

 Page 141

Parallel Self-Timed Adder, Without Any Carry Chain Propagation

Performing Multi Bit Binary Addition
P. Deepa Reddy

PG Scholar,

Dept of ECE,

MJR College of engineering & Technology,

Piler, A.P India

Pradeep Kumar.K

HOD,

Dept of ECE,

MJR College of engineering & Technology,

Piler, A.P India

Abstract:

This kind of brief presents a similar single-rail self-

timed adder based on a recursive formulation for

performing multi bit binary addition. The {procedure

is} parallel for those {pieces|parts|portions} {which

experts claim|which in turn|which often} not need any

carry chain propagation. As a result}, the design

attains logarithmic performance over random operand

conditions {without the} special speedup circuitry or

look-ahead {programa|schizzo|programa}. A practical

implementation is provided along with a completion

detection unit. The implementation is regular and does

not have any practical limitations of high fan outs. A

high fan-in gate is required though but this is

unavoidable for asynchronous {reasoning

|commonsense|reason} and is managed by connecting

the transistors in parallel. Simulations have recently

been performed using an industry standard toolkit that

{confirm|validate|check} the practicality and brilliance

of the proposed {strategy|procedure|way} over existing

asynchronous adders. {A few|There is a|Alarge}

myriad designs of binary adders and we focus here on

asynchronous self-timed adders.Self-timed logic

circuits that {rely upon} and/or engineer timing

presumptions for the correct procedure. Self-timed

adders have the potential to run faster averaged for

dynamic data, as early completion realizing can

avoidthe need for the worst circumstance bundled

delay mechanism of synchronous circuits.

Index Terms:

Asynchronous circuits, binary add ers, CMOS design,

digital arithmetic.

Introduction:

Binary addition is the {solitary|one|sole} {most signi

ficant|mostcrucial|most critical} {procedure} that a

processor performs. Most of the adders have recently

been {made for|suitable for} synchronous circuits even

though there is a strong {desire for|involvement

in|affinity for} clock less/asynchronous processors/

circuits[1]. A valid dual-rail carry {result|endresult|

outcome} also provides acknowledgment from a

single-bit adder block. {Therefore|Hence|As a result},

asynchronous adders are either based on full dual-rail

encoding of all {indicators|signs|alerts} (more formally

using null convention logic [2] that uses figuratively,

metaphorically correct logic {rather than} Boolean

logic) or pipelined {procedure} using single-rail data

and dual-rail carry for acknowledgments.

A of the present-day digital systems are clock or

synchronous, which signals are binary and time is

discrete. The state of have within the registers are

carried out on the rising edge (positive edge) or falling

edge (negative edge) of the global clock - single

{advantage|border} triggering. The state of the global

clock {enables|allows|lets} either data loading or data

storage. Since the overall clock utilization {is merely}

50% for single triggered systems, double

{advantage|border} triggered flip-flops were proposed

in the works with the motive of increasing {the

device|themachine|the program} throughput as data

can be on {both|the|the two} rising and falling clock

edges and data is not rid of when the clock signal {will

not|would not} toggle.

 Page 142

The problems of {time clock|time} skew and power

have been the major drivers for the worldwide

resurgence of interest in asynchronous design The

design of clock-free or asynchronous systems has thus

become attractive for digital system designers during

the {previous|earlier} two decades although

asynchronous logic was explored from the infancy of

included circuit design Asynchronous brake lines

assume that signals are binary but the {idea|concept}

{that period is|that point is|time is} not discrete. A

great asynchronous system is one in which there is no

global synchronization within thesystem; subsystems

within the system are coordinated locally by the

communication protocols between them. The results

the subsystems in an asynchronous system can be

consumed by other subsystems {the moment|when}

they are {made} without having to wait for global

clock tick. Moreover in asynchronous systems, a sub-

system {can certainly|may easily} be replaced by

another subsystem with the same functionality but with

different performance, but this is not an easy task in

case of a synchronous system as the clock period

might have to be recomputed. An asynchronous

system level {which involves|that requires}

request/acknowledge handshake (signal exchange)

signaling protocol is shown in figure one particular. 1)

However, {strong|powerful|solid} asynchronous

systems embed the request information within the data

wires and are usually referred to as self-timed systems.

Self-timed systems are characterized by the absence of

any {time|moment} reference to which all the

{functions are|businesses are} synchronized - being in

stark to synchronous systems where all {functions

are|businesses are} synchronized to the global clock

{transmission|sign}.

Fig 1.1 : A typical asynchronous system stage

The half adder adds two one-bit binary numbers

 A and B. It has two outputs, S and C (the value

theoretically carried on to the next addition); the final

sum is 2C + S. The simplest half-adder design,

pictured on the right, incorporates an XOR

gate for S and an AND gate for C. With the addition of

an OR gate to combine their carry outputs, two half

adders can be combined to make a full adder. A full

adder adds binary numbers and accounts for values

carried in as well as out. A one-bit full adder adds

three one-bit numbers, often written as A, B,

and Cin; A and B are the operands, and Cin is a bit

carried in from the next less significant stage.
[2]

 The

full-adder is usually a component in a cascade of

adders, which add 8, 16, 32, etc. binary numbers. The

circuit produces a two-bit output sum typically

represented by the signals Cout and S,

where .

1.2 Existing System

Addition is the most common and often used

arithmetic operation on microprocessor, digital signal

processor, especially digital computers. Also, it serves

as a building block for synthesis all other arithmetic

operations. Therefore, regarding the efficient

implementation of an arithmetic unit, the binary adder

structures become a very critical hardware unit.

1.2.1 Carry select adder(CSA)

The carry select adder the category of conditional sum

adder. Conditional adder works on some condition.

Sum and {bring are|holdare|take are} calculated by

{presuming|supposing|hoping} input carry as {you|one

particular} and 0 prior the input carry comes. actual

carry input the actual calculated of sum and {hold

are|take are} selected {by using a} multiplexer. The

conventional carry {go for|gowith|choice} adder k/2

{little bit|little|tad} adder for {the low|thebottom|the

reduced} {fifty percent|50 percent|1 / 2} of the bits i. e.

least significant } {as well as for|and then for} the

upper {fifty percent|50 percent|1 / 2} i. e. most

significant bits (MSB's) two k/ bit adders. In MSB

adders one adder carry input for performing addition

http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/Adder_(electronics)#cite_note-Mano79-1

 Page 143

and another assumes carry input as zero. The from the

last level i. e. least significant bit stage {can be used|is

employed} to select the actual {determined|measured

|considered} values of output {hold|take} and sum.

The selection {is completed|isperformed|is carried out}

by {by using a} multiplexer.

Fig 1.2 : Carry select adder

In electronics, a carry-select adder is a particular way

to implement an adder, which is a logic element that

computes the -bit sum of two -bit

numbers. The carry-select adder is simple but rather

fast, having a gate level depth of . The

carry-select adder generally consists of two ripple

carry adders and a multiplexer. Adding two n-bit

numbers with a carry-select adder is done with two

adders (therefore two ripple carry adders) in order to

perform the calculation twice, one time with the

assumption of the carry being zero and the other

assuming one. After the two results are calculated, the

correct sum, as well as the correct carry, is then

selected with the multiplexer once the correct carry is

known. The number of bits in each carry select block

can be uniform, or variable. In the uniform case, the

optimal delay occurs for a block size of . When

variable, the block size should have a delay, from

addition inputs A and B to the carry out, equal to that

of the multiplexer chain leading into it, so that the

carry out is calculated just in time. The

 delay is derived from uniform sizing, where the ideal

number of full-adder elements per block is equal to the

square root of the number of bits being added, since

that will yield an equal number of MUX delays.

Problem in the system:

This technique of dividing adder into stages increases

the area utilization but addition operation fastens.

1.2.2 Carry look ahead adder (CLA):

A carry-look ahead adder (CLA) is a type of adder

used in digital logic. A carry-look ahead adder

improves speed by reducing the amount of time

required to determine carry bits. It can be contrasted

with the simpler, but usually slower, ripple carry adder

for which the carry bit is calculated alongside the sum

bit, and each bit must wait until the previous carry has

been calculated to begin calculating its own result and

carry bits. The carry-look ahead adder calculates one

or more carry bits before the sum, which reduces the

wait time to calculate the result of the larger value bits.

The Kogge-Stone adder and Brent-Kung adder are

examples of this type of adder.

A ripple-carry adder works in the same way as pencil-

and-paper methods of addition. Starting at the

rightmost (least significant) digit position, the two

corresponding digits are added and a result obtained. It

is also possible that there may be a carry out of this

digit position (for example, in pencil-and-paper

methods, "9+5=4, carry 1"). Accordingly all digit

positions other than the rightmost need to take into

account the possibility of having to add an extra 1,

from a carry that has come in from the next position to

the right.

This means that no digit position can have an

absolutely final value until it has been established

whether or not a carry is coming in from the right.

Moreover, if the sum without a carry is 9 (in pencil-

and-paper methods) or 1 (in binary arithmetic), it is not

even possible to tell whether or not a given digit

position is going to pass on a carry to the position on

its left. At worst, when a whole sequence of sums

comes to ...99999999... (in decimal) or ...11111111...

(in binary), nothing can be deduced at all until the

value of the carry coming in from the right is known,

and that carry is then propagated to the left, one step at

a time, as each digit position evaluated "9+1=0, carry

http://en.wikipedia.org/wiki/Adder_%28electronics%29

 Page 144

1" or "1+1=0, carry 1". It is the "rippling" of the carry

from right to left that gives a ripple-carry adder its

name, and its slowness. When adding 32-bit integers,

for instance, allowance has to be made for the

possibility that a carry could have to ripple through

every one of the 32 one-bit adders.

Carry look ahead depends on two things:

1. Calculating, for each digit position, whether that

position is going to propagate a carry if one comes

in from the right.

2. Combining these calculated values to be able to

deduce quickly whether, for each group of digits,

that group is going to propagate a carry that comes

in from the right.

Fig 1.3 : Carry look ahead adder

For each bit in a binary sequence to be added, the

Carry Look Ahead Logic will determine whether that

bit pair will generate a carry or propagate a carry. This

allows the circuit to "pre-process" the two numbers

being added to determine the carry ahead of time.

Then, when the actual addition is performed, there is

no delay from waiting for the ripple carry effect.

Problem in the system:

The disadvantage of the CLA adders is that the carry

expressions become quite complex for more than 4

bits.

Proposed system:

The adder first accepts two input operands to perform

half additions for each bit.

Subsequently, it iterates using earlier generated carry

and sums to perform half-additions repeatedly until all

carry bits are consumed and settled at zero level.

Fig 3.1: General block diagram of parallel self

timed adder (PASTA)

1.Architecture of PASTA:

The general architecture of the adder is shown in Fig.

3.1. The selection input for two-input multiplexers

corresponds to the Req handshake signal and will be a

single 0 to 1 transition denoted by SEL. It will initially

select the actual operands during SEL = 0 and will

switch to feedback/carry paths for subsequent

iterations using SEL = 1. The feedback path from the

HAs enables the multiple iterations to continue until

the completion when all carry signals will assume zero

values.

2.State Diagrams:

In Fig. 3.2, two state diagrams are drawn for the initial

phase and the iterative phase of the proposed

architecture. Each state is represented by (Ci+1 Si) pair

where Ci+1, Si represent carry out and sum values,

respectively, from the ith bit adder block. During the

initial phase, the circuit merely works as a

combinational HA operating in fundamental mode. It

is apparent that due to the use of HAs instead of FAs,

state cannot appear. During the iterative phase (SEL =

1), the feedback path through multiplexer block is

activated. The carry transitions (Ci) are allowed as

many times as needed to complete the recursion. From

the definition of fundamental mode circuits, the

present design cannot be considered as a fundamental

mode circuit as the input–outputs will go through

several transitions before producing the final output. It

is not a Muller circuit working outside the fundamental

mode either as internally, several transitions will take

 Page 145

place, as shown in the state diagram. This is analogous

to cyclic sequential circuits where gate delays are

utilized to separate individual states

Fig 3.2: State diagram of PASTA (a) initial phase

(b) iterative phase

3.Recursive Formula for Binary Addition

Let Si
j
and C ji+1 denote the sum and carry,

respectively, for ith bit at the j th iteration. The initial

condition (j= 0) for addition is formulated as follows:

The j th iteration for the recursive addition is

formulated by

The recursion is terminated at kth iteration when the

following condition is met:

3.2 Software required

 Dsch (for schematics)

 Microwind (for Layouts)

1. Dsch (for schematics)

The DSCH program is a logic editor and simulator.

DSCH is used to validate the architecture of the logic

circuit before the microelectronics design is started.

DSCH provides a user-friendly environment for

hierarchical logic design, and fast simulation with

delay analysis, which allows the design and validation

of complex logic structures.

DSCH also features the symbols, models and assembly

support for 8051 and 16F84 controllers. Designers can

create logic circuits for interfacing with these

controllers and verify software programs using DSCH.

 User friendly environment for rapid design of

logic circuits

 Handles both conventional pattern based logic

simulation and intuitive on screen mouse

simulation

 Supports hierarchical logic design

 Built-in extractor which generates a SPICE netlist

from the schematic diagram

 Current and power consumption analysis.

 Generates a VERILOG description of the

schematic for layout editor

 Immediate access to symbol properties (Delay,

fanout)

 Models and assembly support for 8051 and PIC

18f84

 Sub-micron, deep-submicron, nanoscale

technology support.

 Supported by huge symbol library.

Fig 3.3 :Dsch window

2. MICROWIND:

The MICROWIND2 program allows the student to

design and simulate an integrated circuit at physical

description level. The package contains a library of

common logic and analog ICs to view and simulate.

MICROWIND2 includes all the commands for a mask

editor as well as original tools never gathered before in

a single module (2D and 3D process view, VERILOG

compiler, tutorial on MOS devices). You can gain

access to Circuit Simulation by pressing one single

key.

 Page 146

The electric extraction of your circuit is automatically

performed and the analog simulator produces voltage

and current curves immediately.

Fig 3.4 :Microwind window

CONCLUSION:

This kind of brief presents an effective implementation

of DINERO. Initially, the theoretical groundwork for a

single-rail wave-pipelined adder is made.

Consequently|, the architectural design and CMOS

implementations are provided. The design achieves a

simple n-bit adder that is area and interconnection-

wise similar to the simplest adder particularly the

RCA. Moreover, the circuit works in a parallel manner

for self-employed carry chains, so defines logarithmic

average time performance over random input beliefs.

The completion detection device for the proposed

adder is also practical and efficient. Simulation results

are being used to verify the the proposed approach.

REFERENCES:

1. D.Geer, “Is it time for clockless chips?

[Asynchronous processor chips],” IEEE Comput., vol.

38, no. 3, pp. 18–19, Mar. 2005.

2. J. Sparsø and S. Furber, Principles of Asynchronous

Circuit Design. Boston, MA, USA: Kluwer Academic,

2001.

3. P. Choudhury, S. Sahoo, and M. Chakraborty,

“Implementation of basic arithmetic operations using

cellular automaton,” in Proc. ICIT, 2008, pp. 79–80.

4. M.Z.Rahman and L. Kleeman, “A delay

matchedapproach for the design of asynchronous

sequential circuits,” Dept. Comput. Syst. Technol.,

Univ. Malaya, Kuala Lumpur, Malaysia, Tech. Rep.

05042013, 2013.

5. M. D. Riedel, “Cyclic combinational circuits,”

Ph.D. dissertation, Dept. Comput. Sci., California Inst.

Technol., Pasadena, CA, USA, May 2004.

6. R. F. Tinder, Asynchronous Sequential Machine

Design and Analy-sis: A Comprehensive Development

of the Design and Analysis of Clock-Independent State

Machines and Systems. San Mateo, CA, USA:Morgan,

2009.

7. W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A

250-MHz wave pipelined adder in 2-μm CMOS,”

IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1117–

1128, Sep. 1994.

8. F.-C. Cheng, S. H. Unger, and M. Theobald, “Self-

timed carry-lookahead adders,” IEEE Trans. Comput.,

vol. 49, no. 7, pp. 659–672, Jul. 2000.

9. S. Nowick, “Design of a low-latency asynchronous

adder using spec-ulative completion,” IEE Proc.

Comput. Digital Tech., vol. 143, no. 5, pp. 301–307,

Sep. 1996.

10. N. Weste and D. Harris, CMOS VLSI Design: A

Circuits and Systems Perspective. Reading, MA, USA:

Addison-Wesley, 2005.

11.C.Cornelius, S. Koppe, and D. Timmermann,

“Dynam ic circuit tech-niques in deep submicron

technologies: Domino logic reconsidered,” in Proc.

IEEE ICICDT, Feb. 2006, pp. 1–4.

12. M. Anis, S. Member, M. Allam, and M. Elmasry,

“Impact of technology scaling on CMOS logic styles,”

IEEE Trans. Circuits Syst., AnalogDigital Signal

Process., vol. 49, no. 8, pp. 577–588, Aug. 2002.

