

 Page 247

 Parallel Self-Timed Adder, Without Any Carry Chain Propagation

Performing Multi Bit Binary Addition

P. Deepa Reddy

PG Scholar,

Department of ECE,

MJR College of Engineering & Technology,

Piler, A.P, India.

Pradeep Kumar.K

HoD,

Department of ECE,

MJR College of Engineering & Technology,

Piler, A.P, India.

ABSTRACT

This kind of brief presents a similar single-rail self-

timed adder. based on a recursive formulation for

performing multi bit binary addition. The procedure is

parallel for those portions which often not need any

carry chain propagation. As a result, the design attains

logarithmic performance over random operand

conditions without the special speedup circuitry or

look-ahead programa. A practical implementation is

provided along with a completion detection unit. The

implementation is regular and does not have any

practical limitations of high fan outs. A high fan-in

gate is required though but this is unavoidable for

asynchronous reasoning and is managed by connecting

the transistors in parallel. Simulations have recently

been performed using an industry standard toolkit that

confirm the practicality and brilliance of the proposed

way over existing asynchronous adders. There is a

myriad designs of binary adders and we focus here on

asynchronous self-timed adders.Self-timed logic

circuits that rely upon and/or engineer timing

presumptions for the correct procedure. Self-timed

adders have the potential to run faster averaged for

dynamic data, as early completion realizing can avoid

the need for the worst circumstance bundled delay

mechanism of synchronous circuits.

Index Terms—Asynchronous circuits, binary adders,

CMOS design,digital arithmetic.

Introduction

Binary addition is the one of the most significant

procedure that a processor performs. Most of the adders

have recently been made for synchronous circuits even

though there is a strong desire for asynchronous

processors [1]. A valid dual-rail carry outcome also

provides acknowledgment from a single-bit adder block.

Therefore, asynchronous adders are either based on full

dual-rail encoding of all indicators (more formally using

null convention logic [2] that uses figuratively,

metaphorically correct logic rather than Boolean logic)

or pipelined using single-rail data and dual-rail carry for

acknowledgments.

A of the present-day digital systems are clock or

synchronous, which signals are binary and time is

discrete. The state of have within the registers are carried

out on the rising edge (positive edge) or falling edge

(negative edge) of the global clock - single advantage

triggering. The state of the global clock enables either

data loading or data storage. Since the overall clock

utilization {is merely} 50% for single triggered systems,

double advantage triggered flip-flops were proposed in

the works with the motive of increasing the device

throughput as data can be on both rising and falling

clock edges and data is not rid of when the clock signal

will not toggle The problems of time clock skew and

power have been the major drivers for the worldwide

resurgence of interest in asynchronous design The

design of clock-free or asynchronous systems has thus

become attractive for digital system designers during the

previous two decades although asynchronous logic was

explored from the infancy of included circuit design

Asynchronous brake lines assume that signals are binary

but the concept that period is not discrete. A great

asynchronous system is one in which there is no global

synchronization within the system; subsystems within

the system are coordinated locally by the communication

protocols between them. The results the subsystems in

 Page 248

an asynchronous system can be consumed by other

subsystems when they are made without having to wait

for global clock tick. Moreover in asynchronous

systems, a sub-system can certainly be replaced by

another subsystem with the same functionality but with

different performance, but this is not an easy task in case

of a synchronous system as the clock period might have

to be recomputed. An asynchronous system level that

requires request/acknowledge handshake (signal

exchange) signaling protocol is shown in figure one

particular. 1.1) However, powerful asynchronous

systems embed the request information within the data

wires and are usually referred to as self-timed systems.

Self-timed systems are characterized by the absence of

any time reference to which all the functions are

synchronized - being in stark to synchronous systems

where all functions are synchronized to the global clock

transmission

.

Fig 1.1 : A typical asynchronous system stage

The half adder adds two one-bit binary

numbers A and B. It has two outputs, S and C (the value

theoretically carried on to the next addition); the final

sum is 2C + S. The simplest half-adder design, pictured

on the right, incorporates an XOR gate for S and

an AND gate for C. With the addition of an OR gate to

combine their carry outputs, two half adders can be

combined to make a full adder.

A full adder adds binary numbers and accounts for

values carried in as well as out. A one-bit full adder adds

three one-bit numbers, often written as A, B,

and Cin; A and B are the operands, and Cin is a bit carried

in from the next less significant stage.
[2]

 The full-adder is

usually a component in a cascade of adders, which add

8, 16, 32, etc. binary numbers. The circuit produces a

two-bit output sum typically represented by the

signals Cout and S, where .

1.2 Existing System

Addition is the most common and often used arithmetic

operation on microprocessor, digital signal processor,

especially digital computers. Also, it serves as a building

block for synthesis all other arithmetic operations.

Therefore, regarding the efficient implementation of an

arithmetic unit, the binary adder structures become a

very critical hardware unit.

1.2.1 Carry select adder(CSA)

The carry select adder the category of conditional sum

adder. Conditional adder works on some condition. Sum

and bring are calculated by presuming input carry as one

particular and 0 prior the input carry comes. actual carry

input the actual calculated of sum and hold are selected

by using a multiplexer. The conventional carry choice

adder k/2 little bitadder for the reduced 50 percent of the

bits i. e. least significant as well as for the upper 50

percent i. e. most significant bits (MSB's) two k/ bit

adders. In MSB adders one adder carry input for

performing addition and another assumes carry input as

zero. The from the last level i. e. least significant bit

stage is employed to select the actual determined values

of output take and sum. The selection is carried out by

using a multiplexer.

Fig 1.2 : Carry select adder

In electronics, a carry-select adder is a particular way to

implement an adder, which is a logic element that

computes the -bit sum of two -bit numbers.

The carry-select adder is simple but rather fast, having a

gate level depth of .

http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/Adder_(electronics)#cite_note-Mano79-1

 Page 249

The carry-select adder generally consists of two ripple

carry adders and a multiplexer. Adding two n-bit

numbers with a carry-select adder is done with two

adders (therefore two ripple carry adders) in order to

perform the calculation twice, one time with the

assumption of the carry being zero and the other

assuming one. After the two results are calculated, the

correct sum, as well as the correct carry, is then selected

with the multiplexer once the correct carry is known.

The number of bits in each carry select block can be

uniform, or variable. In the uniform case, the optimal

delay occurs for a block size of . When variable,

the block size should have a delay, from addition inputs

A and B to the carry out, equal to that of the multiplexer

chain leading into it, so that the carry out is calculated

just in time. The delay is derived from

uniform sizing, where the ideal number of full-adder

elements per block is equal to the square root of the

number of bits being added, since that will yield an

equal number of MUX delays.

Problem in the system - This technique of dividing

adder into stages increases the area utilization but

addition operation fastens.

1.2.2 Carry look ahead adder (CLA)

A carry-look ahead adder (CLA) is a type of adder used

in digital logic. A carry-look ahead adder improves

speed by reducing the amount of time required to

determine carry bits. It can be contrasted with the

simpler, but usually slower, ripple carry adder for which

the carry bit is calculated alongside the sum bit, and each

bit must wait until the previous carry has been calculated

to begin calculating its own result and carry bits. The

carry-look ahead adder calculates one or more carry bits

before the sum, which reduces the wait time to calculate

the result of the larger value bits. The Kogge-Stone

adder and Brent-Kung adder are examples of this type of

adder.

A ripple-carry adder works in the same way as pencil-

and-paper methods of addition. Starting at the rightmost

(least significant) digit position, the two corresponding

digits are added and a result obtained. It is also possible

that there may be a carry out of this digit position (for

example, in pencil-and-paper methods, "9+5=4, carry

1"). Accordingly all digit positions other than the

rightmost need to take into account the possibility of

having to add an extra 1, from a carry that has come in

from the next position to the right.

This means that no digit position can have an absolutely

final value until it has been established whether or not a

carry is coming in from the right. Moreover, if the sum

without a carry is 9 (in pencil-and-paper methods) or 1

(in binary arithmetic), it is not even possible to tell

whether or not a given digit position is going to pass on

a carry to the position on its left. At worst, when a whole

sequence of sums comes to ...99999999... (in decimal) or

...11111111... (in binary), nothing can be deduced at all

until the value of the carry coming in from the right is

known, and that carry is then propagated to the left, one

step at a time, as each digit position evaluated "9+1=0,

carry 1" or "1+1=0, carry 1". It is the "rippling" of the

carry from right to left that gives a ripple-carry adder its

name, and its slowness. When adding 32-bit integers, for

instance, allowance has to be made for the possibility

that a carry could have to ripple through every one of the

32 one-bit adders.

Carry look ahead depends on two things:

1. Calculating, for each digit position, whether that

position is going to propagate a carry if one

comes in from the right.

2. Combining these calculated values to be able to

deduce quickly whether, for each group of

digits, that group is going to propagate a carry

that comes in from the right.

Fig 1.3 : Carry look ahead adder

http://en.wikipedia.org/wiki/Adder_%28electronics%29

 Page 250

For each bit in a binary sequence to be added, the Carry

Look Ahead Logic will determine whether that bit pair

will generate a carry or propagate a carry. This allows

the circuit to "pre-process" the two numbers being added

to determine the carry ahead of time. Then, when the

actual addition is performed, there is no delay from

waiting for the ripple carry effect. Problem in the

system- The disadvantage of the CLA adders is that the

carry expressions become quite complex for more than 4

bits.

Proposed system

The adder first accepts two input operands to perform

half additions for each bit. Subsequently, it iterates using

earlier generated carry and sums to perform half-

additions repeatedly until all carry bits are consumed and

settled at zero level.

Fig 3.1: General block diagram of parallel self timed

adder (PASTA)

Architecture of PASTA

The general architecture of the adder is shown in Fig.

3.1. The selection input for two-input multiplexers

corresponds to the Req handshake signal and will be a

single 0 to 1 transition denoted by SEL. It will initially

select the actual operands during SEL = 0 and will

switch to feedback/carry paths for subsequent iterations

using SEL = 1. The feedback path from the HAs enables

the multiple iterations to continue until the completion

when all carry signals will assume zero values.

State Diagrams

In Fig. 3.2, two state diagrams are drawn for the initial

phase and the iterative phase of the proposed

architecture. Each state is represented by (Ci+1 Si) pair

where Ci+1, Si represent carry out and sum values,

respectively, from the ith bit adder block. During the

initial phase, the circuit merely works as a combinational

HA operating in fundamental mode. It is apparent that

due to the use of HAs instead of FAs, state cannot

appear.

During the iterative phase (SEL = 1), the feedback path

through multiplexer block is activated. The carry

transitions (Ci) are allowed as many times as needed to

complete the recursion.

From the definition of fundamental mode circuits, the

present design cannot be considered as a fundamental

mode circuit as the input–outputs will go through several

transitions before producing the final output. It is not a

Muller circuit working outside the fundamental mode

either as internally, several transitions will take place, as

shown in the state diagram. This is analogous to cyclic

sequential circuits where gate delays are utilized to

separate individual states

Fig 3.2: State diagram of PASTA (a) initial

phase (b) iterative phase

Recursive Formula for Binary Addition

Let Si
j
and C ji+1 denote the sum and carry, respectively,

for ith bit at the j th iteration. The initial condition (j= 0)

for addition is formulated as follows:

The j th iteration for the recursive addition is formulated

by

 Page 251

The recursion is terminated at kth iteration when the

following condition is met:

3.2 Software required

 Dsch (for schematics)

 Microwind (for Layouts)

1. Dsch (for schematics)

The DSCH program is a logic editor and simulator.

DSCH is used to validate the architecture of the logic

circuit before the microelectronics design is started.

DSCH provides a user-friendly environment for

hierarchical logic design, and fast simulation with delay

analysis, which allows the design and validation of

complex logic structures.

DSCH also features the symbols, models and assembly

support for 8051 and 16F84 controllers. Designers can

create logic circuits for interfacing with these controllers

and verify software programs using DSCH.

 User friendly environment for rapid design of

logic circuits

 Handles both conventional pattern based logic

simulation and intuitive on screen mouse

simulation

 Supports hierarchical logic design

 Built-in extractor which generates a SPICE netlist

from the schematic diagram

 Current and power consumption analysis.

 Generates a VERILOG description of the

schematic for layout editor

 Immediate access to symbol properties (Delay,

fanout)

 Models and assembly support for 8051 and PIC

18f84

 Sub-micron, deep-submicron, nanoscale

technology support.

 Supported by huge symbol library.

Fig 3.3 :Dsch window

2. Microwind

The MICROWIND2 program allows the student to

design and simulate an integrated circuit at physical

description level. The package contains a library of

common logic and analog ICs to view and simulate.

MICROWIND2 includes all the commands for a mask

editor as well as original tools never gathered before in a

single module (2D and 3D process view, VERILOG

compiler, tutorial on MOS devices). You can gain access

to Circuit Simulation by pressing one single key. The

electric extraction of your circuit is automatically

performed and the analog simulator produces voltage

and current curves immediately.

Fig 3.4 :Microwind window

RESULTS

VI. CONCLUSION

This kind of brief presents an effective implementation

of DINERO. Initially, the theoretical groundwork for a

single-rail wave-pipelined adder is made. Consequently|,

the architectural design and CMOS implementations are

 Page 252

provided. The design achieves a simple n-bit adder that

is area and interconnection-wise similar to the simplest

adder particularly the RCA. Moreover, the circuit works

in a parallel manner for self-employed carry chains, so

defines logarithmic average time performance over

random input beliefs. The completion detection device

for the proposed adder is also practical and efficient.

Simulation results are being used to verify the the

proposed approach.

REFERENCES

[1] D. Geer, “Is it time for clockless chips?

[Asynchronous processor chips],” IEEE Comput.,

vol. 38, no. 3, pp. 18–19, Mar. 2005.

[2] J. Sparsø and S. Furber, Principles of Asynchronous

Circuit Design. Boston, MA, USA: Kluwer

Academic, 2001.

[3] P. Choudhury, S. Sahoo, and M. Chakraborty,

“Implementation of basic arithmetic operations

using cellular automaton,” in Proc. ICIT, 2008, pp.

79–80.

[4] M. Z. Rahman and L. Kleeman, “A delay matched

approach for the design of asynchronous sequential

circuits,” Dept. Comput. Syst. Technol., Univ.

Malaya, Kuala Lumpur, Malaysia, Tech. Rep.

05042013, 2013.

[5] M. D. Riedel, “Cyclic combinational circuits,” Ph.D.

dissertation, Dept. Comput. Sci., California Inst.

Technol., Pasadena, CA, USA, May 2004.

[6] R. F. Tinder, Asynchronous Sequential Machine

Design and Analy-sis: A Comprehensive

Development of the Design and Analysis of Clock-

Independent State Machines and Systems. San

Mateo, CA, USA:Morgan, 2009.

[7] W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A

250-MHz wave pipelined adder in 2-μm CMOS,”

IEEE J. Solid-State Circuits, vol. 29, no. 9, pp.

1117–1128, Sep. 1994.

[8] F.-C. Cheng, S. H. Unger, and M. Theobald, “Self-

timed carry-lookahead adders,” IEEE Trans.

Comput., vol. 49, no. 7, pp. 659–672, Jul. 2000.

[9] S. Nowick, “Design of a low-latency asynchronous

adder using spec-ulative completion,” IEE Proc.

Comput. Digital Tech., vol. 143, no. 5, pp. 301–307,

Sep. 1996.

[10] N. Weste and D. Harris, CMOS VLSI Design: A

Circuits and SystemsPerspective. Reading, MA,

USA: Addison-Wesley, 2005.

[11] C. Cornelius, S. Koppe, and D. Timmermann,

“Dynamic circuit tech-niques in deep submicron

technologies: Domino logic reconsidered,” in Proc.

IEEE ICICDT, Feb. 2006, pp. 1–4.

[12] M. Anis, S. Member, M. Allam, and M.

Elmasry, “Impact of technology scaling on CMOS

logic styles,” IEEE Trans. Circuits Syst.,

AnalogDigital Signal Process., vol. 49, no. 8, pp.

577–588, Aug. 2002.

