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Abstract 

Nonlocal self-similarity of images has attracted 

considerable interest in the field of image processing 

and led to several state-of-the-art image denoising 

algorithms, such asBM3D, LPG-PCA, PLOW and 

SAIST. In this paper, we propose a computationally 

simple denoising algorithm by using the nonlocal self-

similarity and the low-rank approximation. The 

proposed method consists of three basic steps. Firstly, 

our method classifies similar image patches by the 

block matching technique to form the similar patch 

groups, which results in the similar patch groups to be 

low-rank. Next, each group of similar patches is 

factorized by singular value decomposition (SVD) and 

estimated by taking only a few largest singular values 

and corresponding singular vectors. Lastly, an initial 

denoised image is generated by aggregating all 

processed patches. For low-rank matrices,SVD can 

provide the optimal energy compaction in the least 

square sense. 

 

The proposed method exploits the optimal energy 

compaction property of SVD to lead a low-rank 

approximation of similar patch groups. Unlike other 

SVD-based methods, the low-rank approximation in 

SVD domain avoids learning the local basis for 

representing image patches which usually is 

computationally expensive. Experimental results 

demonstrate that the proposed method can effectively 

reduce noise and be competitive with the current state-

of-the-art denoising algorithms in terms of both 

quantitative metrics and subjective visual quality. 

 

 

INTRODUCTION 

During acquisition and transmission, images are 

inevitably contaminated by noise. As an essential and 

important step to improve the accuracy of the possible 

subsequent processing, image denoising is highly 

desirable for numerous applications, such as visual 

enhancement, feature extraction and object recognition. 

 

The purpose of denoising is to reconstruct the original 

image from its noisy observation as accurately as 

possible, while preserving important detail features such 

as edges and textures in the denoised image. To achieve 

this goal, over the past several decades, image denoising 

has been extensively studied in the signal processing 

community, and numerous denoising techniques have 

been proposed in the literature. Generally, denoising 

algorithms can be roughly classified into three 

categories: spatial domain methods, transform domain 

methods and hybrid methods. The first class utilizes the 

spatial correlation of pixels to smooth the noisy image, 

the second one exploits the sparsity of representation 

coefficients of the signal to distinguish the signal and 

noise, and the third one takes advantage of spatial 

correlation and sparse representation to suppress noise. 

 

PROPOSED METHOD: 

Based on the analysis of SVD in Section II, we propose 

an efficient method to estimate the noise-free image by 

combining patch grouping with the low-rank 

approximation of SVD(abbreviated as LRA-SVD), 

which leads to an improvement of denoising 

performance. The main motivation to use SVD in our 

method is that it provides the optimal energy compaction 

in the least square sense, which implies that the signal 
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and noise can be better distinguished in SVD domain. 

Fig. 1 illustrates block diagram of the proposed 

approach. Concretely, the patch grouping step identifies 

similar image patches by the Euclidean distance based 

similarity metric. Once the similar patches are identified, 

they can be estimated by the low rank approximation in 

the SVD-based denoising step. In the aggregation step, 

all processed patches are aggregated to form the 

denoised image. The back projection step uses the 

residual image to further improve the denoised result. 

 

For ease of presentation, let Y denote a noisy image 

defined by 

 
where X is the noise-free image, and E represents 

additivewhite Gaussian noise (AWGN) with standard 

deviationτ which, in practice, can usually be estimated 

by variousmethods such as median absolute deviation 

(MAD) ,SVDbasedestimation algorithm and block-based 

ones, .In this paper, we use a vectorized version of the 

model, i.e. 

 
Given a noisy observation y, our aim is to estimate x 

asaccurately as possible.As similarly done in BM3D and 

LPG-PCA, the proposedmethod also has two stages: the 

first stage produces an initialestimation of the image x, 

and the second stage furtherimproves the result of the 

first stage. Different from them,our method adopts the 

low-rank approximation to estimateimage patches and 

uses the back projection to avoid loss ofdetail 

information of the image. Each stage contains threesteps: 

patch grouping, SVD-based denoising and 

aggregation.In the first stage, the noisy image y is firstly 

divided intoM overlapping patches denoted by {yi}Mi=1, 

where yiis a vectorized format of the i-th image patch. 

For each patch yj,its similar patch group is formed by 

searching similar patchesfrom {yi}Mi=1. Next, each 

similar patch group is denoisedby the low-rank 

approximation in SVD domain. Thirdly, thedenoised 

image bx0 is achieved by aggregating all 

denoisedpatches. In the second stage, the final denoised 

image isobtained by applying the processing steps 

described above onthe image eyproduced by the back 

projection process. In therest of this section, the 

procedures of our proposed methodwill be described in 

detail. 

 

Patch Grouping: 

Grouping similar patches, as a classification problem, 

isan important and fundamental issue in image and 

videoprocessing with a wide range of applications. 

While thereexist many classification algorithms 

available in the literature,e.g., block matching, K-means 

clustering, nearest neighborclustering and others [40], 

we exploit the block matchingmethod for image patch 

grouping due to its simplicity.For each given reference 

patch yjwith size√m×√m  the block matching method 

finds its similar patches from {yi}i
M

=1by a similarity 

metric. In [22], the Euclidean distance fromthe transform 

coefficients is used to identify the similar squarepatches. 

A shape-adaptive version of this similarity metric 

ispresented in [23], whereas it leads to a high 

computationalcost. The simplest measure of similarity 

between two patches 

 
Fig. 2. Singular values of group matrices of Lena 

image with different noiselevels. 
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is the Euclidean distance directly in the spatial domain. 

Thuswe employ the spatial Euclidean distance as our 

similaritymetric, which is defined by 

 

where∥  ・ ∥ 2 denotes the Euclidean distance and ycis 

acandidate patch. The smaller S(yj, yc) is, the more 

similaryjand ycare. The reference patch yjand its L-most 

similarpatches denoted by {yc,i}
L
i =1, are chosen to 

construct a groupmatrix by using each similar patch as a 

column of the groupmatrix, and its corresponding group 

matrix Pjis formed by 

 
Due to Pjbeing made up of the noisy patches, it can 

berepresented as 

 
whereQjand Njdenote the noise-free group matrix and 

thenoise matrix, respectively 

 

In general, the number L of similar patches in the 

groupmatrix cannot be too small. Too small L leads to 

too fewpatches within each group matrix, which makes 

the SVDbaseddenosing less robust. On the contrary, too 

large one leadsto dissimilar patches being grouped 

together, which resultsi√n an incorrect estimation of Pj. 

Similarly, the patch size√m×√m also has an impact on 

the performance of ourmethod. 

 

SVD-Based Denoising: 

For simplicity of discription, we will use Q and P 

insteadof Qjand Pjby a slight abuse of notation. Now our 

taskis to estimate the noise-free group matrix Q from its 

noisyversion P as accurately as possible. Ideally, the 

estimate Qshould satisfy 

 

where∥  ・ ∥ F is the Frobenius norm1 and τ is the 

standard deviation of noise. 

 

The similarity between patches within the noise-free 

image x leads to a high correlation between them, which 

means that Q is a low-rank matrix. Fig. 2 illustrates the 

low-rank property of Q by displaying the singular values 

of group matrices of Lena image with different noise 

levels, where each point is the average i-th singular 

value over all group matrices. The estimate of Q can be 

obtained by the low-rank approximation in the least 

square sense. Therefore, we can estimate Q from P by 

solving the following optimization problem 

 

where rank(・) denotes the rank of matrix Z.In SVD 

domain, P can be represented as 

 
whereΣkis obtained from the matrix Σ by setting 

thediagonal elements to zeros but the first k singular 

values, i.e. 

 
Pkis the solution of (16), which is a classical result given 

bythe Eckart-Young-Mirsky Theorem.Theorem 1 

(Eckart-Young-Mirsky): For any real matrix P,if the 

matrix Q is of rank k, then 

 
whereσi(i= 1,……. n) are the singular values of P, 

andequality is attained when Q = Pkis defiend by 

(18).This theorem shows that Pkis the optimal solution 

for (16)in the Frobenius norms sense. Thus, we have 

 
The key issue for this method is to determine the value 

of k.By comparing (15) with (20), we can find that Pkis 
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the idealestimate of P whenΣi
n
=k+1 σ

2
iis equal to τ

2
. 

Therefore, kcan be determined by the following criterion 

 
 

Aggregation: 

Until now, we have estimated each group matrix by 

applyingthe low-rank approximationdefined by (21). 

Then the denoisedpatches can be obtained by 

rearranging column vectors of eachdenoised group 

matrix. As a result of taking the L nearestneighbors of 

each patch to construct a group matrix, a singlepatch 

might belong to several groups, and multiple estimatesof 

this patch can be obtained. Thus we aggregate 

differentestimates of this patch to obtain its denoised 

version by thefollowing averaging process. 

 
wherebxiis the denoised version of a patch yi, and bxi;j(j 

=1, . . . , n) denote n different estimates of yi.The next 

step is to synthesize the denoised image from 

thedenoised patches. Since the patches are sampled with 

overlappingregions for avoiding block artifacts at the 

boundariesof patches, multiple estimates are obtained for 

each pixel.Thus these estimates of each pixel in the 

image need tobe aggregated to reconstruct the final 

denoised image. Thecommon method of combining such 

multiple estimates isto perform a weighted averaging of 

them. Meanwhile, theweighted averaging procedure can 

suppress noise further. Thesimplest form of aggregation 

is the uniformly weighted averagingwhich assigns the 

same weight to all estimates. However,the uniform 

weights will lead to an over-smoothened result. 

Ingeneral, the adaptive weights derived from various 

biased andunbiased estimators, such as variance-based 

weights, SUREbasedweights and exponential weights 

[10], can lead to betterresults. Different from these 

adaptive weights, in this paper,we exploit the weights 

depending on the rank k of each groupmatrix due to its 

simplicity. For the j-th group matrix bQj, ourweight is 

defined by 

 
If k < L + 1, it means that patches in the group matrixare 

linearly correlated. The higher the degree of correlation 

ofpatches is, the smaller the rank k of the group matrix 

is. Theestimate of patches yielded from the low-rank 

approximation isbetter. Thus, this estimate needs to be 

assigned a high weight.If k = L + 1, there exists no 

correlation among patches. Thesimplest uniform weight 

is used. Based on the weights definedin (24), the 

denoised estimate for the i-th pixel of the imagecan be 

expressed as 

 
whereWis a normalizing factor defined by 

 
T(xi)  denotes the index set of all similar group matrices 

containing the pixel xi, which described as 

 
andxi;jdenotes the denoised estimate of the i-th pixel in 

thej-th similar group matrix Qj. Once all pixels are 

estimated by(25), the final denoised image can be 

obtained by reshapingthe estimates of all pixels. 

 

Back Projection 

Although most of noise can be removed by using 

thedenoising procedures described before, there still 

exists a smallamount of noise residual in the denoised 

image. The noiseresidual stems from the fact that noise 

in the original noisyimage affects the accuracy of the 

patch grouping, which leadsto an inaccurate group. The 
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grouping errors in turn affect theSVD-based denoising. 

In addition, there exists another reasonfor noise residual. 

Ideally, based on the discussion in SectionIII-B, the 

optimal estimate Q satisfies. 

 
Unfortunately, the left side of (28) is not usually equal to 

theright side. In most cases, it is that τ
2
>Σi

n
=k+1αi

2
 

Therefore,we need to further improve the denoising 

performance of our method. 

 

The commonly used way to further improve the 

performanceof a denoising method, as used by K-LLD 

[43] andSAIST, is to develop an iterative version for the 

basic denoisingmethod. While the iterative strategy for 

image denoisinghas been widely used in the literature, it 

has a very high computational cost which limits the 

scope of applications. Analternative way exploited by 

BM3D and LPG-PCA is the twostageapproach, in which 

the basic estimate of the noisy imageyielded by the 

denoising method is used as a reference imageto perform 

improved grouping and parameter estimation. 

 

In this paper, unlike the iteration-based or the 

referencebasedstrategies, we make use of the two-stage 

strategy witha back projection step to further suppress 

the noise residual.Back projection is an efficient method 

that uses the residualimage to improve the denoised 

result [44], [45]. In fact, the useof the residuals in 

improving estimates can date at least backto John 

Tukey’s classic book [46], in which this idea is 

termedtwicing. This concept is also known by several 

names, such asBregman iterations, l2-boosting, and 

biased diffusion. A recentpaper [47] provides a good 

overview of these methods. Thebasic idea of back 

projection is to generate a new noisy imagey adding 

filtered noise back to the denoised image, i.e. 

 

whereδ ∈  (0, 1) is a constant projection parameter and 

bx0is the denoised result produced by the first stage. 

Note thatwhen δ → 0, ey→ bx0. On the contrary, if δ → 

1, ey→ y.For simplicity, in our experiments, we set δ = 

0.5, which is atrade-off between 1 and 0.Now we can 

achieve an improved result of bx0 by denoisingeywith 

the proposed three processing steps in 

previoussubsections, i.e., patch grouping, SVD-based 

denoising, andaggregation. It is necessary to point out 

that the noise varianceof ey, denoted as eτ2, needs to be 

updated in the SVD-baseddenoising step. We employ the 

estimator presented in todetermine eτ2, which is written 

as 

 
whereγ is a scaling factor 

 

PROPOSED ALGORITHM: 

To summarize, the complete procedure of our 

proposedmethod is algorithmically described in the 

following Algorithm1. 
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BLOCK DIAGRAM: 

 
Let X be a grayscale image. The basic principle of 

linearimage representation is that the signal of interest 

can bedecomposed into a weighted sum of a given 

representationbasis. Thus, X can be represented as 

 
where ai(i= 1, . . . ,N) are the representation coefficients 

ofthe image X in term of the basis functions ϕi(i= 1, . . . 

,N).ϕican either be chosen as a prespecified basis, such 

as, curvelet,contourlet,shearlet and otherdirectional 

basis, or designed by adapting its content to fit agiven 

set of images. In general, an adaptive basis has 

betterperformance than the prespecified one.In [20], 

Aharonet al. proposed a learning method to achievea set 

of adaptive basis (also called dictionary). This 

methodextracts all the√m ×√m patches from the image X 

toform a data matrix S = (s1, s2, . . . , sn) ∈  Rm_n, 

wherem is the number of pixels in each patch, si(i= 1, . . 

. , n)are image patches ordered as columns of S and n is 

thenumber of patches. Then the dictionary is learned by 

solvingthe following optimization problem 

 
where Φ ∈  R

M×P
is the dictionary of p column atoms,A = 

(a1, a2, . . . , an) ∈  R
P×N

is a matrix of coefficients,β 

indicates the desired sparsity level of the solution, and 

thenotation ∥ ai∥ 0 stands for the count of the nonzero 

entries inai. Based on the learned dictionary Φ, S can be 

representedas 

 

Another method for image representation with 

adaptivebasis selection is principle component analysis 

(PCA) [32],which determines the basis from the 

covariance statistics ofthe data matrix S. The principal 

components transform of Sis calculated as  

 
withΦ defined by 

 
whereE(S) is the matrix of mean vectors, ΩS is 

thecovariance matrix of S, Φ is the eigenvector matrix, 

and Λ = diag(λ1, . . . , λm) is the diagonal eigenvalue 

matrix with 

 
 

It can easily be derived that the covariance matrix ΩA of 

thematrix A equals to 

 
which implies that the entries of A are uncorrelated. 

Thisproperty of PCA can be used to distinguish between 

the signal and noise. It is because the energy of noise is 

generally spreadover the whole transform coefficients, 

while the energy of asignal is concentrated on a small 

amount of coefficients.One major shortcoming of the 

adaptive dictionary and PCAis that they impose a very 

high computational burden. Analternative method for 

adaptive basis selection is the singularvalue 

decomposition (SVD). The SVD of the data matrix S isa 

decomposition of the form  

 
whereU = (u1, . . . , un) ∈  Rm_nand V = (v1, . . . , vn) 

∈Rn_nare matrices with orthonormal columns, UTU 

=VTV = I, and where the diagonal matrix Σ =diag(σ1, . . 

. , σn) has nonnegative diagonal elements appearingin 

nonincreasing order such that 
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The diagonal entries σiof Σ are called the singular 

valuesof S, while the vectors uiand vi are the left and 

rightsingular vectors of S, respectively. The product 

uivTiin (8)can be considered as an adaptive basis, and 

σias representationcoefficient.In fact, SVD and PCA are 

intimately related. PCA can beperformed by calculating 

the SVD of the data matrix p1Nst(Refer to [35] for more 

details). In addition, if a matrix is lowrank,we can easily 

estimate it from its noisy version by thelow-rank 

approximation in SVD domain. Thus, we propose anew 

denoising method by using SVD instead of PCA in 

thefollowing section, which has a low computational 

complexity. 

 

EXPERIMENTAL RESULTS: 

 
Fig: original, noisy, filtered images 

 

 
Fig: original, noisy, filtered images 

 

To demonstrate the efficacy of the proposed 

denoisingalgorithm, in this section, we give our 

experimental resultsconcerning simulations that have 

been conducted on tennatural grayscale images with size 

512 × 512. These imageshave been commonly used to 

validate many state-of-the-artdenoising methods. The 

noisy images are generated by addingzero mean white 

Gaussian noise with different levels to the testimages. 

The noise level τ is from 10 to 50, and the intensity value 

for each pixel of the images ranges from 0 to 255. 

 

Evaluation Criteria: 

Two objective criteria, namely peak signal-to-noise 

ratio(PSNR) and feature-similarity (FSIM) index [48], 

are adoptedto provide quantitative quality evaluations of 

the denoisingresults. PSNR is the mostly widely used 

quality measure inthe literature, even though it is often 

inconsistent with humaneye perception. FSIM measures 

the similarity between twoimages by combining the 

phase congruency feature and thegradient magnitude 

feature, which is based on the fact thathuman visual 

system (HVS) understands an image mainlyaccording to 

its low-level features. The aforementioned criteriacan 

comprehensively reflect the performance of the 

denoisingmethods. 

 

CONCLUSION: 

In this paper, we have presented a simple and 

efficientmethod for image denoising, which takes 

advantage of thenonlocal redundancy and the low-rank 

approximation to attenuatenoise. The nonlocal 

redundancy is implicitly used bythe block matching 

technique to construct low-rank groupmatrices. After 

factorizing by SVD, each group matrix isefficiently 

approximated by preserving only a few largestsingular 

values and corresponding singular vectors. This isdue to 

the optimal energy compaction property of SVD.In fact, 

the small singular values have little effect on 

theapproximation of the group matrix when it has a low-

rankstructure. Experimental results demonstrate the 

advantages ofthe proposed method in comparison with 

current state-of-theartdenoising methods.The 

computational complexity of the proposed algorithmis 

lower than most of existing state-of-the-art denoising 

algorithmsbut higher than BM3D. The fixed transform 

usedby BM3D is less complex than SVD, whereas it is 
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lessadapted to edges and textures. The main 

computational costof our algorithm is the calculation of 

SVD for each patch group matrix. As each group matrix 

could potentially beprocessed independently in parallel, 

our method is suitablefor parallel processing. Therefore, 

in practice, we can use aparallel implementation to speed 

it up, which will make itfeasible for real-time or near 

real-time image denoising. Inaddition, while developed 

for grayscale images, our methodcan be extended for 

shape-adaptive color image and videodenoising by 

taking into account the shape-adaptive patchesand the 

temporal redundancy across color components 

andframes. This further work will be studied in the 

future. 
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