and Section 4 describe the overall 

architecture and how it supports its main operations, 

respectively. Section 5 reports some experimental 

evaluation achieved through the implemented 

prototype. Section 6 outlines the main results. Space 

limitation requires us to postpone the assumed security 

model in Appendix A, to describe our solutions to 

concurrency and data consistency problems in 

Appendix B, to detail the prototype architecture in 

Appendix C. 

 

2 RELATED WORK: 

SecureDBaaS provides several original features, that 

differentiate it from previous work in the field of 

security for remote database services. 

 • It guarantees data confidentiality by allowing a cloud 

database server to execute concurrent SQL operations 

(not only read/write, but also modifications to the 

database structure) over encrypted data.  

• It provides the same availability, elasticity, and 

scalability of the original cloud DBaaS because it does 

not require any intermediate server. Response times 

are affected by cryptographic overheads that for most 

SQL operations are masked by network latencies 

. • Multiple clients, possibly geographically 

distributed, can access concurrently and independently 

to a cloud database service.  

• It does not require a trusted broker or a trusted proxy 

because tenant data and metadata stored by the cloud 

database are always encrypted. 

 • It is compatible with the most popular relational 

database servers, and it is applicable to different 

DBMS implementations because all adopted solutions 

are database agnostic.  

 

Cryptographic file systems and secure storage 

solutions represent the earliest works in this field. We 

do not detail the several papers and products (e.g., 

Sporc [3], Sundr [4], Depot [5]) because they do not 

support computations on encrypted data.  



 

  
                                                                                                                                                                                                                    Page 931 

 

Different approaches guarantee some confidentiality 

(e.g., [12], [13]) by distributing data among different 

providers and by taking advantage of secret sharing 

[14]. In such a way, they prevent one cloud provider to 

read its portion of data, but information can be 

reconstructed by colluding cloud providers. A step 

forward is proposed in [15], that makes it possible to 

execute range queries on data and to be robust against 

collusive providers. SecureDBaaS differs from these 

solutions as it does not require the use of multiple 

cloud providers, and makes use of SQL-aware 

encryption algorithms to support the execution of most 

common SQL operations on encrypted data. 

SecureDBaaS relates more closely to works using 

encryption to protect data managed by untrusted 

databases. In such case, a main issue to address is that 

cryptographic techniques cannot be na¨ıvely applied to 

standard DBaaS because DBMS can only execute SQL 

operations over plaintext data. Some DBMS engines 

offer the possibility of encrypting data at the 

filesystem level through the so called Transparent Data 

Encryption feature [16], [17].  

 

This feature makes it possible to build a trusted DBMS 

over untrusted storage. However, the DBMS is trusted 

and decrypts data before their use. Hence, this 

approach is not applicable to the DBaaS context 

considered by SecureDBaas, because we assume that 

the cloud provider is untrusted. Other solutions, such 

as [18], allow the execution of operations over 

encrypted data. These approaches preserve data 

confidentiality in scenarios where the DBMS is not 

trusted, however they require a modi- fied DBMS 

engine and are not compatible with DBMS software 

(both commercial and open source) used by cloud 

providers. On the other hand, SecureDBaaS is 

compatible with standard DBMS engines, and allows 

tenants to build secure cloud databases by leveraging 

cloud DBaaS services already available. For this 

reason, SecureDBaaS is more related to [9] and [8] 

that preserve data confidentiality in untrusted DBMSs 

through encryption techniques, allow the execution of 

SQL operations over encrypted data, and are 

compatible with common DBMS engines.  

However, the architecture of these solutions is based 

on an intermediate and trusted proxy that mediates any 

interaction between each client and the untrusted 

DBMS server. The approach proposed in [9] by the 

same authors of the DBaaS model [6], works by 

encrypting blocks of data instead of each data item. 

Whenever a data item that belongs to a block is 

required, the trusted proxy needs to retrieve the whole 

block, to decrypt it, and to filter out unnecessary data 

that belong to the same block. As a consequence, this 

design choice requires heavy modifications of the 

original SQL operations produced by each client, thus 

causing significant overheads on both the DBMS 

server and the trusted proxy. Other works [10], [11] 

introduce optimization and generalization that extend 

the subset of SQL operators supported by [9], but they 

share the same proxy-based architecture and its 

intrinsic issues. On the other hand, SecureDBaaS 

allows the execution of operations over encrypted data 

through SQL-aware encryption algorithms. This 

technique, initially proposed in CryptDB [8], makes it 

possible to execute operations over encrypted data that 

are similar to operations over plaintext data. In many 

cases, the query plan executed by the DBMS for 

encrypted and plaintext data is the same. 

 

3 ARCHITECTURE DESIGN: 

SecureDBaaS is designed to allow multiple and 

independent clients to connect directly to the untrusted 

cloud DBaaS without any intermediate server. Figure 1 

describes the overall architecture. We assume that a 

tenant organization acquires a cloud database service 

from an untrusted DBaaS provider. The tenant then 

deploys one or more machines (Client 1 through N) 

and install a SecureDBaaS client on each of them. This 

client allows a user to connect to the cloud DBaaS to 

administer it, to read and write data, and even to create 

and modify the database tables after creation. We 

assume the same security model that is commonly 

adopted by the literature in this field (e.g., [8], [9]), 

where: tenant users are trusted, the network is 

untrusted, and the cloud provider is honest-but-

curious, that is, cloud service operations are executed 

correctly, but tenant information confidentiality is at 



 

  
                                                                                                                                                                                                                    Page 932 

 

risk. For these reasons, tenant data, data structures, and 

metadata must be encrypted before exiting from the 

client. A thorough presentation of the security model 

adopted in this paper is in Appendix A. The 

information managed by SecureDBaaS includes 

plaintext data, encrypted data, metadata, and encrypted 

metadata. Plaintext data consist of information that a 

tenant wants to store and process remotely in the cloud 

DBaaS. To prevent an untrusted cloud provider from 

violating confidentiality of tenant data stored in plain 

form, SecureDBaaS adopts multiple cryptographic 

techniques to transform plaintext data into encrypted 

tenant data, and encrypted tenant data structures 

because even the names of the tables and of their 

columns must be encrypted. SecureDBaaS clients 

produce also a set of metadata consisting of 

information required to encrypt and decrypt data as 

well as other administration information. Even 

metadata are encrypted and stored in the cloud DBaaS. 

 
SecureDBaaS moves away from existing architectures 

that store just tenant data in the cloud database, and 

save metadata in the client machine [9] or split 

metadata between the cloud database and a trusted 

proxy [8]. When considering scenarios where multiple 

clients can access the same database concurrently, 

these previous solutions are quite inefficient. For 

example, saving metadata on the clients would require 

onerous mechanisms for metadata synchronization, 

and the practical impossibility of allowing multiple 

clients to access cloud database services 

independently. Solutions based on a trusted proxy are 

more feasible, but they introduce a system bottleneck 

that reduces availability, elasticity and scalability of 

cloud database services. 

 

3.1 Data management: 

We assume that tenant data are saved in a relational 

database. We have to preserve the confidentiality of 

the stored data and even of the database structure 

because table and column names may yield 

information about saved data. We distinguish the 

strategies for encrypting the database structures and 

the tenant data. Encrypted tenant data are stored 

through secure tables into the cloud database. To allow 

transparent execution of SQL statements, each 

plaintext table is transformed into a secure table 

because the cloud database is untrusted. The name of a 

secure table is generated by encrypting the name of the 

corresponding plaintext table. Table names are 

encrypted by means of the same encryption algorithm 

and an encryption key that is known to all the 

SecureDBaaS clients. Hence, the encrypted name can 

be computed from the plaintext name. On the other 

hand, column names of secure tables are randomly 

generated by SecureDBaaS, hence even if different 

plaintext tables have columns with the same name, the 

names of the columns of the corresponding secure 

tables are different.  

 

This design choice improves confidentiality by 

preventing an adversarial cloud database from 

guessing relations among different secure tables 

through the identification of columns having the same 

encrypted name. SecureDBaaS allows tenants to 

leverage the computational power of untrusted cloud 

databases by making it possible to execute SQL 

statements remotely and over encrypted tenant data, 

although remote processing of encrypted data is 

possible to the extent allowed by the encryption policy. 

To this purpose, SecureDBaaS extends the concept of 

data type, that is associated to each column of a 

traditional database by introducing the secure type. By 

choosing a secure type for each column of a secure 

table, a tenant can define fine-grained encryption 

policies, thus reaching the desired trade-off between 

data confidentiality and remote processing ability. A 

secure type is composed by three fields: data type, 

encryption type, and field confidentiality.  



 

  
                                                                                                                                                                                                                    Page 933 

 

The combination of the encryption type and of the 

field confidentiality parameters defines the encryption 

policy of the associated column. 

 

3.2 Metadata management: 

Metadata generated by SecureDBaaS contain all the 

information that is necessary to manage SQL 

statements over the encrypted database in a way 

transparent to the user. Metadata management 

strategies represent an original idea because 

SecureDBaaS is the first architecture storing all 

metadata in the untrusted cloud database together with 

the encrypted tenant data. SecureDBaaS uses two 

types of metadata. 

 

• Database metadata are related to the whole database. 

There is only one instance of this metadata type for 

each database. 

• Table metadata are associated with one secure table. 

Each table metadata contains all information that is 

necessary to encrypt and decrypt data of the associated 

secure table. 

 

This design choice makes it possible to identify which 

metadata type is required to execute any SQL 

statement so that a SecureDBaaS client needs to fetch 

only the metadata related to the secure table/s that 

is/are involved in the SQL statement. Retrieval and 

management of database metadata are necessary only 

if the SQL statement involves columns having the field 

confidentiality policy equal to database. This design 

choice minimizes the amount of metadata that each 

SecureDBaaS client has to fetch from the untrusted 

cloud database, thus reducing bandwidth consumption 

and processing time. Moreover, it allows multiple 

clients to access independently metadata related to 

different secure tables, as we discuss in Section 4.3 

and Appendix B. Database metadata contain the 

encryption keys that are used for the secure types 

having the field confi- dentiality set to database. A 

different encryption key is associated with all the 

possible combinations of data type and encryption 

type. Hence, the database metadata represent a keyring 

and do not contain any information about tenant data. 

4 OPERATIONS: 

In this section we outline the setup setting operations 

carried out by a database administrator (DBA), and we 

describe the execution of SQL operations on encrypted 

data in two scenarios: a na¨ıve context characterized 

by a single client, and realistic contexts where the 

database services are accessed by concurrent clients. 

 

4.1 Setup phase: 

We describe how to initialize a SecureDBaaS 

architecture from a cloud database service acquired by 

a tenant from a cloud provider. We assume that the 

DBA creates the metadata storage table that at the 

beginning contains just the database metadata, and not 

the table metadata. The DBA populates the database 

metadata through the SecureDBaaS client by using 

randomly generated encryption keys for any 

combinations of data types and encryption types, and 

stores them in the metadata storage table after 

encryption through the master key. Then, the DBA 

distributes the master key to the legitimate users. User 

access control policies are administrated by the DBA 

through some standard data control language as in any 

unencrypted database. 

 

In the following steps, the DBA creates the tables of 

the encrypted database. He must consider the three 

field confidentiality attributes (COL, MCOL, DBC) 

introduced at the end of the Section 3. Let us describe 

this phase by referring to a simple but representative 

example shown in Figure 4, where we have three 

secure tables named ST1, ST2 and ST3. Each table STi 

(i = 1, 2, 3) includes an encrypted table Ti that contains 

encrypted tenant data, and a table metadata Mi. 

(Although in the reality the names of the columns of 

the secure tables are randomly generated, for the sake 

of simplicity, this figure refers to them through C1-

CN.) 



 

  
                                                                                                                                                                                                                    Page 934 

 

 
Fig. 4. Management of the encryption keys 

according to the field confidentiality parameter. 

 

4.2 Sequential SQL operations: 

We describe the SQL operations in SecureDBaaS by 

considering an initial simple scenario in which we 

assume that the cloud database is accessed by one 

client. Our goal here is to highlight the main 

processing steps, hence we do not take into account 

performance optimizations and concurrency issues that 

will be discussed in Section 4.3 and Appendix B. The 

first connection of the client with the cloud DBaaS is 

for authentication purposes: SecureDBaaS relies on 

standard authentication and authorization mechanisms 

provided by the original DBMS server. After the 

authentication, a user interacts with the cloud database 

through the SecureDBaaS client. SecureDBaaS 

analyzes the original operation to identify which tables 

are involved and to retrieve their metadata from the 

cloud database. The metadata are decrypted through 

the master key and their information is used to 

translate the original plain SQL into a query that 

operates on the encrypted database. 

 

5  CONCLUSIONS: 

We propose an innovative architecture that guarantees 

confidentiality of data stored in public cloud databases. 

Unlike state of the art approaches, our solution does 

not rely on an intermediate proxy that we consider a 

single point of failure and a bottleneck limiting 

availability and scalability of typical cloud database 

services.  

A large part of the research includes solutions to 

support concurrent SQL operations (including 

statements modifying the database structure) on 

encrypted data issued by heterogenous and possibly 

geographically dispersed clients. The proposed 

architecture does not require modifications to the cloud 

database, and it is immediately applicable to existing 

cloud DBaaS, such as the experimented PostgreSQL 

Plus Cloud Database [23], Windows Azure [24] and 

Xeround [22]. There are no theoretical and practical 

limits to extend our solution to other platforms and to 

include new encryption algorithms. It is worth to 

observe that experimental results based on the TPC-C 

standard benchmark show that the performance impact 

of data encryption on response time becomes 

negligible because it is masked by network latencies 

that are typical of cloud scenarios. In particular, 

concurrent read and write operations that do not 

modify the structure of the encrypted database cause 

negligible overhead. Dynamic scenarios characterized 

by (possibly) concurrent modifications of the database 

structure are supported, but at the price of high 

computational costs. These performance results open 

the space to future improvements that we are 

investigating. 

 

REFERENCES: 

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. 

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, 

I. Stoica et al., “A view of cloud computing,” 

Communications of the ACM, vol. 53, no. 4, 2010. 

 

[2] W. Jansen and T. Grance, “Guidelines on security 

and privacy in public cloud computing,” Tech. Rep. 

NIST Special Publication 800-144, 2011. 

 

[3] A. J. Feldman, W. P. Zeller, M. J. Freedman, and 

E. W. Felten, “Sporc: group collaboration using 

untrusted cloud resources,” in Proc. of the 9th 

USENIX conference on Operating Systems Design 

and Implementation, October 2010. 

 

[4] J. Li, M. Krohn, D. Mazieres, and D. Shasha, 

“Secure untrusted ` data repository (sundr),” in Proc. 



 

  
                                                                                                                                                                                                                    Page 935 

 

of the 6th USENIX conference on Opearting Systems 

Design and Implementation, October 2004. 

 

[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, 

M. Dahlin, and M. Walfish, “Depot: Cloud storage 

with minimal trust,” ACM Transactions on Computer 

Systems, vol. 29, no. 4, 2011. 

 

[6] H. Hacigum¨ us¨ ,̧ B. Iyer, and S. Mehrotra, 

“Providing database as a service,” in Proc. of the 18th 

IEEE International Conference on Data Engineering, 

February 2002. 


