

 Page 81

Competent Cache Supported Route Planning on Road Maps

Lakshman Tunk

Student,

Aurora Scientific Technological and Research

Academy.

Ch Srivalli

Associate Professor,

Aurora Scientific Technological and Research

Academy.

Abstract:

Pathfinding or pathing is the plotting, by a computer

application, of the shortest route between two points.

A journey planner, trip planner, or route planner is a

specialised application used to find an optimal means

of travelling between two or more given locations,

sometimes using more than one transport mode.

Typically route planning uses an efficient in-memory

representation of the network and timetable to allow

the rapid searching of a large number of paths.

Database queries may also be used where the number

of nodes needed to compute a journey is small, and to

access ancillary information relating to the journey. A

single engine may contain the entire transport network,

and its schedules.

Path planning is a basic operation of route driving or

flying a vehicle to somewhere/figuring out how to get

somewhere) services. It finds out route between our

needed/demanded starting place and ending place.

Now there are number of computer programs at

present like GPS and digital mapping. But due to

unexpected difference/different version in driving

direction, losing of GPS signal like many issues we

need to propose this path planning method. We

implement a system, cash based path planning method.

It respond to us with respect our question, also it return

result that (before that/before now) asked that stored in

our computer file full of information. In this paper, we

deliver a innovative framework for reusing the

formerly cached query results as well as an effective

algorithm for improving the query evaluation on the

server.

Keywords:

Path Planning, Cache, GPS, Routhe Planning, Roads,

Data analytics.

Introduction:

Pathfinding is closely related to the shortest path

problem, within graph theory, which examines how to

identify the path that best meets some criteria (shortest,

cheapest, fastest, etc) between two points in a large

network. At its core, a pathfinding method searches a

graph by starting at one vertex and exploring adjacent

nodes until the destination node is reached, generally

with the intent of finding the cheapest route. Although

graph searching methods such as a breadth-first search

would find a route if given enough time, other

methods, which "explore" the graph, would tend to

reach the destination sooner. An analogy would be a

person walking across a room; rather than examining

every possible route in advance, the person would

generally walk in the direction of the destination and

only deviate from the path to avoid an obstruction, and

make deviations as minor as possible. There is a great

deal of variation among different journey planner

applications, yet many share several common features.

These typically include an interface for helping the

user identify their origin and destination locations.

These may include a geocoder which can find

locations from street addresses or a web map that users

can click on. A location finding process will typically

first resolve the origin and destination into the nearest

known nodes on the transport network in order to

compute a journey plan over its data set of known

journeys.

 Page 82

Related Work:

The first digital public transport journey planner

software was developed by Eduard Tulp, ainformatica

student at the University of Amsterdam on an Atari

PC. He was hired by the Dutch Railways to build a

digital journey planner for train services. In 1990 the

first digital journey planner for the Dutch Railways (on

diskette) was sold to be installed on PCs and

computers for off-line consultation. The principle of

the software program was published in a Dutch

university paper in 1991This was soon expanded to

include all public transport in the Netherlands. Other

European countries soon followed with their own

journey planners. The software supported telephone

inquiries to public transport companies. Before,

experienced staff was needed with good geographical

knowledge and experience in consulting the paper

timetables.

Early journey planning engines were typically

developed as part of the booking systems for high

value transport such as air and rail, using mainframe

databases and OLTP systems. Well known examples

of such computer reservations system (CRS) include

Sabre, Amadeus, Galileo, and the Rail Journey

Information System developed by British Rail. As

computing resources became more widely available,

journey planner engines were developed to run on

minicomputers, personal computers, and mobile

devices, and as internet based services accessible

though web browsers, Mobile browsers, SMS, etc.

In the early 2000s large scale metropolitan web

planners such as Transport for London's journey

planner became available. Starting in 2000 the

Traveline service provided all parts of the UK with

multi-modal journey planning and in 2003 the

Transport Direct portal was one of the first nationwide

systems, allowing comparison of travel by any mode

between any two points in the country. Many entities,

including municipal government, state and federal

government, and for-profit companies now operate

web sites offering trip planning services for large

metropolitan areas, or even whole countries.

Transport companies such as EasyJet, National Rail

Enquiries or Deutsche Bahn typically operate sites free

to people planning trips, relying on ticket sales and

advertising for revenues. As the size of the transport

systems covered by journey planners has increased,

protocols and algorithms for distributed journey

planning have been developed, allowing the distributed

computation of journeys using networks of journey

planners, each computing parts of the journey for

different parts of the country. JourneyWeb, EU Spirit,

Xephos, and the Delfi Protocol are all examples of

distributed journey planning protocols. Another

development in the 2000s has been the addition of

real-time information to update the current schedules

to include any delays or changes that will affect the

journey plan.

Technology:

Typically journey planners use an efficient in-memory

representation of the network and timetable to allow

the rapid searching of a large number of paths.

Database queries may also be used where the number

of nodes needed to compute a journey is small, and to

access ancillary information relating to the journey. A

single engine may contain the entire transport network,

and its schedules, or may allow the distributed

computation of journeys using a distributed journey

planning protocol such as JourneyWeb or Delfi

Protocol. A journey planning engine may be accessed

by different front ends, using a software protocol or

application program interface specialised for journey

queries, to provide a user interface on different types

of device. The development of journey planning

engines has gone hand in hand with the development

of data standards for representing the stops, routes and

timetables of the network, such as TransXChange,

NaPTAN, Transmodel or GTFS that ensure that these

fit together. Journey planning algorithms are a classic

example of problems in the field of Computational

complexity theory. Real-world implementations

involve a tradeoff of computational resources between

accuracy, completeness of the answer, and the time

required for calculation.

 Page 83

The sub-problem of route planning is an easier

problem to solve as it generally involves less data and

fewer constraints. However, with the development of

"road timetables", associating different journey times

for road links at different times of day, time of travel is

increasingly relevant for route planners as well.

Algorithms:

Journey planners use a routing algorithm to search a

graph representing the transport network. In the

simplest case where routing is independent of time, the

graph uses (directed) edges to represent street/path

segments and nodes to represent intersections. Routing

on such a graph can be accomplished effectively using

any of a number of routing algorithms such as

Dijkstra's, A*, Floyd-Warshall, or Johnson's

algorithm.[11] Different weightings such as distance,

cost or accessibility may be associated with each edge,

and sometimes with nodes (e.g. where there are traffic

signals).When time-dependent features such as public

transit are included, there are several proposed ways of

representing the transport network as a graph and

different algorithms may be used such as RAPTOR.

EXISTING SYSTEM:

• Path planning needs to be delivered in a timely

fashion. The requirement of timeliness is even more

challenging when an overwhelming number of path

planning queries is submitted to the server, e.g., during

peak hours. As the response time is critical to user

satisfaction with personal navigation services, it is a

mandate for the server to efficiently handle the heavy

workload of path planning requests.

• Jung and Pramanik propose the HiTi graph model to

structure a large road network model. HiTi aims to

reduce the search space for the shortest path

computation. While HiTi achieves high performance

on road weight updates and reduces storage overheads,

it incurs higher computation costs when computing the

shortest paths than the HEPV and the Hub Indexing

methods.

• To compute time-dependent fast paths, Demiryurek

et al. propose the B-TDFP algorithm by leveraging

backward searches to reduce the search space. It

adopts an area-level partition scheme which utilizes a

road hierarchy to balance each area.

DISADVANTAGES OF EXISTING SYSTEM:

• A cached query is returned only when it matches

completely with a new query.

• The time complexity is high.

• The cache content may not be up to date to respond

to recent trends in issued queries.

• The cost of constructing a cache is high, since the

system must calculate the benefit values for all sub-

paths in a full-path of query results.

PROPOSED SYSTEM:

• To meet existing need, we propose a system, namely,

Path Planning by Caching (PPC), that aims to answer a

new path planning query efficiently by caching and

reusing historically queried paths (queried-paths in

short).

• The proposed system consists of three main

components: (i) PPattern Detection, (ii) Shortest Path

Estimation, and (iii) Cache Management.

• Given a path planning query, which contains a source

location and a destination location, PPC firstly

determines and retrieves a number of historical paths

in cache, called PPatterns, that may match this new

query with high probability.

• The idea of PPatterns is based on an observation that

similar starting and destination nodes of two queries

may result in similar shortest paths (known as the path

coherence property).

• In the component PPatern Detection, we propose a

novel probabilistic model to estimate the likelihood for

 Page 84

a cached queried-path to be useful for answering the

new query by exploring their geospatial characteristics.

• To facilitate quick detection of PPatterns, instead of

exhaustively scanning all the queried paths in cache,

we design a grid-based index for the PPattern

Detection module. Based on these detected PPatterns,

the Shortest Path Estimation module constructs

candidate paths for the new query and chooses the best

(shortest) one.

• In this component, if a PPattern perfectly matches the

query, we immediately return it to the user; otherwise,

the server is asked to compute the unmatched path

segments between the PPattern and the query. Because

the unmatched segments are usually only a smaller

part of the original query, the server only processes a

“smaller subquery”, with a reduced workload.

• Once we return the estimated path to the user, the

Cache Management module is triggered to determine

which queried-paths in cache should be evicted if the

cache is full. An important part of this module is a new

cache replacement policy which takes into account the

unique characteristics of road networks.

• In this paper, we provide a new framework for

reusing the previously cached query results as well as

an effective algorithm for improving the query

evaluation on the server.

ADVANTAGES OF PROPOSED SYSTEM:

• PPC leverages partially matched queried-paths in

cache to answer part(s) of the new query. As a result,

the server only needs to compute the unmatched path

segments, thus significantly reducing the overall

system workload.

• We propose an innovative system, namely, path

planning by caching, to efficiently answer a new path

planning query by using cached paths to avoid

undergoing a time-consuming shortest path

computation.

• On average, we save up to 32 percent of time in

comparison with a conventional path planning system

(without using cache).

• We introduce the notion of PPattern, i.e., a cached

path which shares segments with other paths. PPC

supports partial hits between PPatterns and a new

query. Our experiments indicate that partial hits

constitute up to 92.14 percent of all cache hits on

average.

• A novel probabilistic model is proposed to detect the

cached paths that are of high probability to be a

PPattern for the new query based on the coherency

property of the road networks. Our experiments

indicate that these PPatterns save retrieval of path

nodes by 31.69 percent on average, representing a 10-

fold improvement over the 3.04 percent saving

achieved by a complete hit.

IMPLEMENTATION:

When implementing our paper, itincludes mainly four

modules. That issystem construction Module,

Probabilisticmodel for PPatterndetection,an efficient

grid-based solution and cache construction and update.

A. System Construction Module:

In system construction module, we develop the system

with the required entities to implement our proposed

model and evaluate the effectiveness of the system.

The main goal in this work is to reduce the server

workload by leveraging the queried-paths in cache to

answer a new path planning query. An intuitive

solution is to check whether there exists a cached

queried-path perfectly matching the new query. Here, a

perfect match means that the source and destination

nodes of the new query are the same as that of a

queried-path in cache.

B. Probabilistic model for PPattern detection:

To detect the best PPatterns, an idea is to calculate the

estimation distance based on each cached path, and

select thecached path with the shortest distance. It

faces many challenges.

 Page 85

Firstly, the distance estimation requires the server to

compute the unshared segments. Therefore, it incurs

significant computation to exhaustively examine all

cached paths. Secondly, such an exhaustive operation

implicitly assumes that each cached path is a PPattern

candidate to the query.

Algorithm of PPattern detection:

STEP 1: If distance between nodes s(source) and

t(destination) less than threshold(Dl) value, return the

result

PPattern = NULL

STEP 2: Divide the target space by grid cell size

STEP 3: Find out source(gs) and destination(gt) grid

STEP 4: Assign Qs = Logged queries whose paths

pass start grid(gs)

AndQt = Logged queries whose paths pass destination

grid(gt)

STEP 5: Store the intersect value of Qs and Qt

into Q

STEP 6: Assign path from source grid to destination

grid for each query into PT

STEP 7: Return cached path(PT).

C. Efficient Grid Based Solution:

To retrieve these patterns, we invent a grid-based

solution to further improve the system efficiency. Here

divide the whole space into equally sized grid cells,

here endpoints of all paths are mapped to the grid cells.

By counting the total number of covered grids we will

get the distance measure.

D. Cache Construction and Update:

It is an important part of cache management. Here we

invent a cache replacement method by taking unique

characteristics of road pattern. By observing many

users, we found that certain routes are selected by most

of the users.

Most of them selectmain roads than branch roads.

Because of the efficiency, popularity and capacity of

these major roads. In a road network G = (V,E), each

edge from node vmtovn is associated with a weight

Wm, nit is a system computed value corresponding to

the road type. If Wm, n is high indicates that the

corresponding road type is high.

Fig. shows an example for node and edge weight to

road types. Here edges are connected with node v1.

The weights of three edges are W1,2= 0.4, W1,3= 0.5,

and W1,4= 0.7, respectively. The weight of W1is set to

W1,4= 0.7.Nodeweight represent show path planning

query with it as the source node to be issued later.

Information like this can be used to propose the cache

replacement policy.

Algorithm of PPattern detection:

STEP 1: Assign PPatterns Detection into variable PT.

STEP 2: Assign Shortest Path Estimation from PTinto

variable p.

STEP 3: if cache C is not full then insert p into cache

and return C

STEP 4:Otherwise calculate usability for cached path

and stored into {µ} and path with minimum usability

and stores

It into p*

STEP 5: Check whether the usability value of the

current path p is larger than the minimum usability

value in thecurrent cache. If so, we place the current

query into C. and return C.

 Page 86

CONCLUSION:

In this paper we implemented a cached path planning

method. Also it solves all disadvantage of existing

system. That is, our implemented system reduces the

time complexity, Cached query is returned when it

partially matches with a new query also, Cache content

is up to date and also cost of constructing cache is low.

Here server only needs to calculate unmatched path

segments. So here workload of system is very law.

That is, our system reduces the system latency almost

32%.

REFERENCES:

[1]Ying Zhang, Member, IEEE, Yu-Ling Hsueh,

Member, IEEE, Wang-Chien Lee, Member, IEEE, and

Yi-Hao Jhang, “Efficient Cache-Supported Path

Planning on Roads”, IEEE Transactions on Knowledge

and Data Engineering, Vol. 28, No. 4, April 2016

2. W. Dijkstra, “A Note on Two Problems in

Connexion with Graphs”, Numerische Mathematik,

vol. 1, no. 1, pp. 269–271, 1959.

3. U. Zwick, “Exact and approximate distances in

graphs – a survey”, in Algorithms – ESA 2001, 2001,

vol. 2161, pp. 33–48.

4. P.Sudha, S.Usha & G.Chamundi, Autonomous

Robot Navigation, IJMETMR (ISSN 2348-4845), Vol

4, Issue 2,

http://www.ijmetmr.com/olfebruary2017/PSudha-

SUsha-GChamundi-82.pdf

5. S. Jung and S. Pramanik, “An Efficient Path

Computation Modelfor Hierarchically Structured

Topographical Road Maps”, IEEE Transactionson

Knowledge and Data Engineering, vol. 14, no. 5,

pp.1029–1046, 2002.

6. P. Hart, N. Nilsson, and B. Raphael, “A Formal

Basis for the Heuristic Determination of Minimum

Cost Paths”, IEEE Transactionson Systems Science

and Cybernetics, vol. 4, no. 2, pp. 100–107, 1967.

7. L. Zammit, M. Attard, and K. Scerri, “Bayesian

Hierarchical Modelling of Traffic Flow - With

Application to Malta’s Road Network”, in

International IEEE Conference on Intelligent

Transportation Systems, 2013, pp. 1376–1381.

8. S. Jung and S. Pramanik, “An Efficient Path

Computation Modelfor Hierarchically Structured

Topographical Road Maps”, IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no. 5, pp.

1029–1046, 2002.

9. P.Charitha & S.Suresh, Finding the Shortest Path

Computation in online , International Journal &

Magazine of Engineering, Technology, Management

and Research (IJMETMR), Volume No: 2 (2015),

Issue No: 8 (August)

http://www.ijmetmr.com/olaugust2015/PCharitha-

SSuresh-83.pdf

10. H. Mahmud, A. M. Amin, M. E. Ali, and T.

Hashem, “Shared Execution of Path Queries on Road

Networks”, Clinical Orthopaedics and Related

Research, vol. abs/1210.6746, 2012.

http://www.ijmetmr.com/olaugust2015/PCharitha-SSuresh-83.pdf
http://www.ijmetmr.com/olaugust2015/PCharitha-SSuresh-83.pdf

