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Abstract: 

Nonlocal means is one of the well-known and mostly 

used image denoising methods. The conventional 

nonlocal means approach uses weighted version of 

all patches in a search neighborhood to denoise the 

center patch. However, this search neighborhood can 

include some dissimilar patches. In this paper, we 

propose a pre-processing hard thresholding 

algorithm that eliminates those dissimilar patches. 

Consequently, the method improves the performance 

of nonlocal means. The threshold is calculated based 

on the distribution of distances of noisy similar 

patches. The method denoted by Similarity Validation 

Based Nonlocal Means (NLM-SVB) shows 

improvement in terms of PSNR and SSIM of the 

retrieved image in comparison with nonlocal means 

and some recent variations of nonlocal means. 

 

INTRODUCTION 

As digital imaging technologies become more 

advanced, the issue of image denoising still remains as 

a challenging stage. Removing additive noise is an 

essential pre-processing step in the majority of image 

processing techniques such as classification and object 

recognition, or it can be used for the purpose of 

improving image visual quality. Some of the earliest 

methods of denoising are simple averaging filters such 

as mean, median, Gaussian smoothing filters, and 

bilateral filters [1]. There are methods that transform 

data to other bases for the purpose of denoising such as 

wavelet or curvelet based methods [2]. The 

concentration of this paper is on nonlocal means 

methods (NLM) that are preferred when algorithm 

complexity is an issue. Most local methods only 

consider a local patch around the target pixel, 

assuming adjacent pixels tend to have similar patches. 

On the other hand, nonlocal means takes advantage of 

existence of a pattern or similar features in including 

the non-adjacent pixels [3]. NLM exploits self-

similarities in the search neighborhood to estimate the 

true value of the noisy pixel. Since the introduction of 

NLM, many other variations have been proposed to 

further improve the method from various perspectives. 

For example, NLM with shape adaptive patches 

(NLM-SAP) is examined in [4]. The work in [5], 

improves NLM by a post processing denoising step 

based on method noise smoothing. Another recent 

improvement, probabilistic nonlocal means (PNLM) 

[6], implements a new weight function based on the 

distribution of the distances of similar patches. This 

weighting scheme outperforms the Gaussian kernel 

weights in traditional NLM. Regardless of the choice 

of the weights, many dissimilar patches in the search 

neighborhood are processed through NLM. Methods 

such as probabilistic early termination (NLM-PET) [7] 

attempt to reduce this number by a pre-processing 

hard-thresholding. However, the overall performance 

of this method is worse than that of the traditional 

NLM. A pre-filtering process is suggested in [8] to 

eliminate unnecessary patches by comparing gradient 

and average gray value of candidate similar patches. 

Motivated by the issue of unnecessary processing of 

dissimilar patches, we propose a new hard 

thresholding pre-processing algorithm to eliminate 

dissimilar patches before the weighting process. Our 

proposed method is faithful to the probabilistic 

distribution of the distance of similar patches. Our 

simulation results confirm superiority of this approach 

compared to the traditional NLM and the above 

variations of this method. 

 

PROPOSED METHOD: 

Our proposed method, denoted by similarity validation 

based nonlocal means (NLM-SVB), consists of three 

steps shown in Figure 1. In the following these three 

steps are explained in detail. 
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Step One: 

Patch Similarity Validation Using fundamentals of 

NLM, for each reference patch the distance of that 

patch and the patches in searching area Si is first 

calculated. The goal is to keep similar patches in this 

area for further processing in next steps. Two patches 

are considered similar if their distance is only due to 

additive noise. Due to the nature of the distance, di , j 

in (3) this distance has a chi-squared distribution 

where the distribution for x is defined as: 

 

 

 

 
where Γ denotes the Gamma function and k is the 

order of the distribution. Motivated by this definition 

of similarity in the first step, our goal is to hard 

threshold as many dissimilar patches as possible. The 

procedure is as follows: For any ith center patch, we 

first sort all the di,j s in its search neighborhood Si . In 

this case, similar patches with di,j s following Chi-

squared distribution fall within a probabilistic 

boundaries that can be pre-calculated based on that 

Chi-squared distribution. Details of calculation of 

these boundaries are provided in Appendix 1. Using 

this probabilistic boundaries an example of the hard 

thresholding, that is also explained in Appendix 1, is as 

follows: Figure 2 shows the probabilistic bounds and 

sorted di,j s for three cases of a flat, an edge and a 

pattern search neighborhood respectively. Red squares 

show the reference patch Pi . Note that these 

boundaries are fixed for all three cases and only 

function of the σ and the size of Si . Consequently, the 

hard thresholding process considers any jth patch with 

its di,j out of this boundary as a dissimilar patch to the 

ith patch. For example, after sorting the patch 

distances, at index j = 1000 the probabilistic upper 

bound and lower bound with probability 99.8% (3σ 

probabilistic confidence) are 0.9114 and 0.6546. As 

the figure shows for the flat scenario, di,j at index j = 

1000 is 0.8962, which falls within the boundaries. 

However, this value is 1.0116 and 1.1483 for edge and 

pattern scenarios respectively that are out of the 

boundaries. Therefore, 1000th sorted pixel is passed to 

step 2 for the first scenario, while being discarded (set 

to zero) for the second and third scenarios. 

 

Step 2: 

Weighting Process After elimination of dissimilar 

patches through the hard thresholding, the remaining 

patches are processed in the weighting stage. For this 

stage, our weights in (2) are consistent with the 

corresponding Chi-squared distribution in (4) [6]:  

 

 
Fig. 2. Three scenarios of search neighbourhood Si: 

(a) flat, (b) edge, (c) pattern (σ=25). Little red 

square in the middle is Pi. 

 

Right column: sorted distances of candidate patches, 

di,j s, and pre-calculated probabilistic boundaries in 
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(16) and |Pi | is the number of pixels in Pi and |Oi,j | is 

the number of overlapping pixels between Pi and Pj . 

This step can be considered as a soft thresholding stage 

after a hard thresholding stage, both consistent and 

faithful to the exact distribution of di,j s for similar 

patches. 

 
Fig. 3. For search neighbourhood Sis in Figure 2, 

First column: weights of PNLM, 

 

Second column: weights of hard thresholding+PNLM, 

third and fourth columns: denoised versions of the 

images by PNLM and hard thresholding+PNLM 

respectively. 

 

Advantages of pre-processing thresholding before 

weighting process: Figure 3 shows how our additional 

hard thresholding benefits the existing soft 

thresholding (PNLM) for the same scenarios as in 

Figure 2. The first column shows the associated 

weights of PNLM while the second column shows the 

weights for hard thresholding+PNLM. The additional 

zero weighted ones are shown in yellow in the second 

column. Comparing these two columns, the additional 

hard thresholding has zeroed the weights of many 

dissimilar patches (18% for flat case, 95% for edge 

case and 96% for pattern case). As the figures show, 

the remaining pixels are highly related (very similar) 

to the center pixel. The third and forth columns show 

the denoised results. As these two columns show 

elimination of the dissimilar patches resulted better 

denoised image, specially for the cases of edge and 

pattern structure, where with the additional hard 

thresholding fine details are well retrieved. 

 

Step 3: 

Smoothing Process This stage uses the conventional 

smoothing filter [9]: 

 
where D is the smoothing denoising function and λ is 

the added percentage of smoothed residuals. A mean 

filtering is applied over residuals, yi − xˆi , [10]. For 

each pixel of the residual image, the mean value of 

pixels in a 3×3 neighbourhood is calculated to replace 

the center value and λ = 10% [5]. 

 

SIMULATION RESULTS: 

Our test images are boat, man, cameraman, house, 

barbara and couple shown in Figure 4. The resulted 

percentage of patch elimination due to hard-

thresholding for σ = 25 is provided in Table I. As the 

table shows, on average around 60% of patches are 

being discarded before the weighting process. Note 

that this percentage is higher in images with fine 

details such as man and barbara, while it is lower for 

images with less details such as house. 

 
 

The quality measurement criteria used for the 

performance evaluation are PSNR [11] and SSIM [12]. 

The proposed method is compared to NLM and NLM-

PET [7], NLM-SAP [4], Fast NLM [8] and PNLM [6] 

that are variations 

 

CONCLUSION: 

By adding an additional pre-processing stage in from 

of a hard thresholding, we have improved the 

performance of the traditional NLM. This pre-
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processing step attempts to eliminate dissimilar 

patches prior to the weighting process. As our 

simulation result shows this step can eliminate about 

60% of the patches that are used in traditional NLM. 

As it was shown, this percentage is less for flat 

neighborhoods and more for neighborhoods with fine 

details. The proposed method (NLM-SVB) considers 

the exact distribution of similar patches distances in 

both the hard thresholding step and the weighting 

process. Our simulation results illustrate the 

advantages of the proposed method over the traditional 

NLM and some variations of NLM. 
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