

 Page 70

Intrusion Detection System

Kranthi K Lammatha

Chief Technology Officer (ITU)

Email Id: Kranthi@itu.edu

ABSTRACT

Computer networks bring us not only the benefits, such

as more computing power and better performance for a

given price, but also some challenges and risks,

especially in the field of system security. During the

past two decades, significant effort has been put into

network security research and several techniques have

been developed for building secure networks. Packet

filtering plays an important role in many security-

related techniques, such as intrusion detection, access

control and firewall. A packet-filtering system

constitutes the first line of defense in a computer

network environment. The key issues in the packet-

filtering technique are efficiency and flexibility. The

efficiency refers to the ability of a filter to quickly

capture network packets of interest, while the flexibility

means the filter can be customized easily for different

packet patterns.

In this thesis, we present a real-time packet-filtering

module, which can be integrated into a large-scale

network intrusion detection system. The core of this

packet-filtering module is a rule-based specification

language ASL (Auditing Specification Language),

which is used in describing the packet patterns and

reactions for a network intrusion detection system.

The important features of ASL that are not provided by

other packet-filtering systems are protocol

independence and type safety. ASL provides a number

of new features that distinguish it from other

languages used for intrusion detection and packet

filtering, such as packet structure description and

protocol constraint checking.

Wedevelop the algorithms and heuristics for

constructing fast packet filter from ASL specifications.

Our algorithms improve upon existing techniques in

that the performance of the generated filters is

insensitive to the number of rules. We discuss

implementation of these algorithms and present

experimental results.

INTRODUCTION

Computation models have experienced a significant

change since the emergence of computer networks,

which allow heterogeneous computers to communicate

with each other. During the past two decades, most

centralized systems have been replaced by a number of

interconnected computers. This factor has led to more

computing power, increased flexibility and better

performance/price ratio.

However, at the same time, we also face many new

challenges and risks with networked computing, such as

lack of communication reliability, coordination, resource

management, and so on. As more and more computer

networks are brought into electronic commerce,

transaction management, and even national defense,

people begin to pay increasing attention to system

security.

Network Security and Potential Threats

There are a number of security issues for a computer

network environment [1]:

Availability: The system must be functional and

correctly provide services.

Confidentiality: The data transmitted from one system

to the other must be accessible only for the authorized

parties.

Authentication: The identity associated with the data

Cite this article as: Kranthi K Lammatha, "Intrusion Detection

System", International Journal & Magazine of Engineering,

Technology, Management and Research, Volume 5 Issue 10, 2018,

Page 70-82.

mailto:Kranthi@itu.edu

 Page 71

must be correct. The identity can apply to a user, host or

software component.

Integrity: The data being processed or transmitted can

be modified only by the authorized parties.

Non-repudiation: Neither the sender nor the receiver of

data is able to deny the fact of data transmission.

A system that meets the above criteria can be considered

as a secure computer network system. A hacker, who

wants to attack a network, thus thinks of ways to

compromise the above criteria [1]:

Interruption: Destroy a system or make it unavailable

or unusable.

Interception: Obtain unauthorized access to data.

Modification: Compromise data integrity, e.g. modify

messages sent from one system to another.

Intrusion Detection

As defined by Heady et al. [2], an intrusion is any set of

actions that attempt to comprise the integrity,

confidentiality or availability of theresource.

Intrusion leads to violations of the security policies of a

computer system, such as unauthorized access to private

information, malicious break-in into a computer system,

or rendering a system unreliable or unusable.

A full-blown network security system should include the

following subsystems:

Intrusion Detection Subsystem: Distinguishes a potential

intrusion from a valid network operation.

Protection Subsystem: Protects the network and security

system itself from being compromised by the network

intrusions.

Reaction Subsystem: This part either traces down the

origin of an intrusion or fights back the hackers.

The focus of this thesis is on the intrusion detection

subsystem, which constitutes the first line of defense for

a computer network system. There are a number of

approaches in this field. Most of them fall into three

primary categories: anomaly detection, misuse detection

and hybrid schemes.

The anomaly detection approach is based on a model of

normal activities in the system. This model can either be

predefined or established through techniques such as

machine learning. Once there is a significant deviation

from this model, an anomaly will be reported. By

contrast, a misuse detection approach defines specific

user actions that constitute a misuse and uses rules for

encoding and detecting known intrusions [3]. The

hybrid detection approach uses a combination of

anomaly and misuse detection techniques.

OVERVIEW OF TCP/IP BASED NETWORK

INTRUSION

TCP/IP is the common language used in the world of

computer networks. Nevertheless, there exist several

security flaws in the protocol design or implementation

of TCP/IP. As a result, network hackers, who intend to

compromise the target network systems by exploiting

these security holes, have invented various intrusion

methods.

TCP/IP Basics

Developed under the sponsorship from DARPA

(Defense Advanced Research Projects Agency), TCP/IP

is the most widely used communication protocol suite

today. It is the de facto standard employed to

interconnect computing facilities in modern network

environments.

Protocol Hierarchy

TCP/IP is designed through a layered approach, with

each layer responsible for a different facet of

communication [4]. This hierarchical architecture makes

each protocol layer possible to evolve independently

without affecting the adjacent layers. In addition, data

encapsulation is achieved through various headers

among different transportation layers like IP header,

TCP header or other application headers as shown in

Figure 2.1. These headers are important in keeping the

state information for each network connection and

facilitating multiplexing and de-multiplexing of

transmission messages.

 Page 72

IP

IP is the workhorse protocol of the TCP/IP protocol

suite. It provides an unreliable, connectionless datagram

delivery service. All the TCP, UDP (User Datagram

Protocol),ICMP (Internet Control Message Protocol),

and IGMP (Internet Group Management Protocol) data

are transmitted as IP datagrams [4].

An IP header has the information like source IP address

and destination IP address, which plays an important

role in routing a packet around the networks. A detailed

description of IP header can be found in [4]. Figure 2.2

shows the structure of a normal IP header.

Figure 2.1 IP Header

Delivering a packet to the correct destination is non-

trivial, especially in a large-scale network system. Each

intermediate routing device makes best effort to deliver

the IP packet, but there is no guarantee that it will reach

the destination finally. So, a packet can be lost,

duplicated, or delivered out of order [4]. It is the task of

higher layer protocols to correct such errors.

UDP

UDP is a transport layer protocol, but it does not offer

much functionality over and above that of IP. The port

numbers in UDP header identify the sending process and

the receiving process [4], while the checksum provides a

limited ability for error detection (Figure 2.3).

Figure 2.3 UDP Header

However, due to its simplicity and low overhead

compared to connection-oriented protocols, UDP is

suitable for the design of simple request/reply

application protocol, such as DNS (Domain Name

System), SNMP (Simple Network Management

Protocol), and so on.

TCP

TCP is built on top of the IP layer, which is unreliable

and connectionless. But TCP provides the higher layer

application a reliable connection-oriented service. As

the tradeoff, each TCP connection requires an

establishment procedure and a termination step between

communication peers. TCP also provides sequencing

and flow control.

Without any option, a TCP header occupies 20 bytes as

shown in Figure 2.4. The sequence number is essential

in keeping the sending and receiving datagram in proper

order.

Figure 2.4 TCP Header

There are six flag bits within a TCP header, namely

URG, ACK, PSH, RST, SYN and FIN, each of which

has a special meaning in connection establishment,

connection termination or other control phases. Window

size, which specifies how many bytes of data can be

accepted each time by the receiving side, is advertised

between the two communication peers for the purpose of

flow control.

TCP establishes a connection in three steps, commonly

known as a three-way handshake. Figure 2.5 shows a

typical three-way handshake procedure between a source

host S and a destination host D.

 Page 73

Figure 2.5 Three-Way Handshake

First, S sends a SYN packet to D in order to establish a

connection. Meanwhile, S sets its own ISN (Initial

Sequence Number) in sequence number field of the

packet. Upon receiving the request packet, D sends back

a SYN_ACK packet as the acknowledgement including

its own ISN and the incremented ISN from S. As the

acknowledgement packet reaches the source host S, S

immediately transmits an ACK packet back to D. In the

last ACK packet, S needs to include the incremented

ISN of D as the confirmation of the connection. At this

point, the connection has been setup. There is one extra

point that needs to be mentioned: suppose that host S

does not send any SYN packet but received a

SYN_ACK packet from host D, it will then send back a

RST packet to reset the connection.

Common Vulnerabilities

During the past two decades, many security problems of

TCP/IP protocol suite have been discovered.

Meanwhile, the network hackers created a large number

of intrusion methods to exploit those vulnerabilities.

Most of the examples in this section are taken from

Bellovin’s excellent paper on TCP/IP security [5].

IP Source Address Spoofing

As we have seen from the previous section, the IP

address (either source address or destination address)

contained in an IP header is the only information needed

by an intermediate routing device to make a decision on

how to route the IP packet. So, anyone who has access

to the IP layer can easily modify the source address in

the IP header of a packet, spoofing itself as from another

host or even from a non-existing host.

TCP Sequence Number Prediction

From the three-way handshake, we know that to

establish a TCP connection between two communication

peers, the source host must obtain the ISN of the

destination host from its acknowledgement packet.

Usually, an ISN is more or less a random number [5].

If a hacker can predict the ISN, he/she can impersonate

host S by sending a request packet with the IP source

address changed to S. Although the hacker will not get

the SYN_ACK packet sent by D, he/she can still finish

the establishment process by sending back an ACK

packet to host D with predicted ISN. As shown in

Figure 2.6, ISNg represents the guessed ISN of host D

by the hacker.

In Berkeley systems, the initial sequence number is

incremented by a constant number (128 in 4.2BSD and

125,000 in 4.3BSD) once per second and by half that

number each time a connection is initiated [6]. Thus,

what a hacker needs to do is just to initiate a normal

connection and remember the ISN received from the

destination host. After that, the hacker could calculate

the ISN for the next connection attempt, based on the

round-trip delay and the number of connections after the

first connection. This approach has a high probability of

succeeding.

Figure 2.6 TCP Sequence Number Prediction

Port Scanning

Strictly speaking, port scanning is not a technique used

directly to perform an intrusion. Instead, its goal is to

discover an exploitable communication channel and then

launch the real attack. The reason for doing port

 Page 74

scanning is that some vulnerable services may not use a

fixed port number. As in the SUN NFS system, some

application servers run at an arbitrary port and register

the port number to a specific server, which is called

directory server. For the client programs of a particular

application server, they need to first check with the

directory server to obtain the port number for that

application server. Usually, the directory server is well

protected. So, a hacker needs another way to locate his

victim.

There are several methods that can be used to detect a

potential communication channel. For a listening TCP

server, the most elementary approach is to make a real

connection. The UNIX system-call connect can be used

to open a connection with every port that the hacker

intends to examine. If there is a listening server, the

connect call will succeed. Otherwise the port is unused.

Another method is through SYN scanning, in which a

SYN packet is sent to the victim as if it is going to create

a real connection. As mentioned in TCP three-way

handshake, a returned SYN_ACK or RST packet

indicates the presence or absence of an active server on

the port. Another variant of this approach is TCP FIN

scanning. Instead of sending SYN probes like in SYN

scanning, this method sends FIN packet and waits for a

RST packet from a closed port. In case of an active

listener, it will discard the FIN packet silently without

sending anything back.

Unlike TCP, UDP is a connectionless protocol, whose

simplicity makes port scanning more difficult. Since

UDP does not require a three-way handshake to establish

a connection, a UDP server does not need to

acknowledge any probe packets. Also, no error

messages are returned for closed ports. However, most

hosts send ICMP “port unreachable” message for a

packet intended for an unused UDP port. This gives

hackers some clue. Since neither UDP packets nor the

ICMP messages are guaranteed to be delivered due to

the unreliable nature of the protocol itself, a port scanner

needs to have some retransmission policy to ensure that

lost packets do not lead to erroneous results.

Network Intrusions

A number of network intrusions have been found till

now, each of which utilizes one or more security

vulnerabilities in TCP/IP protocol specifications or

implementations. These intrusions include IP source

address spoofing, TCP sequence number prediction as

mentioned earlier, and other intrusions like SYN

flooding, DNS misuse, Ping of Death, or some Java-

related attacks. However, based on the intrusion patterns

and impacts to the victim systems, we can divide the

intrusions into two main categories: denial of service and

spoofing.

Denial of Service

The lifeblood of today’s world is information [8]. The

denial-of-service intrusions attempt to prevent or delay

access to the information or the information processing

systems. The basic idea behind this type of intrusion is

to tie up a service provider with bogus requests in order

to render it unreliable or unusable.

CHARGEN and ECHO

CHARGEN is a simple service provided by almost all

TCP/IP implementation under UNIX. It runs on both

UDP and TCP port 19. For every incoming UDP packet,

the server sends back a packet with 0 to 512 randomly

selected characters. Another well-known service is

ECHO, which runs on UDP and TCP port 7. The server

just responds to the client program with whatever it

receives.

These two services are normally used for the diagnostic

purpose. However, they can be employed by a

malicious denial-of-service type intrusion. Assuming a

“chain” has been established between a CHARGEN

service and an ECHO service, what will happen next?

Each of them will produce output continuously, leading

to a huge number of packets among the network and thus

a denial of service on the machines where the services

are provided.

Launching such an intrusion is surprisingly easy. A

simple UDP packet could set the whole network into

 Page 75

trouble. Suppose there are two hosts A and B and a

hacker on machine X. With the help of IP source

address spoofing, a hacker can send out a UDP packet to

A with B’s IP address as the source address and 7 as the

source port, while setting the destination IP address as

A’s IP address and 19 as the destination port. When this

packet is received by A, A will falsely think that B is

requiring the CHARGEN service, and sends back a

packet to B’s ECHO port. At this point, a “chain” has

been established successfully. Subsequently, large

amount of traffic will be generated within the network

where hosts A and B reside. As a result, network users

will feel an abrupt drop in the performance of their

network applications.

Generally speaking, CHARGEN and ECHO type of

intrusion is a kind of blind attack. There is no particular

objective from a hacker’s point of view. The goal is to

slow down the speed of the whole network.

SYN Flooding

Unlike the simple CHARGEN and ECHO intrusion,

SYN flooding is a specially designed attack that employs

a flood of SYN packets to consume the limited resource

on the targeted host. It results in delays to legitimate

network connection requests and eventually halts the

service provider.

As in the TCP/IP implementations for UNIX, a number

of memory structures need to be allocated for each TCP

connection request. Take BSD system as an example: a

socket structure is used to hold the communication

elements (e.g. protocol being used), address information,

request queues, buffers and flags [4]. Moreover, there

are two extra memory structures with special meanings

to a TCP connection, namely IP control block (inpcb)

and TCP control block (tcpcb), which keep the TCP state

information, port numbers, sequence numbers and

several connection-related timers. Typically, these

structures will use a few hundred bytes of memory [7].

A normal scenario of a TCP connection process starts

with a system in LISTEN state receiving a SYN packet,

which is to be examined for checksum immediately. If

the checksum is incorrect, the packet will be discarded

silently, with the expectation that the remote site will

retransmit a new packet. Otherwise, the TCP control

block associated with this connection is searched for. If

no such item is found, it means no server process is

waiting for this packet, and then the packet will be

removed and an RST packet is returned to inform the

remote client. By contrast, if a server process is located,

several memory structures will then be allocated for this

connection and a SYN_ACK packet will be sent back as

an acknowledgement to the sender to continue the three-

way handshake. Meanwhile, the system enters into the

SYN_RECVD state and starts up a connection

establishment timer. The connection of this stage is

always called a half-open connection. Most TCP/IP

implementations set the timer to expire after 75 seconds.

If the final ACK packet arrives before the timer expires,

the request will leave kernel space and go to application

space. Otherwise, the three-way handshake fails. Under

both cases, the corresponding memory structures will be

released from kernel space.

From the description above, we know that the process of

TCP connection establishment requires significant

amount of work and resources at the server side. So, in

most systems, there is a limit on the total number of half-

open connections. A hacker exploits this limitation and

initiates a SYN flooding attack by issuing a large

number of connection requests with a spoofed source IP

address to the target host, which cannot tell a malicious

request from a legal request. After receiving the SYN

packet, the target host will respond with SYN_ACK

packet as usual. Unfortunately, this time the final ACK

packet will never come back, for the request SYN packet

has a spoofed source address and that address is

“unreachable” to the target host (Figure 2.7). There are

several reasons for an IP address to be “unreachable”.

For instance, the machine with that IP address is turned

down, or there may be even no host with that IP address

at all. Actually, there may be some error messages like

ICMP “host unreachable” or “network unreachable”

generated by a router, coming back during the time when

 Page 76

the target host waits for the final ACK packet. But

current implementations of TCP/IP typically ignore such

error messages. Before the timer used for TCP

connection establishment expires, the memory allocated

for a connection request will stay in the kernel. As large

numbers of bogus connection requests come to the target

host, it will run out of kernel memory quickly. As a

result, if there is no more memory structures can be

allocated for the following connection requests, they will

be discarded silently.

Figure 2.7 SYN Flooding

The key issue in this type of intrusion is how to choose

an “unreachable” source IP address for an attacking

packet. There are several patterns followed by the

hackers.

Single address: all the attacking packet using same IP

address

Short list: there is a small pool of addresses for every

outgoing packet to choose

No list: the source address is generated randomly

Different addressing method poses different challenges

for an intrusion detection system.

The basis for this type of attack is that TCP/IP protocol

suite does not provide strong authentication on its

control packet [9]. The endpoint of a connection has no

way to authenticate its communication peer. As a result,

it is extremely difficult to trace the original source of the

spoofed IP packet. Therefore, a hacker can feel free to

perform this kind of intrusion without worrying about

being tracked down.

Other Denial of Service Intrusions

Other forms of denial-of-service type intrusions also

exist, like Ping of Death. Ping of Death explores a bug

in some TCP/IP implementations that cannot handle the

fragmented IP packet correctly. In this case, a hacker

first breaks a normal packet into a series of fragments,

then modifies the last one and makes the total length of

all fragments exceed the maximum packet length

specified in TCP/IP protocol. When the receiving host

assembles those fragments, it will overflow its buffer in

the TCP/IP stack due to the abnormal size of the arrived

packet. As a result, system on that host will crash.

There are some intrusions, which utilize the broadcast

property of transmission media, are limited to a LAN

(Local Area Network) environment, especially Ethernet.

However, we cannot overlook those intrusions. It is

possible that some hosts are less secure than other hosts

on a LAN. A hacker can perform a multi-step intrusion

by first breaking into a less secure host and then

compromise the whole network. One of the threats to a

LAN is called SYN_RST generator, which can block

most of the TCP connections. Suppose that a host A

wants to make a TCP connection with host B, it will first

send a SYN packet to B. If host X also hears this

message, because of the broadcast communication

media, before B responds with a SYN_ACK packet, X

can quickly send out a RST packet to A, shutting down

the intended connection. Another intrusion example is

one in which the flow control mechanism of TCP

communication is attacked. In order to prevent a fast

sender from overrunning the buffer of a slow receiver,

each TCP packet has a window size for its

communication peer. During the communication

process, a third party host can impersonate the

destination host, sending a packet with zero window

size. Then, both communication parties can be halted

due to the lack of buffer advertised by the

communication peer.

With the increasing use of Java in the web computing,

intrusions by malicious Java applets are another source

of concern. Most of the applet intrusions fall into denial

 Page 77

of service, in which a Java applet consumes a lot of CPU

and memory resources of the client machine.

Spoofing

Spoofing is another important hacking technique in the

network intrusions. Due to the distributed nature of

computer networks, the primary method used to

exchange data among different hosts is message passing.

Therefore, strong authentication is not easy to achieve

compared to that in a traditional centralized system,

especially among arbitrary communication peers. A

network hacker exploits this weakness and creates many

intrusion methods, either spoofing himself as a

legitimate client or server.

Client-Side Spoofing

In client-side spoofing, a hacker impersonates himself as

an authorized client and in turn gains services from a

server. An example is provided by the “r-utilities” on

most UNIX systems.

“R-utilities”, like rlogin, rsh and rcp, is a set of

commands for remote operations among different UNIX

systems. The security hole underlying “r-utilities” is the

authentication scheme used by this set of commands.

Take “rlogin” as an example, which uses TCP as its

transportation layer protocol and is a simple client/server

application. With two hosts A and B, each of which

“trusts” the other one, we can configure the file

“/etc/hosts.equiv” or “.rhosts” on each host to let a user

with accounts on both hosts to login from one host to

another without being prompted for a password. In

effect, the user is authenticated via the host name of the

machine he/she is currently logged on.

In 1995, CERT(TM) Coordination Center issued a

security advisory addressed a kind of intrusion called “IP

Spoofing”, in which the hackers created packets with

spoofed source IP address, then exploited applications

that use authentication based on IP address, like “r-

utilities” [7]. IP spoofing consists of several steps and

uses both address spoofing and TCP sequence number

prediction. Following are two scenarios that can happen,

one is a normal “rlgoin” session, while the other is a

spoofing intrusion (Figure 2.8). Usually, IP Spoofing

takes the following steps

Figure 2.8 IP Spoofing

• First, a victim host is selected and a pattern of

trust is discovered, e.g. which hosts the victim host

trusts. In the example shown in Figure 2.8, the victim

host is S, while it trusts host C.

• Then, C is “shut down”, either by SYN flooding

that machine or by intercepting the entire network traffic

to it. Alternatively, the attack may be initiated when C

is down due to other reasons, such as maintenance.

• Next, a normal TCP connection request packet is

sent to the victim host S to get back a valid sequence

number. Based on the round-trip delay and the TCP

sequence number generating algorithm, a hacker could

predict the next sequence number that will be used by S.

• At this point, S can be intruded upon. The

hacker sends a SYN packet to S with the trust host C as

source IP address. Even though the SYN_ACK packet

will not return to the hacker, he/she can still finish the

connection establishment by sending out the final ACK

packet with the guessed sequence number from the

previous step.

• The victim host S all along concludes a valid

connection request from trusted host C. Then, the

hacker could send data from host X.

One thing that needs to be clarified in this intrusion is,

when the hacker from host X masquerades himself as a

 Page 78

trusted client and sends out a SYN packet, the returned

SYN_ACK packet from the victim host will go to the

real host C. As mentioned in the previous chapter, the

host C will immediately respond with a RST packet and

the intrusion will fail because the intended connection

will be shut down when the victim host S received this

packet. Therefore, SYN flooding is always performed as

a preparing step in “IP Spoofing”. As a result, the

returned SYN_ACK packet would not reach the

destination host C but gets lost on the way. The reason

is that the host C is busy in dealing with large amounts

of bogus requests and runs out of system resources.

IP spoofing is a typical example of client-side spoofing

intrusion. All the applications with loose authentication

mechanism based on IP address also face the threats

from this type of intrusion.

Server-Side Spoofing

Server-side spoofing employs a similar idea. However,

the goals and the methods used are a bit different. For

the client-side spoofing, as we mentioned in the example

of “rlogin”, a hacker impersonates an authorized user

and then gains data from an information provider. By

contrast, the server-side spoofing is executed in the

reverse way. In order to obtain confidential information

from individual clients, a hacker masquerades as a real

service provider and steals sensitive information from

service users.

The idea behind server-side spoofing intrusion can be

properly expressed by a real life example. Suppose that

someone creates a machine that looks extremely like an

ATM but does not provide the real functionality of a

normal ATM. Instead, it records the number of an ATM

card and its holder’s PIN (Personal Identification

Number), then reports some error message to mislead

the user that this machine has temporary mechanical

problem. If such a machine were placed at the entrance

of a shopping mall, the result would be disastrous. A

user may lose large amounts of money just because

he/she once used an out-of-order ATM several days

before.

Same idea is employed in web spoofing. First step is to

put some HTML (Hypertext Makeup Language) links in

some popular web pages. When a victim visits that page

and clicks that link, all the following connections is

hijacked by a malicious server, which hides itself

between the user browser and the real web server. No

sophisticated technique is used in this attack. Some

simple Java script applet, together with a little HTTP

(Hypertext Transfer Protocol) and CGI (Common

Gateway Interface) knowledge, is sufficient to hijack

such connections. With the growing popularity of

electronic commerce, this type of intrusion becomes

even more dangerous. A malicious server can easily

grab personal information from a web shopper, such as

credit card information.

Service Specific Intrusions

In this section, we survey some service specific

intrusions, such as finger daemon attack, routing

infrastructure intrusion, DNS misuse and several attacks

to NFS (Network File System) or X-Windows system.

Routing Infrastructure Intrusions

As described at the beginning of this thesis, all the

TCP/IP services are built on a connectionless packet

delivery system [7]. With a layered protocol stack in

mind, every message is transferred in the form of IP

packet, which is the basic unit of data traveling among

distributed network devices. In a large-scale and

heterogeneous network environment, like the Internet,

delivering a packet to the right destination is the task of

routing infrastructures.

Internet adopts a hierarchical routing architecture, which

relieves a single router from storing huge amount of path

information. A router makes routing decision of an IP

packet based on a data structure called routing table,

which keeps the status of each path linked to that router.

If RIP (Routing Information Protocol) is used, a router

will periodically generate LSU (Link State Updates) that

describe the latest status of the links to the router and

disseminate those updates to the other neighboring

routers. Then, based on LSU received, routers update

 Page 79

their own routing tables and cooperate in forwarding the

IP packets from source to destination [8].

Potential threats to the routing infrastructures come

mainly from the spoofing intrusions and some of them

can lead to the results of denial of service. A faulty

router can modify the packets passing through it or

discard the packets at all. This may bring some

networks or hosts unreachable. Furthermore, a

malicious or compromised router can send bogus routing

control packets, like LSU, to other routers, which may in

turn cause all the packets switch to itself and it can then

eavesdrop the content within the packets. Another

scenario is that a router sends bogus LSU’s that makes

other routers think that some reachable hosts are

unreachable.

DNS Misuse

DNS is not a part of TCP/IP protocol suite when it was

first proposed. However, with millions of networks and

hosts interconnected by the Internet, IP address becomes

inconvenient for an end-user to make connections. An

alternative approach is to map low-level IP addresses

into meaningful hostnames, which is the main

motivation of using DNS.

DNS is a distributed database system, which handles

mapping high-level host names into low-level IP

addresses, or vice versa. Much like routing

infrastructures, DNS is composed by a large number of

name servers in a distributed hierarchical architecture,

while each individual name server handles requests from

a limited number of domains. If a name server does not

know how to resolve a particular query, it may forward

the query to another name server, which either has much

more information or is more specific to that particular

domain.

Most DNS implementations adopt UDP as the

transportation layer protocol. So, besides the

vulnerabilities of DNS, security flaws from UDP, like

lack of state information and weakness in user

authentication are also inherited. With a similar

architecture as the routing infrastructures, DNS faces the

same threats from spoofing type intrusions. A misused

name server could be easily used by a hacker to

masquerade himself as from any host, for a hacker-

controlled name server can intercept a resolver query

and can respond with whatever IP address a hacker

intends to be. A recently found bug in Java class verifier

has a tight relation with this kind of intrusion, in which a

malicious applet could connect with any host other than

the host from which it was downloaded.

Caching is widely used by DNS to improve the system

performance. In DNS specifications, there is a little

concern for the data integrity and consistency of caching.

Therefore, an intrusion by sending spoofed information

to a name server in a straightforward way will not work.

Instead, a hacker uses another approach called “Ask Me”

to poison a name server’s cache by malicious data items

[10].

Imagine there is a hacker on host X, who has full control

of name server B and intends to provide the following

wrong mapping information to name server A:

As NS B cannot directly send this malicious mapping to

NS A, it asks NS A to resolve a mapping that can only

be handled by NS B itself. As a result, NS A will

forward this request back to NS B. NS B then appends

the above incorrect mapping information at the response

to NS A. With this little trick, the cache of name server

A will be poisoned by a malicious record. After this

point, the hacker on host X can go ahead and launch

some more serious intrusions, for instance, an intrusion

towards address-based applications like “r-utilities”.

In addition to the likely results mentioned in the routing

infrastructure intrusions, such as misleading the packet

flow, a DNS intrusion can greatly facilitate the attacks

aimed at address-based applications. In sum, a

combined intrusion on the DNS system and the routing

mechanism can be catastrophic.

 Page 80

INTRUSION DETECTION AND PACKET

FILTERING

From the discussion in the previous chapter, we can find

most intrusions take advantages of vulnerabilities in the

system design and implementation. However, it is

impractical for us to eliminate all the errors in the

existing systems or replace all the old systems with new

error-free systems given the established base of

software. An alternative approach in protecting a system

from intrusion is to detect and isolate the problem before

it can impact the system performance or functionality.

In this chapter, we review some basic techniques in

enhancing system security and address some general

issues in real-time packet filtering, which is important

for network intrusion detection.

Current Techniques in Network Security

A number of techniques have been invented in the past

few years to help a system administrator in strengthening

the security of a single host or the whole computer

network. We review a couple of most widely used

techniques.

Audit Trails

As defined by the National Computer Security Center in

its Rainbow series of system security guide, an audit trail

is“A chronological record of system activities that is

sufficient to enable the reconstruction, reviewing, and

examination of the sequence of environments and

activities surrounding or leading to an operation, a

procedure, or an event in a transaction from its inception

to final results.” [8]

Audit trail can be used in determining whether an

unexpected or unauthorized behavior has occurred in a

system. Therefore, it can be invaluable to a system

administrator for network management and security

analysis. In practice, almost every operating system

used today provides auditing and logging utilities. Most

of them are in the form of log files, which record

information from a user’s most recent login time and a

user’s originating host, to every message generated by

operating system kernel.

The hacker, who knows where to find the log files and

how to modify their contents, can easily make a system,

look as if nothing has happened. Generally speaking,

auditing is a kind of post event protection mechanism.

In other words, by the time an intrusion is logged, the

hacker may have already broken into the system.

Therefore, audit trail may not be very useful in terms of

protecting a system from break-ins. Moreover, an

experienced hacker can typically defeat or circumvent

the auditing mechanisms. Nevertheless, system auditing

can be an effective deterrent for inexperienced hackers,

since it provides a mechanism to trace their activities.

Firewall

A recent trend in network security enhancement involves

the use of firewall, which is a collection of filters and

gateways that shield trusted networks within a locally

managed security perimeter from the external untrusted

networks [1].

Screening Router

Screening router is a router, which in addition to

forwarding packets likes a normal router, also examines

data in the packets, and applies some predefined access

control policies on the packets to determine whether they

can be forwarded to the next hop or should be discarded.

The packet-filtering function performed by a screening

router is implemented by examining a small portion of

data in the header part of each packet, such as source and

destination address in the IP header and port number in

the TCP or UDP header. Meanwhile, some security

policies are tested against each packet by the screening

router, mostly for the purpose of access control. With

carefully configured policies, the screening router can be

effective in preventing some classes of network

intrusions. For example, we can set up the policy on a

screening router as follows:

 Configure the external interface of the router to

block incoming packets that have source IP

address from the internal network;

 Configure the internal interface of the router to

block outgoing packets that have source IP

address from the external network.

 Page 81

This is effective in preventing most IP-Spoofing based

attacks aimed at or launched from within the local

hosts.However, since a screening router does not check

the information other than protocol headers, it is unable

to prevent attacks that depend on packet content. For

instance, it is not capable of detecting attacks such as

DNS cache poisoning.

Application Gateway

Due to the above-mentioned limitations of a screening

router, various application gateways are created to

implement high-level policies in a firewall strategy. As

the name implies, an application gateway works at the

level of application layer protocols rather than being

limited to IP or TCP level. Application gateways

provide one or more of the following functionality:

relay, proxy and server filter.

Relay gateway, passes the data between the two sides of

a firewall system. In some special environments, like a

company using “local” IP addresses (i.e. visible only

within the company) for internal network, a relay

gateway should also provide the function for translating

these addresses before they are sent out.

Proxy is of most importance to a firewall system, for

most of access control policies are enforced through

application proxies. Usually, a proxy gateway is

application specific. When a client program inside the

firewall requires a connection with an outside server, an

application proxy on the firewall will handle the request

first. It applies some security policies against the

connection request. If the connection request is granted,

the proxy will make real connection to the server outside

the firewall. Beyond this point, a proxy gateway acts no

more than a relay gateway.

Server filter works in the opposite direction as an

application proxy. It handles the incoming connection

requests from external network to the internal servers.

When receiving a connection request, the server filter

dispatches it to the corresponding application server.

The benefit obtained from using server filter is that we

are able to perform access control without changing too

much for the original application servers.

As an application gateway examines more data in a

network packet than a screening router does, it provides

more power in network intrusion detection and

prevention. On the downside, it requires more system

resources and more processing time. As a tradeoff,

modern firewall security systems always adopt a

combination of screening router and application

gateways (Figure 3.1). Usually, a screening router is

placed as the first line of defense, which is used to filter

out invalid network traffic by applying the policies

against IP address, TCP, UDP port, and so on. Then the

packets left are forwarded application gateways, which

implement higher-level security policies.

Figure 3.1 Screening Router and Application Gateway

Packet Filtering

Packet filtering technique was invented for diagnostic

and analysis purpose in network management. Later on,

it began to be used by the network security systems. As

we mentioned earlier, it forms the foundation for the

firewall strategy. Neither screening router nor

application gateway can live without packet filters. At

present, the packet-filtering technique also plays an

important role in network intrusion detection.

General Issues

The key issues on building a packet filter are:

Real-time performance: the packet filter should be able

to quickly capture a raw packet from data link layer and

process it in a short period of time.

No packet dropping: no packet dropping is allowed,

especially for a network intrusion detection system. The

 Page 82

information missed from dropped packets can make the

whole detection scheme fail.

Flexibility: the specification of packet patterns can be

modified easily to support different communication

protocols.

Scalability: in terms of a system for network intrusion

detection, new intrusion signatures can be added into the

packet filter without degrading performance.

Summary:

Network Intrusion Detection attempts to discover

unauthorized access to a computer network by analyzing

traffic on the network for signs of malicious activity.

Any activity aimed at disrupting a service or making a

resource unavailable or gaining unauthorized access can

be termed as an intrusion. Network Intrusion Detection

System (NIDS) aims to detect attempted compromises

by monitoring network traffic for indications that

attempted compromise is in progress, or an internal

system is behaving in a manner which indicates it may

already be compromised. Intrusion detection system is

generally considered to be any system designed to detect

attempts compromise the integrity, confidentiality or

availability of the protected network and associated

computer systems. Intrusion detection systems, or IDSs,

have become an important component in the Security

Officer's toolbox. In some cases the IDS may also

respond to anomalous or malicious traffic by taking

action such as blocking the user or source IP address

from accessing the network. Network Intrusion

Detection Systems are placed at a strategic point or

points within the network to monitor traffic to and from

all devices on the network. Ideally you would scan all

inbound and outbound traffic.

References

[1] Larry J. Hughes, Jr. Actually Useful Internet Security

Techniques, New Riders Publishing, Indianapolis, IN,

1995.

[2] R. Heady, G. Luger, A. Maccabe, and B. Mukherjee.

A Method To Detect Intrusive Activity in a Networked

Environment. In Proceedings of the 14th National

Computer Security Conference, pages 362-371, October

1991.

[3] AbdelazizMonnji. Languages and Tools for Rule-

Based Distributed Intrusion Detection, PhD thesis,

FacultesUniversitaires, Notre-Dame de la Paix, Belgium,

[4] W. R. Stevens. TCP/IP Illustrated Vol. 1 – The

Protocols, Addison-Wesley Publishing Company, Inc.

Reading, MA, 1994.

[5] S. M. Bellovin. Security Problems in the TCP/IP

Protocol Suite, Computer Communications Review, Vol.

19, No. 2, pp. 32-48, April 1989.

[6] Morris R. A Weakness in the 4.2 BSD UNIX TCP/IP

Software, Computer Science Technical Report No 117,

AT&T Bell Laboratories, Murray Hill, NJ, 1985.

[7] CERT. TCP SYN Flooding and IP Spoofing Attacks,

Carnegie Mellon University, Pittsburgh, PA, September

1996.

[8] C. Cobb and S. Cobb. Denial of Service, Secure

Computing, pp.58-60, July 1997.

[9] C. L. Schuba, I.V. Krsul, Makus G. Kuhn, E.H.

Spafford, A. Sundaram, D. Zamboni. Analysis of a

Denial of Service Attack on TCP, Purdue University,

West Lafayette, IN, 1996.

Author Details

Kranthi K Lammatha

Chief Technology Officer (ITU)

Email Id: Kranthi@itu.edu

mailto:Kranthi@itu.edu

