

 Page 918

Design of Index Based Round Robin Arbiter for NOC

Routers Using Verilog HDL
Mohammad Thousif

M.Tech in VLSI and Embedded Systems,

Department of ECE,

Siddhartha Institute of Engineering and Technology.

Dr.D.Subba Rao, M.Tech, Ph.D

HOD,

Department of ECE,

Siddhartha Institute of Engineering and Technology.

Abstract:

A UART is a Universal Asynchronous Receiver

Transmitter, which is used to communicate between

two devices. Most computers and microcontroller

includes one or more serial I/O devices, such as

keyboard or serial printer. Serial transmission is

commonly used with modems and for non-networked

communication between computers, terminals and

other devices. The Universal Asynchronous

Receiver/Transmitter (UART) takes bytes of data and

transmits the individual bits in a sequential fashion. At

the destination, a second UART re-assembles the bits

into complete bytes. During the actual industrial

production, sometimes we do not need the full

functionality of UART, but simply integrate its core

part. UART includes three kernel modules which are

the baud rate generator, receiver and transmitter. The

UART designed with Verilog HDL language The

synthesis and simulation are performed on Xilinx ISE

14.4.

Keywords:

UART; asynchronous serial communication; Verilog

HDL.

I. INTRODUCTION:

Serial communication is a popular means of

transmitting data between a computer and peripheral

devices such as a programmable instruments or even

another computer. Asynchronous serial

communication is usually implemented by Universal

Asynchronous Receiver Transmitter (UART) [1].

UART allows full-duplex communication in serial

link, thus has been widely used in the data

communications and control system.

In actual applications, usually only a few key features

of UART are needed. Specific interface chip will

cause waste of resources and increased cost.

Particularly in the field of electronic design, SOC

technology is recently becoming increasingly mature.

This situation results in the requirement of realizing

the whole system function in a single or a very few

chips. Basic UART communication needs only two

signal lines (RXD, TXD) to complete full-duplex data

communication. TXD is the transmit side, the output

of UART; RXD is the receiver, the input of UART.

UART’s basic features are: There are two states in the

signal line, using logic 1 (high) and logic 0 (low) to

distinguish respectively. For example, when the

transmitter is idle, the data line is in the high logic

state. Otherwise when a word is given to the UART

for asynchronous transmissions, a bit called the "Start

Bit" is added to the beginning of each word that is to

be transmitted.

The Start Bit is used to alert the receiver that a word

of data is about to be sent, and to force the clock in the

receiver into synchronization with the clock in the

transmitter. These two clocks must be accurate enough

to not have the frequency drift by more than 10%

during the transmission of the remaining bits in the

word [4]. After the Start Bit, the individual data bits of

the word are sent, with the Least Significant Bit (LSB)

being sent first. Each bit in the transmission is

transmitted for exactly the same amount of time as all

of the other bits, and the receiver “looks” at the wire at

approximately halfway through the period assigned to

each bit to determine if the bit is a 1 or a 0. For

example, if it takes two seconds to send each bit, the

receiver will examine the signal to determine if it is a

 Page 919

1 or a 0 after one second has passed, then it will wait

two seconds and then examine the value of the next

bit, and so on. When the entire data word has been

sent, the transmitter may add a Parity Bit that the

transmitter generates. The Parity Bit may be used by

the receiver to perform simple error checking. Then at

least one Stop Bit is sent by the transmitter. When the

receiver has received all of the bits in the data word, it

may check for the Parity Bits (both sender and

receiver must agree on whether a Parity Bit is to be

used), and then the receiver looks for a Stop Bit. If the

Stop Bit does not appear when it is supposed to, the

UART considers the entire word to be garbled and

will report a Framing Error to the host processor when

the data word is read. The usual cause of a Framing

Error is that the sender and receiver clocks were not

running at the same speed, or that the signal was

interrupted. Regardless of whether the data was

received correctly or not, the UART automatically

discards the Start, Parity and Stop bits. If the sender

and receiver are configured identically, these bits are

not passed to the host. If another word is ready for

transmission, the Start Bit for the new word can be

sent as soon as the Stop Bit for the previous word has

been sent. Because asynchronous data are “self-

synchronizing”, if there are no data to transmit, the

transmission line can be idle. The UART frame format

is shown in Fig. 1.

Figure.1. UART Frame Format

II. THE UART MODULE:

In this paper, the top to bottom (Top to Down) design

method is used. The UART serial communication

module is divided into three sub-modules: the baud

rate generator, receiver module and transmitter

module, shown in Fig. 2.

Figure.2. UART Module

Therefore, the implementation of the UART

communication module is actually the realization of

the three sub-modules. The baud rate generator is used

to produce a local clock signal which is much higher

than the baud rate to control the UART receive and

transmit; The UART receiver module is used to

receive the serial signals at RXD, and convert them

into parallel data; The UART transmit module

converts the bytes into serial bits according to the

basic frame format and transmits those bits through

TXD.

A. Baud Rate Generator:

 Baud Rate Generator is actually a frequency divider.

The baud rate frequency factor can be calculated

according to a given system clock frequency

(oscillator clock) and the requested baud rate. The

calculated baud rate frequency factor is used as the

divider factor. In this design, the frequency clock

produced by the baud rate generator is not the baud

rate clock, but 16 times the baud rate clock. The

purpose is to precisely sample the asynchronous serial

data at the receiver. Assume that the system clock is

32MHz, baud rate is 9600bps, and then the output

clock frequency of baud rate generator should be 16 *

9600Hz. Therefore the frequency coefficient (M) of

the baud rate generator is:

M =32MHz/16*9600Hz=208

When the UART receives serial data, it is very critical

to determine where to sample the data information.

The ideal time for sampling is at the middle point of

each serial data bit. In this design, the receive clock

frequency is designed to be 16 times the baud rate,

therefore, each data width received by UART is 16

times the receive clock cycle.

 Page 920

III.RECEIVER MODULE:

During the UART reception, the serial data and the

receiving clock are asynchronous, so it is very

important to correctly determine the start bit of a frame

data. The receiver module receives data from RXD

pin. RXD jumps into logic 0 from logic 1 can be

regarded as the beginning of a data frame. When the

UART receiver module is reset, it has been waiting the

RXD level to jump. The start bit is identified by

detecting RXD level changes from high to low. In

order to avoid the misjudgment of the start bit caused

by noise, a start bit error detect function is added in

this design, which requires the received low level in

RXD at least over 50% of the baud rate to be able to

determine the start bit arrives. Since the receive clock

frequency is 16 times the baud rate in the design, the

RXD low level lasts at least 8 receiving clock cycles is

considered start bit arrives. Once the start bit been

identified, from the next bit, begin to count the rising

edge of the baud clock, and sample RXD when

counting. Each sampled value of the logic level is

deposited in the register rbuf [7, 0] by order. When the

count equals 8, all the data bits are surely received,

also the 8 serial bits are converted into a byte parallel

data. The serial receiver module includes receiving,

serial and parallel transform, and receive caching, etc.

In this paper we use finite state machine to design,

shown in Fig. 3.

Figure 3. UART Receiver State Machine

The state machine includes five states: R_START

(waiting for the start bit), R_CENTER (find

midpoint), R_WAIT (waiting for the sampling),

R_SAMPLE (sampling), and R_STOP (receiving stop

bit).

R_START Status: When the UART receiver is reset,

the receiver state machine will be in this state. In this

state, the state machine has been waiting for the RXD

level to jump over from logic 1 to logic 0, i.e. the start

bit. This alerts the beginning of a new data frame.

Once the start bit is identified, the state machine will

be transferred to R_CENTER state. In Fig. 3,

RXD_SYNC is a synchronization signal of RXD.

Because when sampling logic 1 or logic 0, we do not

want the detected signal to be unstable. So we do not

directly detect RXD signal, but detect the

synchronization signal RXD_SYNC. R_CENTER

Status: For asynchronous serial signal, in order to

detect the correct signal each time, and minimize the

total error in the later data bits detection. Obviously, it

is the most ideal to detect at the middle of each bit.

In this state, the task is to find the midpoint of each bit

through the start bit. The method is by counting the

number of bclkr (the receiving clock frequency

generated by the baud rate generator) (RCNT16 isthe

counter of bclkr). In addition, the start bit detected in

the R_START may not be a really start bit, it may be

an occasional interference sharp pulse (negative

pulse). This interference pulse cycle is very short.

Therefore, the signal that maintains logic 0 over 1 / 4

bit time must be a start bit. R_WAIT Status: When

the state machine is in this state, waiting for counting

bclkr to 15, then entering into R_SAMPLE to sample

the data bits at the 16th bclkr. At the same time

determining whether the collected data bit length has

reached the data frame length (FRAMELEN).

If reaches, it means the stop bits arrives. The

FRAMELEN is modifiable in the design (using the

Generic). In this design it is 8, which corresponds to

the 8-bit data format of UART. R_SAMPLE Status:

Data bit sampling. After sampling the state machine

transfers to R_WAIT state unconditionally, waits for

the arrival of the next start bit. R_STOP Status: Stop

bit is either 1 or 1.5, or 2. State machine doesn’t detect

RXD in R_STOP, but output frame receiving done

signal (REC_DONE <= '1 ').

 Page 921

After the stop bit, state machine turns back to

R_START state, waiting for the next frame start bit.

IV.TRANSMIT MODULE:

The function of transmit module is to convert the

sending 8-bit parallel data into serial data, adds start

bit at the head of the data as well as the parity and stop

bits at the end of the data. When the UART transmit

module is reset by the reset signal, the transmit

module immediately enters the ready state to send. In

this state, the 8-bit parallel data is read into the

register txdbuf [7: 0]. The transmitter only needs to

output 1 bit every 16 bclkt (the transmitting clock

frequency generated by the baud rate generator)

cycles. The order follows 1 start bit, 8 data bits, 1

parity bit and 1 stop bit. The parity bit is determined

according to the number of logic 1 in 8 data bits. Then

the parity bit is output. Finally, logic 1 is output as the

stop bit. Fig. 4 shows the transmit module state

diagram.

Figure 4. Transmit Module State Diagram

This state machine has 5 states: X_IDLE (free),

X_START (start bit), X_WAIT (shift to wait),

X_SHIFT (shift), X_STOP (stop bit). X_IDLE

Status: When the UART is reset, the state machine

will be in this state. In this state, the UART transmitter

has been waiting a data frame sending command

XMIT_CMD. XMIT_CMD_P is a processed signal of

XMIT_CMD, which is a short pulse signal. Since

XMIT_CMD is an external signal, its pulse width is

unable to be limited. If XMIT_CMD is valid, it is still

valid after sending one UART data frame.

Then the UART transmitter will think by mistake that

a new data transmit command has arrived, and once

again start the frame transmit. Obviously the frame

transmit is wrong. Here we limit the pulse width of

XMIT_CMD. XMIT_CMD_P is its processed signal.

When XMIT_CMD_P = '1 ', the state machine

transferred to X_START, get ready to send a start bit.

X_START Status: In this state, sends a logic 0 signal

to the TXD for one bit time width, the start bit. Then

the state machine transferred to X_WAIT state.

XCNT16 is the counter of bclkt.

X_WAIT Status: Similar with the R_WAIT of

UART receive state machine.

X_SHIFT Status: In this state, the state machine

realizes the parallel to serial conversion of outgoing

data. Then immediately return to X_WAIT state.

X_STOP Status: Stop bit transmit state. When the

data frame transmit is completed, the state machine

transferred to this state, and sends 16 bclkt cycle logic

1 signal, that is, 1 stop bit. The state machine turns

back to X_IDLE state after sending the stop bit, and

waits for another data frame transmit command.

V.SIMULATION RESULTS:

The corresponding simulation results of the UART

modules are shown below figures. All the synthesis

and simulation results are designed using Verilog

HDL. The synthesis and simulation are performed on

Xilinx ISE 14.4. The simulation results are shown

below figures.

 Page 922

Figure 5: RTL schematic of Top-level of UART

module

Figure 6: RTL schematic of Internal block UART

module

Figure 7: Technology schematic of UART module

Figure 8: Design summary report of UART module

Figure 9: simulated outputs for UART module

CONCLUSION:

The proposed UART has been simulated and

synthesized on the Xilinx ISE 14.4. and the desired

output as shown in the figure which shows the

transmission of 8 bit data. This design uses Verilog

HDL as design language to achieve the modules of

UART. The results are stable and reliable. The design

has great flexibility, with some reference value.

Especially in the field of electronic design, where SOC

technology has recently become increasingly mature,

this design shows great significance.

REFERENCES:

[1]Zou,Jie Yang,Jianning。Design and Realization of

UART Controller Based on FPGA

[2]Liakot Ali ， Roslina Sidek ， Ishak Aris ，

Alauddin Mohd. Ali ， Bambang Sunaryo Suparjo.

Design of a micro - UART for SoC application [J].In:

 Page 923

Computers and Electrical Engineering 30 (2004) 257–

268.

[3]HU Hua, BAI Feng-e. Design and Simulation of

UART Serial Communication Module Based on

Verilog -HDL[J]. J ISUANJ I YU XIANDA IHUA

2008 Vol. 8

[4]Frank Durda Serial and UART Tutorial.

uhclem@FreeBSD.org

[5]L. K Hu and Q.CH. Wang, “UART-based Reliable

Communication and performance Analysis”, Computer

Engineering Vol 32, Dec 2006, pp. 247-249.

[6]Karen Parnell, Nick Mehta, “Programmable logic

design Quck start Hand Book” , Third Edition, January

2002.

[7]Society of Applied Microwave Electronics

Engineering and Research (S.A.M.E.E.R), Service and

Maintenance manual, I.I.T Bombay, 2010.

Author’s Details:

Mohammad Thousif

He received his B. Tech in ECE from CVSR College

of Engineering Hyderabad affiliated to JNTU,

Hyderabad ,A.P, India, and pursuing M. Tech in VLSI

and Embedded Systems at Siddhartha Institute of

Engineering and Technology, Ibrahimpatnam,

Hyderabad affiliated to JNTU, Hyderabad ,A.P, India.

Dr. D Subba Rao

Is a proficient Ph.D person in the research area of

Image Processing from Vel-Tech University, Chennai

along with initial degrees of Bachelor of Technology

in Electronics and Communication Engineering (ECE)

from Dr. S G I E T, Markapur and Master of

Technology in Embedded Systems from SRM

University, Chennai. He has 13 years of teaching

experience and has published 12 Papers in

International Journals, 2 Papers in National Journals

and has been noted under 4 International Conferences.

He has a fellowship of The Institution of Electronics

and Telecommunication Engineers (IETE) along with

a Life time membership of Indian Society for

Technical Education (ISTE). He is currently bounded

as an Associate Professor and is being chaired as Head

of the Department for Electronics and Communication

Engineering discipline at Siddhartha Institute of

Engineering and Technology, Ibrahimpatnam,

Hyderabad.

mailto:uhclem@FreeBSD.org

