
 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 86

Abstract:

Advanced Encryption Standard (AES) has been lately
accepted by NIST as the symmetric key standard for
encryption and decryption of blocks of data. In en-
cryption, the AES accepts a plaintext input, which is
limited to 128 bits, and a key that can be specified to
be 128 bits to generate the Cipher text. By exploring
different granularities of data-level and task-level par-
allelism, we map 16 implementations of an Advanced
Encryption Standard (AES) cipher on a field program-
mable gate array system. In comparison with pub-
lished AES cipher implementations on general pur-
pose processors. The proposed design has occupied
less area and small delay.

1 INTRODUCTION

WITH the development of information technology,
protecting sensitive information via encryption is be-
coming more and more important to daily life. In 2001,
the National Institute of Standards and Technology
(NIST) selected the Rijndael algorithm as the Advanced
Encryption Standard (AES) [1], which replaced the
Data Encryption Standard (DES) [2]. Since then, AES
has been widely used in a variety of applications, such
as secure communication systems, high performance
database servers, digital video/audio recorders, RFID
tags, and smart cards.

To satisfy different applications’ requirements, nu-
merous hardware implementations of AES have been
reported. Verbauwhede et al. described the first AES
implementation on silicon, which can provide a 2.29
Gbps throughput with a nonpipeline architecture [3].
Mukhopadhyay and Roy-Chowdhury improved their
AES system to 8 Gbps with pipelining [4], which is a
common technique used to enhance the performance
of a system [5]. The first AES implementa-tion with a
throughput over 10 Gbps was proposed by applying T-
box [6], which is a combination of the SubBytes, Shif-
tRows, and MixColumns phases in the AES algorithm
[7]. Furthermore, the area-throughput tradeoffs of fully
pipe-lined AES processors with throughputs between
30 and 70 Gbps have been presented [8]. Recently,
Mathew et al. implemented a 53 Gbps AES accelera-
tor in 45 nm CMOS technology [9]. Besides application
specific integrated circuit (ASIC) designs, configurable
hardware is another choice for AES implementations.
For example, there are several FPGA implementations

P.Srikanth
PG Scholar,

GEETHANJALI engg college,
HYDERABAD.

 Dr.Rangacharulu
Prof of ECE,

GEETHANJALI engg college,
HYDERABAD.

that achieve a throughput approximatel 20 to 30 Gbps
[10], [11], [12] by applying loop unrolling and pipelin-
ing. Recently, Qu et al. demonstrated a 73.7 Gbps AES
system on a Xilinx XC5VLX85 chip running at 570 MHz
[13].

Although hardware implementations generally offer
higher throughput and better energy efficiency than
soft-ware designs, they are difficult to upgrade and
adapt for future possible protocol changes. Moreover,
ASIC designs are very time consuming and costly. For
example, it takes generally 18 to 24 months for a full
custom ASIC product and costs approximately 50 Mil-
lion USD to design [14]. One advantage of the Rijndael
algorithm is that it is not only fit for hardware imple-
mentations, but also suitable for efficient software
designs. Matsui and Nakajima proposed a bitslice AES
implementation on Intel Core 2, which achieves a 9.2
clock cycles per byte throughput for a data chunk lon-
ger than 2,048 bytes, equaling 1.85 Gbps when the core
is running at its maximum frequency of 2.13 GHz [15].
The bitslice technique was first proposed by Biham
for fast DES implementation on a software platform
with a word size longer than 16 bits [16]. Bernstein and
Schwabe investigated the opportunities of reducing
instruction count and cycles by combining different in-
structions together for various architectures [17]. Both
bitslice and specific sets of instruc-tions from Supple-
mental Streaming SIMD Extensions 3 (SSSE3 [18]) are
utilized to enhance the performance of Intel Core i7
920 as high as 6.92 clock cycles per byte [19]. Besides
pure general software AES implementations, the Intel
AES-NI utilizes specialized hardware to support six AES
instructions, and achieves a throughput of 1.28 clock
cycles per byte [20]. There is also a trend to use Graphic
Processing Units (GPUs) and DSP processors to imple-
ment the AES algorithm. Wollinger et al. compared dif-
ferent encryption algorithms on a TMS320C6X proces-
sor and achieved a 14.25 clock cycles per byte [21].

Verilog Implementation of Parallel AES Encryption
Engines for Multi-Core Processor Arrays

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 87

Fig. 1. Block diagram of AES encryption.

This paper presents various software implementa-
tions of the AES algorithm with different data and
task parallelism granularity, and shows that AES im-
plementations on a fine-grained many-core system
can achieve high performance, throughput per unit
of chip area and energy efficiency compared to other
software platforms. Both the online and offline key
expansion process for each implementation model
are discussed. The reminder of this paper is orga-
nized as follows: Section 2 introduces the AES algo-
rithm. Section 3 briefly describes the features of the
targeted fine-grained many-core system. In Section
4, various implementations are analyzed by synchro-
nous dataflow (SDF) models, mapped and measured
on the targeted platform. Section 5 presents the area
optimization metho-dology and compares the area ef-
ficiency among different implementations. Section 6
compares the energy efficiency. Section 7 compares
our work with other software designs. Finally, Section
8 concludes the paper.

2 ADVANCED ENCRYPTION STANDARD

AES is a symmetric encryption algorithm, and it takes
a 128-bit data block as input and performs several
rounds of transformations to generate output cipher-
text. Each 128-bit data block is processed in a 4-by-4
array of bytes, called the state. The round key size can
be 128, 192 or 256 bits. The number of rounds repeat-
ed in the AES, Nr, is defined by the length of the round
key, which is 10, 12 or 14 for key lengths of 128, 192 or
256 bits, respectively. Fig. 1 shows the AES encryption
steps with the key expansion process. For encryption,
there are four basic transformations applied as fol-
lows:

1.SubBytes: The SubBytes operation is a nonlinear
byte substitution. Each byte from the input state is re-
placed by another byte according to the substitu-tion
box (called the S-box). The S-box is computed

based on a multiplicative inverse in the finite field
GF(28) and a bitwise affine transformation.

2.ShiftRows: In the ShiftRows transformation, the
first row of the state array remains unchanged. The
bytes in

Manavski presented an AES implementation with a
peak throughput of 8.28 Gbps on a GeForce 8,800
GTX chip when the input data block is longer than 8
MB [22].

the second, third, and forth rows are cyclically shifted
by one, two, and three bytes to the left, respectively.

3.MixColumns: During the MixColumns process, each

column of the state array is considered as a polynomi-
al over GF(28). After multiplying modulo x4 þ 1 with a
fixed polynomial aðxÞ, given by

aðxÞ ¼ f03gx3 þ f01gx2 þ f01gx þ f02g; ð1Þ

the result is the corresponding column of the output
state.

4.AddRoundKey: A round key is added to the state
array using a bitwise exclusive-or (XOR) operation.
Round keys are calculated in the key expansion pro-
cess. If Round keys are calculated on the fly for each
data block, it is called AES with online key expansion.
On the other hand, for most applications, the encryp-
tion keys do not change as frequently as data. As a re-
sult, round keys can be calculated before the encryp-
tion process, and kept constant for a period of time in
local memory or registers. This is called AES with offline
key expansion. In this paper, both the online and of-
fline key expansion AES algorithms are examined.

Similarly, there are three steps in each key expansion
round.

1.KeySubWord: The KeySubWord operation takes a
four-byte input word and produce an output word by
substituting each byte in the input to another byte ac-
cording to the S-box.

2.KeyRotWord: The function KeyRotWord takes a
word
½a3; a2; a1; a0&, performs a cyclic permutation, and re-
turns the word ½a2; a1; a0; a3& as output.

3.KeyXOR: Every word w½i& is equal to the XOR of
the previous word, w½i _ 1&, and the word Nk posi-
tions earlier, w½i _ Nk&. Nk equals 4, 6 or 8 for the key
lengths of 128, 192 or 256 bits, respectively.

The decryption algorithm applies the inverse transfor-
mations in the same manner as the encipherment. As
a result, we only consider the encryption algorithm in
this work for simplicity, since the decipherment yields
very similar results.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 88

3 TARGETED MANY-CORE ARCHITECTURE

3.1Fine-Grained Many-Core Architecture

According to Pollack’s Rule, the performance increase
of an architecture is roughly proportional to the
square root of its increase in complexity [23]. The rule
implies that if we double the logic area in a processor,
the performance of the core speeds up around 40 per-
cent. On the other hand, a many core architecture has
the potential to provide near linear performance im-
provement with complexity. For instance, instead of
building a complicated core twice as large as before,
a processor containing two cores (each is identical to
the other) could achieve a possible 2_ perfor-mance
improvement if the application can be fully paralle-
lized. Therefore, if the target application has enough
inherent parallelism, an architecture with thousands
of small cores would offer a better performance than
one with a few large cores within the same die area
[23].

Fig. 2. Block diagram of the 167-processor computa-
tional platform [26].

3.2.Asynchronous Array of Simple Proces-
sors (AsAP)

The targeted Asynchronous Array of Simple Proces-
sors architecture is an example of a fine-grained
many-core computation platform, supporting global-
ly-asynchronous locally-synchronous (GALS) on-chip
network and dynamic voltage and frequency scaling
(DVFS) [24].

Fig. 2 shows the block diagram of AsAP. The compu-
ta-tional platform is composed of 164 small identical
proces-sors, three hardware accelerators and three
16 KB shared memories. All processors and shared
memories are clocked by local fully independent oscil-
lators and are connected by a reconfigurable 2D-mesh
network that supports both nearby and long-distance
communication [25]. Each tile on the platform can
be statically configured to take input data from two
links, while sending its output to other processors
via dynamic configuration.Each simple processor
has a 6-stage pipeline, which issues one instruction
per clock cycle. Moreover, no application-specific in-
structions are implemented. Each processor has a 128
_ 32-bit instruction memory and a 128 _ 16-bit data
memory. Each processor occupies 0:17 mm2 and has a
maximum clock frequency of 1.2 GHz. The 167-proces-
sor chip was fabricated in 65 nm CMOS technology.
[26].

3.3 Programming Methodology on AsAP

Programming the AsAP array follows three basic steps
[27]:

1.Each task of the application is mapped to one or
few processors on the array. Each processor is pro-
grammed using either C or assembly language.

2.The inputs and outputs of different tasks are inter-
connected using a configuration file or a GUI mapping
tool [28].

3.After compiled by our C compiler and assembler, the
programs of tasks are mapped to the 2D mesh AsAP
array.

4 AES IMPLEMENTATIONS ON AsAP

In this section, we present 16 different complete and
fully-cunctional AES ciphers. The throughput of each
design is measured from simulations on a cycle-accu-
rate Verilog RTL model of the actual silicon chip.

Table 1 shows the execution delays of different pro-
ces-sors. For example, MixColumns-16 executes the
MixColumns

Each data block is a 4-by-4 byte array.

process on a whole 16-byte data block, while MixCol-
umns-4 performs on a single 4-byte column. The exe-
cution time of MixColumns-4 is more than one fourth
of the delay of MixColumns-16 due to programming
overhead on AsAP. Similarly, SubBytes-16 requires
132 clock cycles to process a 16-byte data block, and
it takes 10 clock cycles for SubBytes-1 to substitute 1
byte. In our proposed implementations, the key ex-
pansion process is divided into two processing units,

KeySubWord and KeySchedule. Each KeySchedule
processor contains two steps of the key expansion
process, KeyRot-Word and KeyXOR.

In the following sections, we present the eight AES
implementations with online key expansion in detail,
since the offline implementations can be derived by
removing the cores used for key expansion from the
online designs. For simplicity, we focus on the situa-
tion with a 128-bit key and Nr ¼ 10 in this paper, and
the impact of different key lengths to our designs is
discussed in detail in Section 4.9.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 89

4.1.One-Task One-Processor (OTOP)

The most straightforward implementation of an AES
cipher is to apply each step in the algorithm as a task
in the dataflow diagram as shown in Fig. 3a. Then,
each task in the dataflow diagram can be mapped on
one processor on the targeted many-core platform.
We call this imple-mentation one-task one-processor.
For simplicity, all of the execution delay (shown in
Table 1), input rates, and output rates in the following
dataflow diagrams are omitted. Since the key expan-
sion is processing in parallel with the main algorithm,
the throughput of the OTOP implementation is deter-
mined by the nine (Nr _ 1 ¼ 9) loops in the algorithm.
The OTOP implementation requires 10 cores on AsAP
as

Fig. 3. One-task One-processor (a) dataflow diagram
and (b) 10 cores AsAP mapping.

Fig. 4. Loop-unrolled Nine Times (a) dataflow dia-
gram and (b) 60 cores AsAP mapping.

shown in Fig. 3b. The throughput of the OTOP imple-
mentation is 3,582 clock cycles per data block, equal-
ing 223.875 clock cycles per byte.

4.2.Loop-Unrolled Nine Times

To enhance the AES cipher’s throughput, we apply
loop unrolling to the OTOP model and obtain the
Loop-unrolled Nine Times dataflow diagram as shown
in Fig. 4a. The loop unrolling breaks the dependency
among different loops and allows the nine loops in
the AES algorithm to operate on multiple data blocks
simultaneously.

To improve the throughput as much as possible, we
unroll the loops in both the AES algorithm and the
key expansion process by Nr _ 1 and Nr times, which
equals 9 and 10, respectively. After loop unrolling, the
throughput of the AES imple-mentation is increased to
266 cycles per data block, equaling 16.625 cycles per
byte. The mapping of the Loop-unrolled Nine Times
model is shown in Fig. 4b, which requires 60 cores.

4.3.Loop-Unrolled Three Times

To achieve a moderate throughput with fewer cores,
we could unroll the main loops in the AES algorithm by
S times (S is divisible by Nr _ 1), instead of Nr _ 1 times.
For this example, the nine loops in the AES algorithm
could be split into three blocks, and each block loops
three times. The dataflow diagram and mapping of
the Loop-unrolled Three Times implementation are
shown in Figs. 5a and 5b, respectively. Compared to
the OTOP model, the throughput is improved to 1,098
cycles per data block, which equals 68.625 cycles per
byte; while the mapping requires 24 cores, 36 fewer
than the Loop-unrolled Nine Times implementation.

4.4.Parallel-MixColumns

Besides loop unrolling, another way to increase the
throughput of the OTOP model is to reduce the main
loop’s latency in the AES algorithm. In a single loop,
the execution delay of MixColumns-16 results in 60
percent of the total latency. Each MixColumns-16 op-
erates on a four-column data block, and the operation
on each column is independent. Therefore, each Mix-
Columns-16 processor can be replaced by

Fig. 5. Loop-unrolled Three Times (a) dataflow dia-
gram and (b) 24 cores AsAP mapping.

four MixColumns-4s. Each MixColumns-4 actor com-
putes only one column rather than a whole data block.
As a result, the throughput of the Parallel-MixColumns
implementation is increased to 2,180 cycles per block,
equaling 136.25 cycles per byte. The dataflow diagram
and mapping of the Parallel-MixColumns model are
shown in Figs. 6a and 6b.

Each core on our targeted computational platform
can only support two statically configured input
ports. Three cores, each called MergeCore, are used
to merge the four data streams from MixColumns-4s
into one stream for
AddRoundKey.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 90

Fig. 6. Parallel-MixColumns (a) dataflow diagram and
(b) 16 cores AsAP mapping.

Fig. 7. Parallel-SubBytes-MixColumns (a) dataflow
diagram and

(b) 22 cores AsAP mapping.

The dependence among bytes in one column diminishes
the performance improvement for further paralleliza-
tion. For instance, if we parallelize one MixColumns-4
into two MixColumns-2s, the effective execution delay
of the MixCol-umns process is reduced to 64 cycles
from 70 cycles. This saves only 6 cycles while it requires
eight more processors (four extra MixColumns cores
and four extra MergeCores). Therefore, further paral-
lelization on the MixColumns process would impair the
area and energy efficiency of the entire system without
significant performance improvement.

4.5.Parallel-SubBytes-MixColumns

In the Parallel-MixColumns implementation, Sub-
Bytes-16 requires 132 cycles to encrypt one data block,
which contributes the largest execution delay in one
loop. In order to increase the throughput further, we
parallelize one SubBytes-16 into four SubBytes-4s,
which is shown in Fig. 7a. In this implementation, each
SubBytes-4 processes 4 bytes rather than 16 bytes
in one data block. The effective execution delay of
the SubBytes process is decreased to 40 cycles per
block, only around one fourth as before. Therefore,
the throughput of the Parallel-SubBytes-MixCol-umns
model is increased to 1,350 cycles per block, equaling
84.375 cycles per byte. The mapping graph of the Par-
allel-SubBytes-MixColumns implementation on AsAP
shown in Fig. 7b requires 22 cores.

Instead of parallelizing SubBytes-16 into four SubByte-
4s, we can replace it with 16 SubBytes-1s. The effective
execution delay of the SubBytes process is reduced
to 10 cycles. As a result, the latency of one-loop de-
creases to 120 cycles. Therefore, the throughput of
the cipher is increased to

Fig. 8. Full-parallelism (a) dataflow diagram and (b)
164 cores AsAP mapping.

67.5 cycles per byte. However, it requires seven ad-
ditional cores dedicated to communication (four
MergeCores and three DispatchCores), which impair
the area and energy efficiency of the implementa-
tion.

4.6.Full-Parallelism

The Full-parallelism AES implementation combines
the Parallel-SubBytes-MixColumns model and loop
unrolling. The dataflow diagram and the mapping of
the Full-parallelism model are shown in Figs. 8a and
8b.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 91

As expected, the throughput of this design is the high-
est among all of the models introduced in this paper
since it employs most data and task parallelism. The
throughput of the Full-parallelism model is 70 cycles
per block, equaling 4.375 cycles per byte. It also re-
quires 164 cores, which is the largest implementation
of all.

In the Full-parallelism model, the MixColumns-4 proc-
es-sors are the throughput bottlenecks which deter-
mine the performance of the cipher. Therefore, par-
allelizing the SubBytes process with more than four
processors would only increase the area and power
overhead without any performance improvement.

4.7.Small

The Small model implements an AES cipher on AsAP
with the fewest processors. As shown in Fig. 9, it re-
quires at least eight cores to implement an AES cipher
with online key expansion process, since each core on
AsAP has only a 128 _ 32-bit instruction memory and a
128 _ 16-bit data memory. The throughput of the Small
model is 2,678 cycles per data block, which equals
167.375 cycles per byte.

Fig. 9. Eight cores AsAP mapping of the Small imple-
mentation.

4.8.No-Merge-Parallelism

In contrast to the Small model, the No-merge-paral-
lelism model exploits as much parallelism as possible
without introducing any cores dedicated to commu-
nication, includ-ing MergeCores and DispatchCores.
The mapping graph of the No-merge-parallelism im-
plementation on AsAP is shown in Fig. 10. To speed up
the implementation, loop unrolling is applied in this
model. Each MixColumns-16 is divided into two Mix-
Columns-8s, which helps reduce the effective delay
of the MixColumns process. In order to eliminate ad-
ditional communication processors and simplify the
routing, we combine the SubBytes and the ShiftRows
stages in one core. This implementation requires 59
cores, and has a through-put of 152 cycles per block,
equaling 9.5 cycles per byte.

4.9.Designs with Longer Keys

As introduced in Section 2, besides the 128-bit key, the
AES algorithm also supports key lengths of 192 and
256 bits. Encrypting with longer keys results in two
major areas of additional computation. First, the num-
ber of loops in the AES algorithm is increased. Second,
the key expansion cores require more clock cycles to
process round keys.

For the designs without loop-unrolling (Small, OTOP,
Parallel-MixColumns, and Parallel-SubBytes-MixCol-
umns), no extra cores are required.

These mappings operate with longer keys by increas-
ing the number of round loops, Nr, and reprogram-
ming the key expansion related cores. The through-
puts of these designs are decreased due to the
increased number of Nr rounds.

For the designs with loop-unrolling, additional cores
are added depending on the number of rounds re-
quired. For example, 12 and 24 more cores are re-
quired for the No-merge-parallelism designs with a
192-bit and 256-bit key, respectively. The throughputs
of the Loop-unrolled and the No-merge-parallelism
are kept the same as before, which is determined by
the MixColumns operation. On the other hand, for
the Full-parallelism implementation, the through-put
is decreased since the bottlenecks of the system are
shifted from the MixColumn-4 processors to the key
expan-sion cores, due to the overhead of processing
longer keys.

Due to the significant effort required, 192-bit and 256-
bit designs are not implemented in this work.

5 AREA EFFICIENCY ANALYSIS

Area is a significant metric in system design. Less area
means less silicon, therefore less cost. From a many-
core processor perspective, area is represented by
the number of cores required to implement applica-
tions. Smaller area translates into fewer used cores
and leaves more opportu-nities for dealing with other
applications on the same platform simultaneously.
To evaluate the area efficiency between various AES
implementations, a metric called

Fig. 10. Fifty Nine cores AsAP mapping of the No-
merge-parallelism implementation

ThroughputPerCore is defined as the ratio between
the throughput of each design to the number of cores
used to implement it,

5.1.Area Optimization Methodology

Before comparing area efficiency among different AES
implementations, area optimization is applied to all of
the models without impairing performance. In this
section, the area optimization methodology is illus-
trated through a detailed example of minimizing the
number of cores used by the Full-parallelism model.

As shown in Fig. 8b, there are 17 cores in one loop of
the Full-parallelism mapping, including five commu-
nication-dedicated cores, which are used for routing
only. And the final round operation requires 11 cores.
Therefore, the number of cores utilized for the unop-
timized Full-parallelism

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 92

Two optimization steps are applied to the Full-paralle-
lism model. First, since the ShiftRows process is only
byte-rotation, alternating the sequence of the Sub-
Bytes and the ShiftRows stages would not affect en-
cryption results. How-ever, this alternation reduces
two MergeCores for each loop. As a result, 18 cores are
reduced from the Full-parallelism model. Second, the
throughput of the Full-parallelism model is 70 cycles
per block, which is determined by the operation de-
lay of MixColumns-4s. Any actors with less execution
delay would not impair the performance of the sys-
tem. Therefore, a processor fusion of the ShiftRows
in the Nth loop and the AddRoundKey in the ðN _ 1Þth
loop can reduce one more core for each loop, while
keeping the same throughput since these new combi-
nation processors take only 60 cycles to process one
data block. The dataflow diagram and mapping of the
optimized Full-parallelism model are shown in Figs.
11a and 11b, respectively.

In summary, without losing any performance, the
number of cores required by the online Full-parallel-
ism model is decreased by approximately 16 percent
to 137.

Based on the optimization methods discussed above,
the number of cores utilized for each implementation
is optimized as follows:

1.Small: Optimization methods are not applicable.

2.OTOP: The SubBytes and ShiftRows processors in
the last round are fused into one processor, saving
one processor.

Fig. 11. Optimized Full-parallelism (a) dataflow diagram
and (b) 137 cores AsAP mapping.

3.Parallel-MixColumns: The SubBytes and ShiftRows
processors in the last round are fused into one pro-
cessor, saving one processor.

4.Parallel-SubBytes-MixColumns: The sequence of
the SubBytes and the ShiftRows stages is alternated,
which saves three processors. The SubBytes and Shif-
tRows processors in the last round are fused into one
processor, saving one more processor.

5.Loop-unrolled Three Times: The SubBytes and Shift-
Rows processors in the last round are fused into one
processor, saving one processor.

6.Loop-unrolled Nine Times: The SubBytes and Shif-
tRows processors in the same round are fused into
one processor, which saves 10 processors.

7.No-merge-parallelism: Optimization methods are
not applicable.

8.Full-parallelism: The optimization has been dis-
cussed in detail in Section 5.1

5.2.1 Implementations with Online Key Ex-
pansion

The number of cores used for each optimized imple-
menta-tion is shown in Column 3 of Table 2. As ex-
pected, the Small implementation uses the fewest
cores due to its simplicity. On the other hand, the Full-
parallelism model occupies 137 cores, exploiting the
greatest range of types of data parallelism. As a re-
sult, the Full-parallelism imple-mentation requires 17_
as many cores as the Small model, while it also gains a
40_ throughput increase.

As defined in (2), ThroughputPerCore is used to com-
pare the area efficiency between different models. The
higher the throughput, the better the performance.
The fewer the cores used, the smaller the area. As a
result, a larger Throughput-PerCore ratio shows a
higher area efficiency. In Table 2, Column 5 shows the
ThroughputPerCore numbers of various implementa-
tions normalized to the Parallel-MixColumns model
with online key expansion. The No-merge-paralle-lism
implementation has the highest throughput per core
rate, since it avoids any dedicated communication
cores and exploits as much parallelism as possible
simultaneously. The Full-parallelism and the Loop-un-
rolled models also offer high throughput per unit of
chip area. Although the Small model has a relatively
low throughput, it still offers a good area efficiency
due to its extremely small area.

5.2.2.Implementations with Offline Key Ex-
pansion

Besides the online key expansion AES algorithm, the
detailed results of AES with offline key expansion are
also shown in Columns 6, 7, and 8 of Table 2. The pro-
cessors used for key expansion process can be elimi-
nated for the AES implementations with offline key
expansion, which results in 29 percent improvement
in average throughput per area compared to the im-
plementations with online key expansion.

The throughput versus the number of cores of the
eight offline implementations is shown in Fig. 12. The
through-put is obtained when all processors are run-
ning at 1.2 GHz. Besides the basic implementations dis-
cussed above, we duplicate each implementation two
and four times to scale the throughput and area. On
the targeted platform, for any scaled implementation
with a 4_ duplication, two merge-

Communication cores are used for routing only, includ-
ing MergeCores and DispatchCores. All of the through-
put per core numbers are normalized to the Parallel-
Mixcolumns model with online key expansion.

Fig. 12. Throughput versus the number of cores for the
AES implementations with offline key expansion. All
processors are running at 1.2 GHz. 1_, 2_ and 4_ repre-
sent the throughput when each implementation is du-
plicated once, twice, and four times, respectively.

6 ENERGY EFFICIENCY ANALYSIS

In this section, the power consumption and en-
ergy efficiency of the previously discussed eight
implementa-tions are investigated based on chip
measurement results.

6.1.Power Numbers from Chip Measurements

Each core on AsAP can operate up to 1.2 GHz at 1.3 V
[26]. The maximum frequency and power consump-
tion of cores on AsAP have a near-linear and quadratic
dependence on the supply voltage, as shown in Fig.
13.The average power dissipation of one core and com-
munication link at 1.3 V and 1.2 GHz is shown in Table 3.

6.cores are required to gather the outputs for the sub-
sequent processor by assuming each processor could
take only two inputs.

TABLE 2
Throughput and the Number of Cores Re-

quired by Different Implementations

This supply voltage and clock frequency are used in the
power estimation and optimiza-tion case study in the
next section. The table also shows during stalls (i.e.,
nonoperation while the clock is active), the proces-
sors still consume a significant portion, approxi-mately
50 percent, of its active power. The leakage power is
decreased to a negligible number when the clock is
halted.

6.2.Power Estimation Methodology

On our targeted platform, each processor has four
states: active, NOP with active clock, stall with active
clock, and

Fig. 13. Maximum operation frequency and 100 percent
active power dissipation of one core versus supply
voltage.

TABLE 3
Average Power Dissipation Measured at 1.3 V

and 1.2 GHz [26]

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 93

standby with halted clock. The active mode means that
the processor is busy with instruction execution, while
the NOP with active clock represents the NOP opera-
tion in programs due to data and control hazards. Ei-
ther an empty input or a full output FIFO is capable of
halting each processor’s clock and causing the proces-
sor to sleep in the standby with halted clock mode. Fi-
nally, the stall with active clock is the transition state
between active and stall with halted clock. As a result,
the overall power dissipated by all of the processors
utilized in any implementation can be derived by

aAC stands for active clock. bHC stands for halted
clock.

the total power number can be derived by the follow-
ing equation and is listed in the last row:

X
PT otal ¼	 Ni _ PT otali ;	 ð6Þ

where Ni is the number of processors with the ith kind
of operation, and PT otali is the total power dissipated
by the ith processor. The total power consumption is
4.52 W with a 2.21 Gbps throughput. The communica-
tion power consumed by FIFOs and switches is 81.4
mW, which is 1.8 percent of the total power, while the
leakage power is only 2.12 mW and 0.05 percent of the
total power dissipation.

Additionally, if the implementation works under 1.3 V
and 1.2 GHz, the power consumed by execution, stall-
ing, standby, and communication activities of each pro-
cessor are listed in Columns 9, 10, 11, and 12. In Column
2, the number of processors with the same operation
are listed. Therefore,

TABLE 4
Operation Cycles and Power Consumption of Offline
Key Expansion Full-Parallelism Implementation at 1.3

V and 1.2 GHz

6.3.Energy Efficiency Comparison

The energy efficiency of a system describes how much
energy is consumed for processing a specific workload.
This metric influences a critical design parameter, bat-
tery lifetime, made more important by the increasing
popularity of mobile devices. In our discussion, the en-
ergy efficiency is defined as the energy dissipated for
processing one bit by

EnergyP erBitV dd ¼ P owerV dd=T hroughputV dd

¼ ðP owerV dd _ DelayÞ=freqV dd _ 128;

where P owerV dd and freqV dd are the power dissi-
pation and frequency for one model at supply voltage
V dd. Delay represents the number of clock cycles re-
quired for processing one data block. Since power has
a general relationship with

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 94

Fig. 14. Energy consumed for processing one bit of
data versus supply voltage. All of the implementations
shown in this figure are associated with offline key ex-
pansion.

supply voltage and operation frequency as P ower / V
dd2 _ f, from (7), it is expected that EnergyP erBitV dd
/ V dd2.

As shown in Fig. 14, for the eight offline implementa-
tions discussed above, the energy dissipated for pro-
cessing one bit is nearly quadratically dependent on
supply voltage, which is consistent with the theoretical
analysis.

Further-more, the no-merge model consumes the
least energy to encrypt one bit compared with other
implementations, which is from 0.39 to 1.54 nJ/bit de-
pending on the supply voltage and throughput. On the
other hand, the Parallel-MixColumns implementation
shows the lowest energy efficiency, which consumes
approximately 2_ the energy to encrypt a data block as
the No-merge-parallelism model.

Fig. 15 shows that the AES implementations with online
key expansion consume 35 to 55 percent more energy

to process same workload, compared to their counter-
parts with offline key expansion.

7 RELATED WORK AND COMPARISON

Since the AES ciphers presented in this work are im-
ple-mented on a programmable platform without any
applica-tion-specific hardware, we compare our work
with other software implementations on programma-
ble processors, and do not compare with implementa-
tions that contain or are composed of specialized hard-
ware (e.g., ASICs, ASIPs, FPGAs, etc.).

AES hardware implementations have been reported
to achieve throughputs per area up to tens and even
hundreds of Gbps=mm2 [9] and energy efficiencies in
the range of several pJ/bit—they are in an entirely dif-
ferent class both in efficiencies achieved and in the cost
and effort required to design.

Fig. 15. Energy overhead of the AES implementations
with online key expansion compared with the ones
with offline key expansion.

TABLE 5
Comparison of AES Cipher Implementations

on Different Software Platforms

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 95

The original data are presented with different CMOS
technologies and supply voltages. For comparison,
area, performance, and power consumption are scaled
to 65 nm technology with a supply voltage of 1.3 V. Area
are scaled by 1=ðs2Þ. Throughput and power numbers
are scaled based on the PTM simulation results shown
in Fig. 16. aThe typical power is not available, so 50 per-
cent of thermal design power (TDP) is used based on
the benchmark data of a general-purpose processor
[30]. bThe throughput results from [19] are for only
one core, so the area and power numbers are scaled
proportionally. cAll referenced designs do not consider
key expansion; therefore, the AES implementations on
AsAP associated with offline key expansion are applied
for a fair comparison.

A comprehensive comparison of the state-of-the-art
software AES implementations is summarized in Table
5. In order to make a fair comparison, all of the refer-
enced data are scaled to 65 nm CMOS technology with
a supply voltage of 1.3 V. The area data are scaled to 65
nm with a 1=ðs2Þ reduction, where s equals the ratio
between the minimum feature size of the old technol-
ogy and 65 nm. The delay and power data are scaled by
SPICE simulation results of a fanout-of-4 (FO4) inverter
under different technologies and supply voltages with
predictive technol-ogy model (PTM) [31] as shown in
Fig. 16.

As discussed in Section 5.2, we could always map one of
our designs for multiple times to get a higher through-
put while possibly introducing a small overhead. There-
fore, it is less meaningful to compare the throughput
solely of each design. In this section, we use the metrics
of throughout per chip area (Gbps=mm2) and energy
per workload bit (nJ/bit) to compare the area efficiency
and energy efficiency of various designs. As shown in
Table 5, compared to the highly optimized AES ciphers
on CPUs with bitslice [15], the proposed AES cipher on
AsAP has 3.5-9.2 times higher throughput per unit of
chip area and consumes 9.5-11.3 times less energy to
encrypt a fixed amount of data. Besides bitslice, SIMD
instructions are applied to improve the throughput
and efficiency of AES implementations on CPUs fur-
ther [19]. Even so, our design on AsAP still has 10.7-15.6
times higher throughput per unit of chip area and 8.2-
18.1 times lower energy per bit. The TI DSP C6201 is an
8-way VLIW architecture for high performance DSP ap-
plications. The referenced data shows that our design
has 2 times higher throughput. The area and power
numbers of the TI DSP C6201 are not available, but we
believe that AsAP has significantly higher throughput
per unit of chip area and energy efficiency due to a
much smaller core size.

The AES implementation on GeForce 8,800 GTX
achieves the highest throughput in the referenced de-
signs, due to its

Fig. 16. Delay and power of a FO4 inverter based on
SPICE simulation using predictive technology model
[32]; the general scaling rule assumes a 1=s reduction
in delay and a 1=ðv2Þ reduction in power where s is the
technology scaling factor and v is the voltage scaling
factor [33].

Fig. 17. Comparison of peak performance per area and
workload per unit energy of programmable proces-
sors. All numbers are scaled based on the PTM simula-
tion results shown in Fig. 16.

large chip area and the utilization of the T-Box method,
which works effectively for SIMD architectures with
large memory [22]. However, our design still shows a
3.3 times higher throughput per unit of chip area and
2.9 times higher energy efficiency.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 96

Fig. 17 shows that the software AES implementation on
AsAP outperforms other software platforms in terms
of energy efficiency and performance per area.

8 CONCLUSION

We have presented 16 different AES cipher implemen-
ta-tions with both online and offline key expansion on
a fine-grained many-core system. Each implementa-
tion exploits different levels of data and task parallel-
ism. The smallest design requires only six processors,
equaling 1:02 mm2 in a 65 nm fine-grained many-core
system. The fastest design achieves a throughput of
4.375 cycles per byte, which is 2.21 Gbps when the pro-
cessors are running at a frequency of 1.2 GHz. We also
optimize the area of each implementation by exam-
ining the workload of each processor, which reduces
the number of cores used as much as 18 percent. The
design on the fine-grained many-core system achieves
energy efficiencies approximately 2.9-18.1 times higher
than other software platforms, and performance per
area on the order of 3.3-15.6 times higher. Overall, the
fine-grained many-core system has been demonstrat-
ed to be a very promising platform for software AES
implementations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from US
National Science Foundation (NSF) Grants 0430090,
0903549 and CAREER Award 0546907, SRC GRC Grants
1598 and 1971, CSR Grant 1659, UC Micro, ST Microelec-
tronics, Center of Circuit and System Solutions (C2S2),
Intel, and Intellasys. The authors also acknowledge the
support of the C2S2 Focus Center, one of six research
centers funded under the Focus Center Research Pro-
gram (FCRP), a Semiconductor Research Corporation
entity.

REFERENCES

[1]NIST, “Advanced Encryption Standard (AES),” http://
csrc.nist.-gov/publications/fips/fips197/fips-197.pdf,
Nov. 2001.

[2]NIST, “Data Encryption Standard (DES),” http://csrc.
nist.gov/ publications/fips/fips46-3/fips46-3.pdf, Oct.
1999.

[3]I. Verbauwhede, P. Schaumont, and H. Kuo, “Design
and Performance Testing of a 2.29 gb/s Rijndael Proces-
sor,” IEEE
J.	 Solid-State Circuits, vol. 38, no. 3, pp. 569-572,
Mar. 2003.

[4]D. Mukhopadhyay and D. RoyChowdhury, “An Ef-
ficient end to End Design of Rijndael Cryptosystem in
0:18_m CMOS,” Proc. 18th Int’l Conf. VLSI Design, pp.
405-410, Jan. 2005.

[5]J.L. Hennessy and D.A. Patterson, Computer Archi-
tecture: A Quantitative Approach, fourth ed. Morgan
Kaufmann, 2007.

[6]S. Morioka and A. Satoh, “A 10-gbps full-AES Crypto
Design with a Twisted BDD s-Box Architecture,” IEEE
Trans. Very Large Scale Integration Systems, vol. 12, no.
7, pp. 686-691, July 2004.

[7]J. Daemen and V. Rijmen, The Design of Rijndael.
Springer-Verlag, 2002.

[8]A. Hodjat and I. Verbauwhede, “Area-Throughput
Trade-Offs for Fully Pipelined 30 to 70 Gbits/s AES Pro-
cessors,” IEEE Trans. Computers, vol. 55, no. 4, pp. 366-
372, Apr. 2006.

[9]S.K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A.
Agarwal, S.K.
Hsu, H. Kaul, M.A. Anders, and R.K. Krishnamurthy, “53
gbps Native GF(ð24Þ2) Composite-Field AES-Encrypt/
Decrypt Accel-erator for Content-Protection in 45 nm
High-Performance Micro-processors,” IEEE J. Solid-
State Circuits, vol. 46, no. 4, pp. 767-776, Apr. 2011.

[10]A. Hodjat and I. Verbauwhede, “A 21.54 gbits/s Ful-
ly Pipelined AES Processor on FPGA,” Proc. IEEE 12th
Ann. Symp. Field-Programmable Custom Computing
Machines, pp. 308-309, Apr. 2004.

[11]C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen,
and C.-C. Hsieh, “High Throughput 32-Bit AES Imple-
mentation in FPGA,”
Proc. IEEE Asia Pacific Conf. Circuits and Systems, pp.
1806-1809, Nov. 2008.

[12]J. Granado-Criado, M. Vega-Rodriguez, J. Sanchez-
Perez, and J. Gomez-Pulido, “A New Methodology to
Implement the AES Algorithm Using Partial and Dy-
namic Reconfiguration,” Integra-tion, the VLSI J., vol.
43, no. 1, pp. 72-80, 2010.

[13]S. Qu, G. Shou, Y. Hu, Z. Guo, and Z. Qian, “High
Throughput, Pipelined Implementation of AES on
FPGA,” Proc. Int’l Symp. Information Eng. and Elec-
tronic Commerce, pp. 542-545, May 2009.

[14]“Int’l Technology Roadmap for Semiconductors,
Design,” http:// www.itrs.net/Links/2009ITRS/2009Cha
pters_2009Tables/ 2009_Design.pdf, 2009.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 97

[15]M. Matsui and J. Nakajima, “On the Power of Bit-
slice Implemen-tation on Intel Core 2 Processor,” Proc.
Cryptographic Hardware and Embedded Systems
(CHES ’07), pp. 121-134, 2007.

[16]E. Biham, “A Fast New DES Implementation in
Software,”
Proc. Fourth Int’l Workshop Fast Software Encryption,
pp. 260-272, 1997.

[17]D. Bernstein and P. Schwabe, “New AES Software
Speed Records,” Proc. INDOCRYPT ’08: Ninth Int’l
Conf. Cryptology in India: Progress in Cryptology, pp.
322-336, 2008.

[18]“Supplemental Streaming SIMD Extensions 3,”
http://en. ikipedia.org/
M.Meeuwsen, C. Watnik, P. Mejia, A. Tran, J. Webb,
E. Work, Z. Xiao, and B. Baas, “A 167-Processor 65 nm
Computational Platform with Per-Processor Dynamic
Supply Voltage and Dynamic Clock Frequency Scaling,”
Proc. IEEE Symp. VLSI Circuits, June 2008.

ASK ONE-PROCESSOR (OTOP):

The most straightforward implementation of an AES
cipher is to apply each step in the algorithm as a task
in the dataflow diagram as shown in Fig. 3a. Then, each
task in the dataflow diagram can be mapped on one
processor on the targeted many-core platform. We call
this implementation one-task one-processor. Since the
key expansion is processing in parallel with the main
algorithm, the throughput of the OTOP implementa-
tion is determined by the nine (Nr _ 1 ¼ 9) loops in the
algorithm.

Small Encrption.

The Small model implements an AES cipher on FPGA
with the fewest processing Elements. As shown in bel-
low Fig, it requires at least eight blocks to implement
an AES cipher with online key expansion process, since
each Block on FPGA has only a 128 X 32-bit instruction
memory and a 128 X 16-bit data memory.

 Volume No: 1(2014), Issue No: 9 (September) ISSN No: 2348-4845

 INTERNATIONAL JOURNAL & MAGAZINE OF ENGINEERING, TECHNOLOGY, MANAGEMENT AND RESEARCH September 2014
 A Monthly Peer Reviewed Open Access International e-Journal www.yuvaengineers.com/Journal Page 98

