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Abstract 

Low power DSP architecture is required in all 

applications. Wireless communication exhibits the 

highest energy consumption in wireless sensor nodes. 

Given their limited energy supply from batteries or 

scavenging, these nodes must trade data 

communication for on-the-node computation. Due to 

the increasing complexity of VLSI circuits and their 

frequent use in portable applications, energy losses in 

the interconnections of such circuits have become 

significant. In the light of this, an efficient routing of 

these interconnections becomes important. In the 

implemented design describes the design and 

implementation of the newly proposed folded-tree 

architecture for on-the-node data processing in 

wireless sensor networks, in addition of add the 

routing technique for the high communication. 

Measurements of the silicon implementation show an 

improvement of 10–20× in terms of energy as 

compared to traditional modern micro-controllers 

found in sensor nodes. 

Keywords— Digital processor, Folded Tree, Modern 

Micro-Controller, parallel prefix, wireless sensor 

Network (WSN). 

 

INTRODUCTION 

Emerging trends in the area of digital VLSI signal 

processing can lead to reduction in the cost of the CI. 

Digital signal processing algorithm is repetitively used 

in these processor for filtering and encoding operation. 

These algorithms need to be transformed for the design 

of low area and low power of the processor. This is 

realized by designing the suitable auditory filter banks 

for the processor based on digital VLSI signal 

processing concepts. Folding was first developed by 

Parhi and his students in 1992. In synthesizing DSP 

architecture, it is important to minimize the silicon 

area of the integrated circuits, which is achieved by 

reducing the number of functional units such as adders, 

multipliers, registers, multiplexers and interconnection 

wires (Parhi 2007). Folding transforms an operation 

from one unit-time processing to N unit-time 

processing where N is called folding factor. Therefore, 

multiples of same operations (less than N) used in 

original system could be replaced with a single 

operation block in transformed system.Thus, in N unit-

times, a functional block in transformed system could 

be reused to perform N operations in original system. 

 

Wireless Sensor Network (WSN) applications range 

from medical monitoring to environmental sensing, 

industrial inspection, and military surveillance. WSN 

nodes essentially consist of sensors, a radio, and a 

microcontroller combined with a limited power supply, 

e.g., battery or energy scavenging. Since radio 

transmissions are very expensive in terms of energy, 

they must be kept to a minimum in order to extend 

node lifetime. The ratio of communication-to 

computation energy cost can range from 100 to 3000. 

In addition, the lack of task-specific operations leads to 

inefficient execution. The data-driven nature of WSN 

applications requires a specific data processing 

approach. Previously, we have shown how parallel 

prefix computations can be a common denominator of 

many WSN data processing algorithms. 

Folded Tree 

However, a straightforward binary tree implementation 

of Blelloch’s approach as shown in Fig. 3 costs a 

significant amount of area as n inputs require p = n −1 

PEs. To reduce area and power, pipelining can be 

traded for throughput [8]. With a classic binary tree, as 
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soon as a layer of PEs finishes processing, the results 

are passed on and new calculations can already 

recommence independently.  

 

The idea presented here is to fold the tree back onto 

itself to maximally reuse the PEs. In doing so, p 

becomes proportional to n/2 and the area is cut in half. 

Note that also the interconnect is reduced. On the other 

hand, throughput decreases by a factor of log2(n) but 

since the sample rate of different physical phenomena 

relevant for WSNs does not exceed 100 kHz [12], this 

leaves enough room for this tradeoff to be made. This 

newly proposed folded tree topology is depicted in Fig. 

1 on the right, which is functionally equivalent to the 

binary tree on the left. 

CHARACTERISTICS OF WSN 

Several specific characteristics, unique to WSNs, need 

to be considered when designing a data processor 

architecture for WSNs. 

Data-Driven: WSN applications are all about sensing 

data in an environment and translating this into useful 

information for the end-user. So virtually all WSN 

applications are characterized by local processing of 

the sensed data. 

Many-to-Few: Since radio transmissions are very 

expensivein terms of energy, they must be kept to a 

minimum in order to extend node lifetime. Data 

communication must be traded for on-the-node 

computation to save energy, so many sensor readings 

can be reduced to a few useful data values. 

Application-Specific: A “one-size-fits-all” solution 

does not exist since a general purpose processor is far 

too power hungry for the sensor node’s limited energy 

budget. ASICs, on the other hand, are more energy 

efficient but lack the flexibility to facilitate many 

different applications. Apart from the above 

characteristics of WSNs, two key requirements for 

improving existing processing and control 

architectures can be identified. 

Minimize Memory Access: Modern micro-controllers 

(MCU) are based on the principles of a divide-and-

conquer strategy of ultra-fast processors on the one 

hand and arbitrary complex programs on the other 

hand. But due to this generic approach, algorithms are 

deemed to spend up to 40–60% of the time in 

accessing memory, making it a bottleneck. 

Data Flow and Control Flow Principles: To manage 

the data stream (to/from data memory) and the 

instruction stream (from program memory) in the core 

functional unit, two approaches exist. Under control 

flow, the data stream is a consequence of the 

instruction stream, while under data flow the 

instruction stream is a consequence of the data stream. 

Traditional processor architecture is a control flow 

machine, with programs that execute sequentially as a 

stream of instructions. In contrast, a data flow 

programidentifies the data dependencies, which enable 

the processor to more or less choose the order of 

execution. The latter approach has been hugely 

successful in specialized highthroughput applications, 

such as multimedia and graphics processing. 

 

Fig.  A binary tree (left, 7 PEs) is functionally 

equivalent to the novel folded tree topology (right, 4 

PEs) used in this architecture. 

 

PROGRAMMING AND USING THE FOLDED 

TREE 

Now it will be shown how Blelloch’s generic approach 

for an arbitrary parallel prefix operator can be 

programmed to run on the folded tree. As an example, 

the sum-operator is used to implement a parallel-prefix 

sum operation on a 4-PE folded tree. 



 
 

 Page 1181 
 

First, the trunk-phase is considered. At the top of Fig. 

4, a folded tree with four PEs is drawn of which PE3 

and PE4 are hatched differently. The functional 

equivalent binary tree in the center again shows how 

data moves from leaves to root during the trunk-phase. 

It is annotated with the letters L and R to indicate the 

left and right input value of inputs A and B. In 

accordance with Blelloch’s approach, L is saved as 

Lsaveand the sum L+R is passed. Note that these 

annotations are not global, meaning that annotations 

with the same name do not necessarily share the same 

actual value. 

Fig. Implications of using a folded tree (four4-PE 

folded tree shown at the top): some PEs must keep 

multiple Lsave’s (center). Bottom: the trunk-phase 

program code of the prefix-sum algorithm on a 4-PE 

folded tree. 

To see exactly how the folded tree functionally 

becomes a binary tree, all nodes of the binary tree 

(center of Fig. 4) are assigned numbers that correspond 

to the PE (1 through 4), which will act like that node at 

that stage. As can be seen, PE1 and PE2 are only used 

once, PE3 is used twice and PE4 is used three times. 

This corresponds to a decreasing number of active PEs 

while progressing from stage to stage. The first stage 

has all four PEs active.  

 

The second stage has two active PEs: PE3 and PE4. 

The third and last stage has only one active PE: PE4. 

More importantly, it can also be seen that PE3 and PE4 

have to store multiple Lsave values. PE4 must keep 

three: Lsave0 through Lsave2, while PE3 keeps two: 

Lsave0 and Lsave1. PE1 and PE2 each only keep one: 

Lsave0. This has implications toward the code 

implementation of the trunkphase on the folded tree as 

shown next. 

The PE program for the prefix-sum trunk-phase is 

given at the bottom of Fig. 4. The description column 

shows how data is stored or moves, while the actual 

operation is given in the last column. The write/read 

register files (RF) columns show how incoming data is 

saved/retrieved in local RF, e.g., X@0bY means X is 

saved at address 0bY , while 0bY@X loads the value 

at 0bY into X. Details of the PE data path and the 

trigger handshaking, which can make PEs wait for new 

input data (indicated by T), are given in Section V.  

The trunk-phase PE program here has three 

instructions, which are identical, apart from the 

different RF addresses that are used. Due to the fact 

that multiple Lsave’s have to be stored, each stage will 

have its own RF address to store and retrieve them. 
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Fig. Annotated twig-phase graph of 4-PE folded tree. 

This is why PE4 (active for 3 stages) needs three 

instructions (lines 0 - 2 ), PE3 (active for 2 stages) 

needs two instructions (lines 0 - 1 ) and PE1 and PE2 

(active in first stage only) need one instruction (line 0 

). This basically means that the folding of the tree is 

traded for the unrolling of the program code. 

Now, the twig-phase is considered using Fig. 5. The 

tree operates in the opposite direction, so an incoming 

value (annotated as S) enters the PE through its O port 

[see Fig. 4(top)]. Following Blelloch’s approach, S is 

passed to the left and the sum S + Lsave is passed to 

the right. Note that here as well none of these 

annotations are global. The way the PEs are activated 

during the twig-phase again influences how the 

programming of the folded tree must happen. To 

explain this, Fig. 6 shows each stage of the twig-phase 

(as shown in Fig. 5) separately to better see how each 

PE is activated during the twig-phase and for how 

many stages. The annotations on the graph wires 

(circled numbers) relate to the instruction lines of the 

program code shown in Fig. 7, which will also be 

discussed. 

Fig.  Activity of different PEs during the stages of the 

twig-phase for a 4-PE folded tree: PE4 (top), PE3 

(center), PE1 and PE2 (bottom). 
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Fig. (top) shows that PE4 is active during all three 

stages of the twig-phase. First, an incoming value (in 

this case the identity element S2) is passed to the left. 

Then it is added to the previously (from the trunk-

phase) stored Lsave2 value and passed to the right. 

PE4-instruction 1 will both pass the sum Lsave2 + S2 

= S1 to the right (= itself) and pass this S1 also the left 

toward PE3. The same applies for the next instruction 

2 . The last instruction 3 passes the sum Lsave0+S0. 

Looking at the PE3 activity [Fig. 6 (center)], it is only 

active in the second and third stage of the twig-phase. 

It is indeed only triggered after the first stage when 

PE4 passes S2 to the left. The first PE3-instruction 0 

passes S2 to PE1, and instruction 1 adds this to the 

saved Lsave1, passing this sum T1 to PE2. The same 

procedure is repeated for the incoming S1 from PE4 to 

PE3, which is passed to its left (instruction 2 ), while 

the sum Lsave0+S1 is passed to its right (instruction 3 

). In fact, two pairs of instructions can be identified, 

that exhibit the same behavior in terms of its outputs: 

the instruction-pair 0 and 1 and the instruction-pair 2 

and 3 . Two things are different however. First, the 

used register addresses (e.g., tostore Lsave values) are 

different. Second, the first pair stores incoming values 

S0 and S1 from PE4, while the second pair does not 

store anything. These differences due to the folding, 

again lead to unrolled program code for PE3. 

Last, PE1 and PE2 activity are shown at the bottom of 

Fig. 6. They each execute two instructions. First, the 

incoming value is passed to the left, followed by 

passing the sum of this value with Lsave0 to the right. 

The program code for both is shown in the bottom two 

tables of Fig. 

Fig.  Program of the twig-phase of the prefix sum 

algorithm for a 4-PE folded tree. 

CONCLUSION 

This paper presented the folded tree architecture of a 

digital signal processor for WSN applications. The 

design exploits the fact that many data processing 

algorithms for WSN applications can be described 

using parallel-prefix operations, introducing the much 

needed flexibility. Energy is saved thanks to the 

following: 1) limiting the data set by pre-processing 

with parallel-prefix operations; 2) the reuse of the 

binary tree as a folded tree; and 3) the combination of 

data flow and control flow elements to introduce a 

local distributed memory, which removes the memory 

bottleneck while retaining sufficient flexibility. 

The simplicity of the programmable PEs that constitute 

the folded tree network resulted in high integration, 

fast cycle time, and lower power consumption. Finally, 

measurements of a 130-nm silicon implementation of 

the 16-bit folded tree with eight PEs were measured to 

confirm its performance. It consumes down to 8 

pJ/cycle. Compared to existing commercial solutions, 

this is at least 10× less in terms of overall energy and 

2–3× faster. 
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