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ABSTRACT 

In this paper, we address the problem of 

automatically detecting and tracking a variable 

number of persons in complex scenes using a 

monocular, potentially moving, uncalibrated camera. 

We propose a novel approach for multi-person 

tracking-by detection in a particle filtering 

framework. In addition to final high-confidence 

detections, our algorithm uses the continuous 

confidence of pedestrian detectors and online trained, 

instance-specific classifiers as a graded observation 

model. Thus, generic object category knowledge is 

complemented by instance-specific information. The 

main contribution of this paper is to explore how 

these unreliable information sources can be used for 

robust multi-person tracking. 

 

The algorithm detects and tracks a large number of 

dynamically moving persons in complex scenes with 

occlusions, does not rely on background modeling, 

requires no camera or ground plane calibration, and 

only makes use of information from the past. Hence, 

it imposes very few restrictions and is suitable for 

online applications. Our experiments show that the 

method yields good tracking performance in a large 

variety of highly dynamic scenarios, such as typical 

surveillance videos, webcam footage, or sports 

sequences. We demonstrate that our algorithm 

outperforms other methods that rely on additional 

information. Furthermore, we analyze the influence 

of different algorithm components on the robustness 

 

INTRODUCTION 

New video cameras are installed daily all around the 

world, as webcams, for surveillance, or for a multitude 

of other purposes. As this happens, it becomes 

increasingly important to develop methods that process 

such data streams automatically and in real-time, 

reducing the manual effort that is still required for 

video analysis. Of particular interest for many 

applications is the behavior of persons, e.g., for traffic 

safety, surveillance, or sports analysis. As most tasks 

at semantically higher levels are based on trajectory 

information, it is crucial to robustly detect and track 

people in dynamic and complex real-world scenes. 

However, most existing multiperson tracking methods 

are still limited to special application scenarios. They 

require either multi-camera input, scenespecific 

knowledge, a static background, or depth information, 

or are not suitable for online processing. In this paper, 

we address the problem of automatically detecting and 

tracking a variable number of targets in complex 

scenes from a single, potentially moving, uncalibrated 

camera, using a causal (or online) approach. This 

problem is very challenging, because there are many 

sources of uncertainty for the object locations such as 

measurement noise, clutter, changing background, and 

significant occlusions final non-maximum suppression 
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stage. This said, it is not guaranteed that the shape of 

the confidence volume in-between those locations will 

support tracking. In particular, a majority of the 

densities’ local maxima correspond to false positives 

that may deteriorate the tracking results, especially 

during occlusions and when several interacting targets 

are present. The main contribution of our work is the 

exploration how this unreliable information source can 

be used for robust multi-person tracking. Our 

algorithm achieves this robustness through a careful 

interplay between object detection, classifi- cation, and 

target tracking components. Typically, a bottom-up 

process deals with target representation and 

localization, trying to cope with changes in the 

appearance of the tracked targets, and a top-down 

process performs data association and filtering to deal 

with object dynamics. Correspondingly, our approach 

is based on a combination of a general, class-specific 

pedestrian detector to localize people and a particle 

filter to predict the target locations, incorporating a 

motion model. To complement the generic object 

category knowledge from the detector, our algorithm 

trains person-specific classifiers during run-time to 

distinguish between the tracking targets. This paper 

makes the following contributions: 1) We combine a 

generic class-specific object detector and particle 

filtering for robust multi-person tracking suitable for 

online applications. following section, Section 3 

describes the algorithm and several important design 

choices. Section 4 presents a quantitative evaluation on 

a large variety of datasets and a comparison to other 

algorithms. In Section 5, the robustness of the 

observation model is discussed in detail. Section 6 

concludes the paper with a summary and outlook 

 

Particle Filtering 

Particle filters were introduced to the vision 

community to estimate the multi-modal distribution of 

a target’s state space [19]. Other researchers extended 

the framework for multiple targets by either 

representing all targets jointly in a particle filter [43] or 

by extending the state space of each target to include 

components of other targets [41]. In the first approach, 

a fixed number of particles represent a varying number 

of targets. Hence, new targets have to “steal” particles 

from existing trackers, reducing the accuracy of the 

approximation. In the second approach, the state space 

becomes increasingly large, which may require a very 

large number of particles for a good representation. 

Thus, the computational complexity increases 

exponentially with the number of targets. To overcome 

these problems, most methods employ one particle 

filter per target using a small state space and deal with 

interacting targets separately [21], [24], [38]. 

Tracking-by-Detection. While many tracking methods 

rely on background subtraction from one or several 

static cameras [3], [20], [24], [42], [49], recent 

progress in object detection has stimulated the interest 

in combining tracking and detection. 

 

DETECTOR CONFIDENCE PARTICLE FILTER 

For many tracking applications, only past observations 

can be used at a certain time step to estimate the 

location of objects. Within this context, Bayesian 

Sequential Estimation is a popular approach, which 

recursively estimates the time-evolving posterior 

distribution of the target locations conditioned on all 

observations seen so far. This filtering distribution can 

be approximated by Sequential Monte Carlo 

Estimation (or Particle Filtering), which represents the 

distribution with a set of weighted particles and 

consists of a dynamic model for prediction and an 

observation model to evaluate the likelihood of a 

predicted state [10].  

 
The output of a person detector (right: ISM [25], 

left: HOG [9]) with false positives and missing 

detections. 

 

Algorithm Overview Our algorithm implements a first-

order Markov model, considering only information 
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from the current and the last time step, and integrates 

both class-specific and target-specific information in 

the observation model. A separate particle filter 

(tracker) is automatically initialized for each person 

detected with high confidence. To achieve the 

necessary robustness, the information from an object 

detector is integrated in two ways. First, the algorithm 

carefully assesses the high-confidence detections in 

each frame and selects maximally one to track one 

particular target. 

 

Detector Confidence. 

At the core of our approach lies the confidence density 

built up by person detectors in some form. This is the 

case for both sliding-window based detectors such as 

HOG [9] and for feature-based detectors such as ISM 

[25]. In the sliding-window case, this density is 

implicitly sampled in a discrete 3D grid (location and 

scale) by evaluating the different detection windows 

with a classifier. In the ISM case, it is explicitly 

created in a bottom-up fashion through probabilistic 

votes cast by matching, local features. In order to 

arrive at individual detections, both types of 

approaches search for local maxima in the density 

volume and then apply some  

 
Detector output (top: ISM [25], bottom: HOG [9]), 

showing high-confidence detections (left, green 

rectangles) and the detector confidence (right, 

shaded overlay). The confi- dence density often 

contains useful information at the location of 

missing detections, which we exploit for tracking. 

 

Particle Filtering Our tracking algorithm is based on 

estimating the distribution of each target state by a 

particle filter. The state x = {x, y, u, v} consists of the 

2D image position (x, y) and the velocity components 

(u, v). We employ the bootstrap filter, where the state 

transition density (or prior kernel) is used as 

importance distribution to approximate the probability 

density function [16]. The importance weight w i t for 

each particle i at time step t is described by: 

 
 

Since re-sampling is carried out in each time step using 

a fixed number of N = 100 particles, w i t−1 = 1 N is a 

constant and can be ignored. Thus, Eq. (1) reduces to 

the likelihood of a new observation ot given the 

propagated particles x i t , which we estimate as 

described in Sec. 3.4 (Eq. (6)). 

 

Size And Position. 

Instead of including the size of the target in the state 

space of the particles, the target size is set to the 

average of the last four associated detections. In our 

experiments, this yielded better results, possibly 

because the number of particles necessary to estimate a 

larger state space is growing exponentially. Although 

represented by a (possibly multi-modal) distribution, a 

single position of the tracking target at the current time 

step is sometimes required (e.g., for visualization or 

evaluation). 

 

Motion Model. 

To propagate the particles, we use a constant velocity 

motion model 

 
The process noise ε(x,y) , ε(u,v) for each state variable 

is independently drawn from zero-mean normal 

distributions. The initial variances σ 2 (x,y) and σ 2 

(u,v) for position and velocity noise are set 

proportionally to the size of the tracking target 
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The initialization and termination region for a typical 

surveillance scenario (left). The initial particles are 

drawn from a normal distribution centered at the 

detection (middle). The weight of each particle is 

determined by evaluating the respective image patch 

(right). During tracking, they decrease inversely 

proportional to the number of successfully tracked 

frames (down to a lower limit). Hence, the longer a 

target is tracked successfully, the less the particles are 

spread. 

 

Initialization and Termination. 

Object detection yields fully automatic initialization. 

The algorithm initializes a new tracker for an object 

that has subsequent detections with overlapping 

bounding boxes, which are neither occluded nor 

associated to an already existing tracker. In order to 

avoid persistent false positives from similar looking 

background structures (such as windows, doors, or 

trees), we only initialize trackers from detections that 

appear in a zone along the image borders for sequences 

where this is reasonable, such as for typical 

surveillance settings.  

 
 

Data Association In order to decide which detection 

should guide which tracker, we solve a data 

association problem, assigning at most one detection to 

at most one target. The optimal single-frame 

assignment can be obtained by the Hungarian 

algorithm [22]. In our experiments, we however found 

that a greedy algorithm achieves similar results at 

lower computational cost. Greedy Data Association. 

The matching algorithm works as follows (see 

Algorithm 1): First, a matching score matrix S for each 

pair (tr, d) of tracker tr and detection d is computed as 

described below. Then, the pair (tr∗ , d∗ ) with 

maximum score is iteratively selected, and the rows 

and columns belonging to tracker tr and detection d in 

S are deleted.  

 
where pN (d−p) ∼ N (posd −posp; 0, σ2 ) denotes the 

normal distribution evaluated for the distance between 

the position of detection d and a particle p, and g(tr, d) 

is a gating function described next. The last term of 

(Eq. (4)) measures the density of the particle 

distribution, rewarding associations where the particles 

are densely distributed around the detection. Gating 

Function. Not only the distance of a detection to the 

tracker is important, but also its location with respect 

to the motion direction. Therefore, a gating function 

g(tr, d) additionally assesses each detection. It consists 

of the product of two factors: 

 

 
The gating function depends on the velocity of the 

target, resulting in different 2D cone angles or a 

radial decay 

 

 
The classifier response (heat map) visualized for one 

tracking target (white). As the classifier is adapted 

continuously, it becomes more discriminative (right: 

20 frames later) 

 



 
 

 Page 478 
 

Observation Model To compute the weight wtr,p for a 

particle p of the tracker tr, our algorithm estimates the 

likelihood of a particle. For this purpose, we combine 

different sources of information, namely the associated 

detection d ∗ , the intermediate output of the detection 

algorithm, and the output of the classifier ctr 

 
 

EXPERIMENTS 

Datasets There is no generally accepted benchmark 

available for multiperson tracking. Therefore, most 

related publications have carried out experiments on 

their own sequences, which we have tried to combine. 

Thus, we evaluate on a large variety of challenging 

sequences: ETHZ Central [26], TUD Campus and 

TUD Crossing [1], i-Lids AB [18], [45], UBC Hockey 

[7], [33], PETS’09 S2.L1–S2.L3 [12], ETHZ Standing 

[14], and our own Soccer dataset.2 These sequences 

are taken from both static and moving cameras, and 

they vary with respect to viewpoint, type of 

movement, and amount of occlusion. While some 

datasets show rather classical surveillance and security 

scenarios from an elevated viewpoint, others are 

captured at eye level and are typical for robot / car 

navigation and traffic safety applications, while some 

are sports sequences with abrupt motion changes of the 

players and moving cameras.  

 

Qualitative Analysis ETHZ Central.  

The output of the ISM detector is very noisy for the 

ETHZ Central dataset (Fig. 8, top). The cars and road 

markings produce many false positives, and 

pedestrians are often not detected. Only a few 

detections consistently match the targets throughout 

the sequence (e.g., the blue tracker in Fig. 8, bottom, 

gets assigned a detection only every 30 frames). Thus, 

the trackers often rely on the detector and classifier 

confidence. Furthermore, there are many occlusions, 

e.g., when people walk in parallel. Hence, the correct 

association of detections to trackers is a key factor of 

our algorithm. TUD Campus. The ISM detections are 

more accurate for the TUD Campus dataset. On 

average, a tracker is associated for the Soccer dataset) 

 
Classifier evaluation on the TUD Crossing sequence 

with 50 RGI features and 3 bins per color channel. 

We plot the difference between the classifier score 

on the correct target and the highest score on all 

other targets. (b) Evaluation of performance (left 

scale) and computation time (bars, right scale) for 

different color features. (c) Evaluation of the 

number of features per classifier. (d) Evaluation of 

feature combinations for some datasets. 

 

 
Result for the ETHZ Central dataset (top: final 

ISM detections (green) and detector confidence 

(heat map)), tracking result (bottom) 

 

Quantitative Analysis We use the CLEAR MOT 

metrics [4] to evaluate the tracking performance. This 

returns a precision score MOTP (intersection over 

union of bounding boxes) and an accuracy score 

MOTA (composed of false negative rate, false positive 

rate, and number of identity switches).  
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Visualization of detector output (top), classifier 

output for the yellow target (middle), and particle 

filter output (bottom; dashed bounding boxes are 

detections associated to the tracker with the 

respective color) 

 

CONCLUSION 

We have presented a novel method for online multi-

object tracking-by-detection, exploring the capabilities 

of an approach that relies only on 2D image 

information from one single, uncalibrated camera, 

without any additional scene knowledge. The main 

challenge for tracking algorithms are unreliable 

measurements, i.e., in the case of tracking-by-

detection, false positives and missing detections. The 

contribution of our work is thus to explore how this 

unreliable information source can be used for robust 

multi-person tracking. The key factors of our 

algorithm are: (1) careful selection and association of 

final detections using target-specific classifiers trained 

during run-time, (2) utilization of the continuous 

output of detector and classifier, and (3) robust 

combination of unreliable information for multi-person 

tracking using particle filtering. While the data 

association algorithm handles false positive detections, 

different observation model terms help overcome 

problems with missing detections. They are 

complementary, as they are trained on different 

features and training data. 

 

While instance-specific information is beneficial to 

resolve ambiguous situations between different targets, 

class-specific knowledge helps differentiate between 

object and background. For this purpose, the detector 

confidence term guides the particles of the filter 

primarily when no discrete highconfidence detection is 

issued by the detector. Although this is beneficial for 

situations with missing detections, it can also misguide 

trackers to image areas with high confidence on 

background structures. On the other hand, the classifier 

term helps localize particles more accurately, adapting 

online to the appearance of the targets. However, the 

classifier requires some amount of training data to 

work reliably and hence does neither help in situations 

shortly after initialization nor if the appearance of a 

target changes heavily during occlusions. Our 

experiments have shown that the method achieves a 

good performance on a large variety of application 

scenarios outperforming other state-of-the-art 

algorithms, some of which rely on scene-specific 

information, multiple calibrated cameras, or global 

optimization. To increase the robustness during partial 

occlusions, a part-based detector would be beneficial. 

Also, the detector could be trained for specific 

applications and the motion model could be 

specialized, e.g., for applications in sports television 

broadcasting. Furthermore, if applied to a specific 

scenario, scene-specific information could be used to 

help resolve ambiguities, restricting motion to a 

ground plane or providing information about obstacles. 

Finally, the method could be enhanced by taking 

advantage of a more sophisticated estimation 

framework than particle filtering. 
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