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Abstract: 

The filter design optimization (FDO) problem is 

defined as finding a set of filter coefficients that yields 

a filter design with minimum complexity, satisfying 

the filter constraints. It has received a tremendous 

interest due to the widespread application of filters. 

Assuming that the coefficient multiplications in the 

filter design are realized under a shift-adds 

architecture, the complexity is generally defined in 

terms of the total number of adders and subtractors. In 

this paper, we present an exact FDO algorithm that can 

guarantee the minimum design complexity under the 

minimum quantization value, but can only be applied 

to filters with a small number of coefficients. We also 

introduce an approximate algorithm that can handle 

filters with a large number of coefficients using less 

computational resources than the exact FDO algorithm 

and find better solutions than existing FDO heuristics. 

We describe how these algorithms can be modified to 

handle a delay constraint in the shift-adds designs of 

the multiplier blocks and to target different filter 

constraints and filter forms. Experimental results show 

the effectiveness of the proposed algorithms with 

respect to prominent FDO algorithms and explore the 

impact of design parameters, such as the filter length, 

quantization value, and filter form, on the complexity 

and performance of filter designs. 

 

I. INTRODUCTION: 

Digital filtering is a ubiquitous operation in digital 

signal processing (DSP) applications and is realized 

using infinite impulse response (IIR) or finite impulse 

response (FIR) filters.  

 

 

 

Although an FIR filter requires a larger number of 

coefficients than an equivalent IIR filter, it is preferred 

to the IIR filter due to its stability and phase linearity 

properties. The computation of the output of an -tap 

FIR filter is given by 

 
Where N  is the filter length, hi is the ith filter 

coefficient, and x(n-i) is the previous filter input. The 

straightforward realization of  is depicted in Fig. 1 

which is known as the direct form. Alternatively, the 

realization of (1) in the transposed form is shown in 

Fig. 

 
The complexity of the FIR filter design is dominated 

by the multiplication of filter coefficients by the time-

shifted versions of the filter input, i.e., the constant 

array-vector multiplication (CAVM) block in the 

direct form of Fig. 1(a) or by the multiplication of 

filter coefficients by the filter input, i.e., the multiple 

constant multiplications (MCM) block in the 

transposed form of Fig. 1(b). Since filter coefficients 

are fixed and determined beforehand and the 

realization of a multiplier in hardware is expensive in 

terms of area, delay, and power dissipation, these 

CAVM and MCM operations are generally 

implemented under a shift-adds architecture using only 

shifts, adders, and subtractors.  



 

  
                                                                                                                                                                                                                    Page 1029 

 

Note that shifts by a constant value can be 

implemented using only wires which represent no 

hardware cost. Thus, a well-known optimization 

problem [3] is defined as: given a set of constants, find 

the minimum number of adders/subtractors that realize 

the constant multiplications. Note that this is an NP-

complete problem even in the case of a single constant 

multiplication. In the last two decades, many efficient 

algorithms were proposed for the multiplierless design 

of the MCM block, targeting not only the minimization 

of the number of operations, but also the optimization 

of gate-level area, delay, throughput, and power 

dissipation of the MCM design. The algorithm of  

guarantees the least number of operations in the 

CAVM design and incorporates efficient techniques to 

reduce the gate-level area and delay of the CAVM 

design. 

 

Many efficient FDO algorithms were proposed, 

considering different filter constraints, targeting 

different filter forms, using different search methods 

during the exploration of possible filter coefficients, 

and applying different techniques to reduce the filter 

design complexity. However, none of these algorithms 

can guarantee that their solutions (a set of filter 

coefficients) lead to a filter design with the minimum 

number of adders/subtractors. This is due to two main 

facts: i) they do not explore the whole search space; 

and/or ii) they are not equipped with the exact 

techniques that can find the minimum number of 

operations for the constant multiplications. In this 

article, we present the exact FDO algorithm, called 

SIREN, that can find a set of fixed-point filter 

coefficients, satisfying the filter constraints and 

leading to a filter design with the minimum number of 

adders/subtractors under the minimum quantization 

value. SIREN is equipped with a depth-first search 

(DFS) method to explore the search space 

exhaustively, the exact algorithm of to find the 

minimum number of operations in the MCM block of 

the transposed form, and efficient search pruning and 

branching techniques to speed up the search process.  

Since the size of the search space. of the FDO problem 

grows exponentially with the filter length, SIREN can 

only handle filters with a small number of coefficients. 

It was observed that it can find solutions to the 

symmetric filters including less than 40 coefficients in 

a reasonable time. 

 

II. EXISTING SYSTEM: 

Multiple constant multiplication (MCM) constitutes a 

typical fixed-point arithmetic operation in digital 

signal Processing. It is the focus of a lot of research on 

high-speed and low power devices in communication 

systems and signal processing systems. In multiplier 

less MCM, multipliers are replaced by simpler 

components such as adders and hard-wired shifts 

(adders in our paper include also subtractors as their 

hardware costs are similar). By using the Negative 

digits (subractor in circuit) in their signed-digit 

representations, coefficients may be synthesized with 

fewer adders; therefore the area and power 

consumption of the circuit can be reduced. An example 

of a multiplier-based and a multiplier less based MCM 

implementations respectively, wherein 4 

multiplications are replaced by 5 adders and 5 hard-

wired shifts. Such Multiplier less MCMs are utilized, 

for example, in the design of finite-impulse response 

Filters. 

 

III. PROPOSED SYSTEM ALGORITHM: 

ECHO-A AND ECHO-D:  

To realize the MCM block of the transposed form with 

the minimum number of adder-steps, in SIREN and 

NAIAD, we respectively used the modified versions of 

the approximate algorithms of [9] and [3] that can 

handle the delay constraint. Whenever a set of fixed-

point filter coefficients is determined in SIREN and 

NAIAD, the minimum adder-steps of coefficients is 

computed as given in Section II-B-1 and it is given to 

the algorithms of and  as a delay constraint. In order to 

target the direct form of the FIR filter, in SIREN and 

NAIAD, ECHO-A  is used to compute the smallest 

number of operations in the CAVM block and ECHO-

D is used for the design of the CAVM block with a 

small number of adder-steps.  
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Note that in direct form filters, the total number of 

operations in the filter, i.e., TA, is determined by the 

solution of ECHO-A or ECHO-D on the set of filter 

coefficients. The proposed methods can target different 

filter constraints. For example, when the lower and 

upper bounds of , and , in (4) are set to 1, the filter 

constraints of are aimed. Setting and respectively to 

0.7 and 1.4 corresponds to the 3 Db gain tolerance in 

the filter design. The proposed algorithms can also 

target asymmetric filters taking into account the related 

filter constraints. The proposed algorithms can target 

the optimization of the gate-level area of the filter 

design. In this case, whenever a set of coefficients is 

found, an algorithm, that can find the shift-adds design 

of the multiplier block of the filter occupying 

minimum area, should be used. In the transposed form 

filter, the size of registers and adders in the register-

add block should also be considered. 

 
Fig: Multiplier less realization of constant 

multiplications using the DBR technique 

 

IV. MODULES:  

 Constant multiplications using the DBR 

 Exact CSE algorithm, exact GB algorithm, 

approximate GB algorithm 

 ECHO-A and ECHO-D  

 FIR filter 

 

V. MODULE DESCRIPTION: 

CONSTANT MULTIPLICATIONS USING THE 

DBR: 

 
EXACT CSE ALGORITHM, EXACT GB 

ALGORITHM, APPROXIMATE GB 

ALGORITHM: 

 
ECHO-A and ECHO-D: 

 

 
 

FIR FILTER OPTIMIZATION: 
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CSE AND GB ALGORITHM: 

An algorithm for efficient solution of the multiple 

constant multiplication problem. Common sub 

expression elimination (CSE) as a way to tackle the 

MCM problem was already proposed by various 

authors primarily as a possible method for the 

optimization of finite-duration impulse response (FIR) 

filter area through the reduction of the multiplier block 

logic a number of other applications in which the 

MCM transformation can be successfully applied were 

proposed. In this work, we will introduce an algorithm 

able to solve the CSE problem in an efficient way.  

 

The idea of CSE can be demonstrated on a FIR filter 

design. The optimization procedure targets the 

minimization of the multiplier block area. After 

expressing the coefficients in a canonical signed digit 

(CSD) format in order to reduce the total number of 

nonzero bits (thus also the additions/subtractions 

necessary), an add shift expansion is performed. The 

goal of CSE is to identify the bit patterns that are 

present in the coefficient set more than once. Since it is 

sufficient to implement the calculation of the multiple 

identical expressions only once, the resources 

necessary for these operations can be shared. 

 

 
 

VI. GRAPH BASE(GB) ALGORITHM: 

The optimization of gate-level area problem in digit-

serial MCM design is an NP complete problem due to 

the NP-completeness of the MCM problem. Thus, 

naturally, there will be always 0–1 ILP problems 

generated by the exact CSE algorithm that current 0–1 

ILP solvers find difficult to handle. Hence, the GB 

heuristic algorithms, which obtain a good solution 

using less computational resources, are indispensable.  

In our approximate algorithm called MINASDS, as 

done in algorithms designed for the MCM problem 

given in Definition 1, we find the fewest number of 

intermediate constants such that all the target and 

intermediate constants are synthesized using a single 

operation. However, while selecting an intermediate 

constant for the implementation of the not yet 

synthesized target constants in each iteration, we favor 

the one among the possible intermediate constants that 

can be synthesized using the least hardware and will 

enable us to implement the not-yet synthesized target 

constants in a smaller area with the available constants.  

 

After the set of target and intermediate constants that 

realizes the MCM operation is found, each constant is 

synthesized using an A-operation that yields the 

minimum area in the digit-serial MCM design. The 

area of the digit-serial MCM operation is determined 

as the total gate-level implementation cost of each 

digit-serial addition, subtraction, and shift operation 

under the digit size parameter d as described in Section 

II-D. The Preprocessing phase of the MINAS-DS 

algorithm is the same as that of the exact CSE 

algorithm, and its main part and routines are given. 

The right shift of an A-operation is assumed to be zero. 

 
 

VII. APPLICATIONS: 

1. Semiconductor Memory 

2. System on- Chips 

3. Digital Signal Processing (DSP) 
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VIII. RESULTS: 

DBR1: 

 
 

DBR2: 

 
 

EXACT GB: 

 
 

EXACT CSE: 

 
 

 

APPROXIMATE GB: 

 
 

ECHO-A: 

 
 

ECHO-D: 
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FIR WITH GBR: 

 
 

FIR WITH EXACT GB: 

 
 

FIR WITH ECHO-D: 

 
 

 

 

IX. SCREENSHOTS OF RESULTS: 

FIR GB MODIFIED: 

 
 

FIR GB: 

 
 

FIR ECHO B: 
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TIMING REPORT: 

FIR GB: 

 
 

FIR ECHO B: 

 
 

FIR GB MODIFIED: 

 
 

RTL SCHEMATIC 

 

 

 

 

 
 

TECHNOLOGY SCHEMATIC 
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X. CONCLUSION: 

This article addressed the problem of optimizing the 

number of operations in the FIR filter design while 

satisfying the filter constraints, generally known as the 

FDO problem. It presented exact and approximate 

FDO algorithms, all of which are equipped with 

efficient methods to find the fewest operations in the 

shift-adds design of the coefficient multiplications. 

Moreover, it showed how these algorithms can be 

modified to target different filter constraints and filter 

forms and to handle a delay constraint in the multiplier 

blocks of filters. It was observed that the exact FDO 

method can handle filters with a small number of 

coefficients, on which approximate FDO methods can 

find solutions very close to the minimum. It was also 

shown that heuristic methods are indispensable for 

filters with a large number of coefficients, on which 

the proposed approximate method can find better 

solutions in terms of the number of operations than 

prominent FDO algorithms. It was indicated that the 

total number of operations, EWL value, filter length, 

quantization value, and filter form have a significant 

impact on the gate-level area, delay, and power 

dissipation results of filter designs. 
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