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ABSTRACT: 

Typical blur from camera shake often deviates from 

the standard uniform convolutional assumption, in part 

because of problematic rotations which create greater 

blurring away from some unknown center point. 

Consequently, successful blind deconvolution for 

removing shake artifacts requires the estimation of a 

spatially varying or non-uniform blur operator. Using 

ideas from Bayesian inference and convex analysis, 

this paper derives a simple non-uniform blind 

deblurring algorithm with a spatially-adaptive image 

penalty.  

 

Through an implicit normalization process, these 

penalties automatically adjust its shape based on the 

estimated degree of local blur and image structure such 

that regions with large blur or few prominent edges are 

discounted. Remaining regions with modest blur and 

revealing edges therefore dominate on average without 

explicitly incorporating structure selection heuristics. 

The algorithm can be implemented using an 

optimization strategy that is virtually tuning-parameter 

free and simpler than existing methods, and likely can 

be applied in other settings such as dictionary learning. 

Detailed theoretical analysis and empirical 

comparisons on real images serve as validation. 

 

 

Introduction: 

Image blur is an undesirable degradation that often 

accompanies the image formation process and may 

arise, for example, because of camera shake during 

acquisition. Blind image deblurring strategies aim to 

recover a sharp image from only a blurry, 

compromised observation. Extensive efforts have been 

devoted to the uniform blur (shift-invariant) case, 

which can be described with the convolutional model y 

= k ∗ x + n, where x is the unknown sharp image, y is 

the observed blurry image, k is the unknown blur 

kernel (or point spread function), and n is a zero-mean 

Gaussian noise term [6, 21, 17, 5, 28, 14, 1, 27, 29]. 

Unfortunately, many real-world photographs contain 

blur effects that vary across the image plane, such as 

when unknown [18, 8, 22, 12] and admits an efficient 

implementation called efficient filter flow (EFF) [10]. 

The downside with this type of model is that geometric 

relationships between the blur kernels of different 

regions derived from the the physical motion path of 

the camera are ignored. In contrast, to explicitly 

account for camera motion, the projective motion path 

(PMP) model [23] treats a blurry image as the 

weighted summation of projectively transformed sharp 

images, leading to the revised observation model. 
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wherePj is the j-th projection or homography operator 

(a combination of rotations and translations) and wj is 

the corresponding combination weight representing the 

proportion of time spent at that particular camera pose 

during exposure. The uniform convolutional model can 

be obtained by restricting the general projection 

operators {Pj} to be translations. In this regard, (1) 

represents a more general model that has been used in 

many recent non-uniform deblurring efforts [23, 25, 7, 

11, 4]. PMP also retains the bilinear property of 

uniform convolution, meaning that 

 

 
Where λ denotes the noise variance. Maximum 

likelihood estimation of x and w using (3) is clearly ill-

posed and so further regularization is required to 

constrain the solution space. For this purpose we adopt 

the Gaussian prior p(x) ∼ N (x; 0,Γ), where Γ diag[γ] 

with γ = [γ1,...,γm] T a vector of m hyperparameter 

variances, one for each element of x = [x 1,...,xm] T. 

While presently γ is unknown, if we first marginalize 

over the unknown x, we can estimate it jointly along 

with the blur parameters w and the unknown noise 

variance λ. This type II maximum likelihood procedure 

has been advocated in the context of sparse estimation, 

where the goal is to learn vectors with mostly zero-

valued coefficients [24, 26]. The final sharp image can 

then be recovered using the estimated kernel and noise 

level along with standard non-blind deblurring 

algorithms (e.g., [15]). Mathematically, the proposed 

estimation scheme requires that we solve 

 
where a − log transformation has been included for 

convenience. Clearly (4) does not resemble the 

traditional blind non-uniform deblurring script, where 

estimation proceeds using the more transparent 

penalized regression model 

 
and α and β are user-defined trade-off parameters, g is 

an image penalty which typically favors sparsity, and h 

is usually assumed to be quadratic.  

Despite the differing appearances however, (4) has 

some advantageous properties with respect to 

deconvolution problems. In particular, it is devoid of 

tuning parameters and it possesses more favorable 

minimization conditions. For example, consider the 

simplified non-uniform deblurring situation where the 

true x has a single non-zero element and H is defined 

such that each column indexed by i is independently 

parameterized with finite support symmetric around 

pixel i. Moreover, assume this support matches the 

true support of the unknown blur operator. Then we 

have the following: Lemma 1 Given the idealized non-

uniform deblurring problem described above, the cost 

function (4) will be characterized by a unique 

minimizing solution that correctly locates the nonzero 

element in x and the corresponding true blur kernel at 

this location. No possible problem in the form of (5),  

with g(x) = |x| p, h(w) = wq, and {p, q} arbitrary non-

negative scalars, can achieve a similar result (there will 

always exist either multiple different minimizing 

solutions or an global minima that does not produce 

the correct solution).  

 

This result, which can be generalized with additional 

effort, can be shown by expanding on some of the 

derivations in [26]. Although obviously the conditions 

upon which Lemma 1 is based are extremely idealized, 

it is nonetheless emblematic of the potential of the 

underlying cost function to avoid local minima, etc., 

and [26] contains complementary results in the case 

where H is fixed. While optimizing (4) is possible 

using various general techniques such as the EM 

algorithm, it is computationally expensive in part 

because of the high-dimensional determinants involved 

with realistic-sized images. Consequently we are 

presently considering various specially-tailored 

optimization schemes for future work. But for the 

present purposes, we instead minimize a convenient 

upper bound allowing us to circumvent such 

computational issues. Specifically, using Hadamard’s 
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The optimization from (7) closely resembles a standard 

penalized regression (or equivalently MAP) problem 

used for blind deblurring. The primary distinction is 

the penalty term ψ, which jointly regularizes x, w, and 

λ as discussed Section 4. The supplementary file 

derives a simple majorization minimization algorithm 

for solving (7) along with additional implementational 

details. The underlying procedure is related to 

variational Bayesian (VB) models from [1, 16, 20]; 

however, these models are based on a completely 

different mean-field approximation and a uniform blur 

assumption, and they do not learn the noise parameter. 

Additionally, the analysis provided with these VB 

models is limited by relatively less transparent 

underlying cost functions. 4 

 

Model Properties: 

The proposed blind deblurring strategy involves 

simply minimizing (7); no additional steps for tradeoff 

parameter selection or structure/salient-edge detection 

are required unlike other state-of-the-art approaches. 

This section will examine theoretical properties of (7) 

that ultimately allow such a simple algorithm to 

succeed. First, we will demonstrate a form of intrinsic 

column normalization that facilitates the balanced 

sparse estimation of the unknown latent image and 

implicitly de-emphasizes regions with large blur and 

few dominate edges. Later we describe an appealing 

form of noise dependent shape adaptation that helps in 

avoiding local minima. While there are multiple, 

complementary perspectives for interpreting the 

behavior of this algorithm, more detailed analyses, as 

well as extensions to other types of underdetermined 

inverse problems such as dictionary learning, will be 

deferred to a later publication. Column-Normalized 

Sparse Estimation Using the simple reparameterization 

zixiw¯ i2 it follows that (7) is exactly equivalent to 

solving 

 

This will indeed result in normalized columns and a 

properly balanced data-fit term, these raw norms will 

now appear in the penalty function g, giving the 

equivalent objective 

 
Noise-Dependent, Parameter-Free Homotopy 

Continuation Column normalization can be viewed as 

a principled first step towards solving challenging 

sparse estimation problems. However, when non-

convex sparse regularizers are used for the image 

penalty, e.g., p norms with p < 1, then local minima 

can be a significant problem. The rationalization for 

using such potentially problematic non-convexity is as 

follows; more details can be found in [17, 27]. When 

applied to a sharp image, any blur operator will 

necessarily contribute two opposing effects: (i) It  

reduces a measure of the image sparsity, which 

normally increases the penalty i |yi| p, and (ii) It 

broadly reduces the overall image variance, which 

actually reduces i |yi| p. Additionally, the greater the 

degree of blur, the more effect (ii) will begin to 

overshadow (i). Note that we can always apply greater 

and greater blur to any sharp image x such that the 

variance of the resulting blurry y is arbitrarily small. 

This then produces an arbitrarily small  p norm, which 

implies that i |yi| p < i |xi| p, meaning that the penalty 

actually favors the blurry image over the sharp one. In 

a practical sense though, the amount of blur that can be 

tolerated before this undesirable preference for y over 

x occurs is much larger as p approaches zero. This is 

because the more concave the image penalty becomes 

(as a function of coefficient magnitudes), the less 

sensitive it is to image variance and the more sensitive 

it is to image sparsity. In fact the scale-invariant 

special case. 

 

Definition 

Let u be a strictly increasing function on [a, b]. The 

function ν is concave relative to u on the interval [a, b] 

if and only if 
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We will use ν ≺ u to denote that ν is concave relative 

to u on [0, ∞). This can be understood as a natural 

generalization of the traditional notion of a concavity, 

in that a concave function is equivalently concave 

relative to a linear function per Definition 1. In 

general, if ν ≺ u, then when ν and u are set to have the 

same functional value and the same slope at any given 

point (i.e., by an affine transformation of u), then ν lies 

completely under u. In the context of homotopy 

continuation, an ideal candidate penalty would be one 

for which g(x; θ 1) ≺ g(x; θ2) whenever θ1 ≤ θ2. This 

would ensure that greater sparsity-inducing concavity 

is introduced as θ is reduced. We now demonstrate that 

ψ(|z|, λ) is such a function, with λ occupying the role 

of θ. This dependency on the noise parameter is unlike 

other continuation methods and ultimately leads to 

several attractive attributes.  

 

Theorem 1 If λ1 < λ2, then ψ(u, λ1) ≺ ψ(u, λ2) for u ≥ 

0. Additionally, in the limit as λ → 0, then i ψ(|zi|, λ) 

converges to the 0 norm (up to an inconsequential 

scaling and translation). Conversely, as λ becomes 

large, i ψ(|zi|, λ) converges to 2z1/ √ λ. The proof has 

been deferred to the supplementary file. The relevance 

of this result can be understood as follows. First, at the 

beginning of the optimization process λ will be large 

both because of initialization and because we have not 

yet found a relatively sparse z and associated w such 

that y can be well-approximated; hence the estimated λ 

should not be small. Based on Theorem 1, in this 

regime (8) approaches 

 

 
Effectiveness of spatially-adaptive sparsity. From 

left to right: the blurry image, 

 

The deblurred image and estimated local kernels 

without spatially-adaptive column normalization, the 

analogous results with this normalization and its 

spatially-varying impact on image estimation, and the 

associated map of w¯ i−1 2 , which reflects the degree 

of estimated. local blurring. Later as the estimation 

proceeds and w and z are refined, λ will be reduced 

which in turn necessarily increases the relative 

concavity of the penalty ψ per Theorem 1. However, 

the added concavity will now be welcome for 

resolving increasingly fine details uncovered by a 

lower noise variance and the concomitant boosted 

importance of the data fidelity term, especially since 

many of these uncovered details may reside near 

increasingly blurry regions of the image and we need 

to avoid unwanted noblur solutions.  

 

Eventually the penalty can even approach the non-

uniform blind deblurring using real-world images from 

previously published papers (note that source code is 

not available for conducting more widespread 

evaluations with most algorithms). The supplementary 

file contains a number of additional comparisons, 

including assessments with a benchmark uniform blind 

deblurring dataset where ground truth is available.  

 

Overall, our algorithm consistently performs 

comparably or better on all of these respective images. 

Experimental specifics of our implementation (e.g., 

regarding the non-blind deblurring step, projection 

operators, etc.) are also contained in the supplementary 

file for space considerations. Comparison with 

Harmeling et al. [8] and Hirsch et al. [9]: Results are 

based on three test images provided in [8].  

 

Figure 2 displays deblurring comparisons based on the 

Butchershop and Vintage-car images. In both cases, 

the proposed algorithm reveals more fine details than 

the other methods, despite its simplicity and lack of 

salient structure selection heuristics or trade-off 

parameters.  
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Non-uniform deblurring results.Comparison with 

Harmeling [8] and Hirsch [9] on real-world images. 

(better viewed electronically with zooming) 

 
Non-uniform deblurring results.Comparison with 

Whyte [25], Gupta [7], and Joshi [13] on real-world 

images. (better viewed electronically with zooming) 

 

CONCLUSION: 

This paper presents a strikingly simple yet effective 

method for non-uniform camera shake removal based 

upon a principled, transparent cost function that is 

open to analysis and further extensions/refinements. 

For example, it can be combined with the model from 

[29] to perform joint multi-image alignment, 

denoising, and deblurring.  

 

Both theoretical and empirical evidence are provided 

demonstrating the efficacy of the blur-dependent, 

spatially-adaptive sparse regularization which emerges 

from our model. The framework also suggests 

exploring other related cost functions that, while 

deviating from the original probabilistic script, 

nonetheless share similar properties. One such simple 

example is a penalty of the formm i log(√ λ + |xi|w¯ 

i2); 
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