

 Page 1179

Design and Implementation of Folded and Unfolded Tree

Architecture

A.Sravan Kumar

M. Tech VLSI,

Vaagdevi Engineering College.

T.Rajashekar, M.E

Assistant Professor,

Vaagdevi Engineering College.

Abstract

Low power DSP architecture is required in all

applications. Wireless communication exhibits the

highest energy consumption in wireless sensor nodes.

Given their limited energy supply from batteries or

scavenging, these nodes must trade data

communication for on-the-node computation. Due to

the increasing complexity of VLSI circuits and their

frequent use in portable applications, energy losses in

the interconnections of such circuits have become

significant. In the light of this, an efficient routing of

these interconnections becomes important. In the

implemented design describes the design and

implementation of the newly proposed folded-tree

architecture for on-the-node data processing in

wireless sensor networks, in addition of add the

routing technique for the high communication.

Measurements of the silicon implementation show an

improvement of 10–20× in terms of energy as

compared to traditional modern micro-controllers

found in sensor nodes.

Keywords— Digital processor, Folded Tree, Modern

Micro-Controller, parallel prefix, wireless sensor

Network (WSN).

INTRODUCTION

Emerging trends in the area of digital VLSI signal

processing can lead to reduction in the cost of the CI.

Digital signal processing algorithm is repetitively used

in these processor for filtering and encoding operation.

These algorithms need to be transformed for the design

of low area and low power of the processor. This is

realized by designing the suitable auditory filter banks

for the processor based on digital VLSI signal

processing concepts. Folding was first developed by

Parhi and his students in 1992. In synthesizing DSP

architecture, it is important to minimize the silicon

area of the integrated circuits, which is achieved by

reducing the number of functional units such as adders,

multipliers, registers, multiplexers and interconnection

wires (Parhi 2007). Folding transforms an operation

from one unit-time processing to N unit-time

processing where N is called folding factor. Therefore,

multiples of same operations (less than N) used in

original system could be replaced with a single

operation block in transformed system.Thus, in N unit-

times, a functional block in transformed system could

be reused to perform N operations in original system.

Wireless Sensor Network (WSN) applications range

from medical monitoring to environmental sensing,

industrial inspection, and military surveillance. WSN

nodes essentially consist of sensors, a radio, and a

microcontroller combined with a limited power supply,

e.g., battery or energy scavenging. Since radio

transmissions are very expensive in terms of energy,

they must be kept to a minimum in order to extend

node lifetime. The ratio of communication-to

computation energy cost can range from 100 to 3000.

In addition, the lack of task-specific operations leads to

inefficient execution. The data-driven nature of WSN

applications requires a specific data processing

approach. Previously, we have shown how parallel

prefix computations can be a common denominator of

many WSN data processing algorithms.

Folded Tree

However, a straightforward binary tree implementation

of Blelloch’s approach as shown in Fig. 3 costs a

significant amount of area as n inputs require p = n −1

PEs. To reduce area and power, pipelining can be

traded for throughput [8]. With a classic binary tree, as

 Page 1180

soon as a layer of PEs finishes processing, the results

are passed on and new calculations can already

recommence independently.

The idea presented here is to fold the tree back onto

itself to maximally reuse the PEs. In doing so, p

becomes proportional to n/2 and the area is cut in half.

Note that also the interconnect is reduced. On the other

hand, throughput decreases by a factor of log2(n) but

since the sample rate of different physical phenomena

relevant for WSNs does not exceed 100 kHz [12], this

leaves enough room for this tradeoff to be made. This

newly proposed folded tree topology is depicted in Fig.

1 on the right, which is functionally equivalent to the

binary tree on the left.

CHARACTERISTICS OF WSN

Several specific characteristics, unique to WSNs, need

to be considered when designing a data processor

architecture for WSNs.

Data-Driven: WSN applications are all about sensing

data in an environment and translating this into useful

information for the end-user. So virtually all WSN

applications are characterized by local processing of

the sensed data.

Many-to-Few: Since radio transmissions are very

expensivein terms of energy, they must be kept to a

minimum in order to extend node lifetime. Data

communication must be traded for on-the-node

computation to save energy, so many sensor readings

can be reduced to a few useful data values.

Application-Specific: A “one-size-fits-all” solution

does not exist since a general purpose processor is far

too power hungry for the sensor node’s limited energy

budget. ASICs, on the other hand, are more energy

efficient but lack the flexibility to facilitate many

different applications. Apart from the above

characteristics of WSNs, two key requirements for

improving existing processing and control

architectures can be identified.

Minimize Memory Access: Modern micro-controllers

(MCU) are based on the principles of a divide-and-

conquer strategy of ultra-fast processors on the one

hand and arbitrary complex programs on the other

hand. But due to this generic approach, algorithms are

deemed to spend up to 40–60% of the time in

accessing memory, making it a bottleneck.

Data Flow and Control Flow Principles: To manage

the data stream (to/from data memory) and the

instruction stream (from program memory) in the core

functional unit, two approaches exist. Under control

flow, the data stream is a consequence of the

instruction stream, while under data flow the

instruction stream is a consequence of the data stream.

Traditional processor architecture is a control flow

machine, with programs that execute sequentially as a

stream of instructions. In contrast, a data flow

programidentifies the data dependencies, which enable

the processor to more or less choose the order of

execution. The latter approach has been hugely

successful in specialized highthroughput applications,

such as multimedia and graphics processing.

Fig. A binary tree (left, 7 PEs) is functionally

equivalent to the novel folded tree topology (right, 4

PEs) used in this architecture.

PROGRAMMING AND USING THE FOLDED

TREE

Now it will be shown how Blelloch’s generic approach

for an arbitrary parallel prefix operator can be

programmed to run on the folded tree. As an example,

the sum-operator is used to implement a parallel-prefix

sum operation on a 4-PE folded tree.

 Page 1181

First, the trunk-phase is considered. At the top of Fig.

4, a folded tree with four PEs is drawn of which PE3

and PE4 are hatched differently. The functional

equivalent binary tree in the center again shows how

data moves from leaves to root during the trunk-phase.

It is annotated with the letters L and R to indicate the

left and right input value of inputs A and B. In

accordance with Blelloch’s approach, L is saved as

Lsaveand the sum L+R is passed. Note that these

annotations are not global, meaning that annotations

with the same name do not necessarily share the same

actual value.

Fig. Implications of using a folded tree (four4-PE

folded tree shown at the top): some PEs must keep

multiple Lsave’s (center). Bottom: the trunk-phase

program code of the prefix-sum algorithm on a 4-PE

folded tree.

To see exactly how the folded tree functionally

becomes a binary tree, all nodes of the binary tree

(center of Fig. 4) are assigned numbers that correspond

to the PE (1 through 4), which will act like that node at

that stage. As can be seen, PE1 and PE2 are only used

once, PE3 is used twice and PE4 is used three times.

This corresponds to a decreasing number of active PEs

while progressing from stage to stage. The first stage

has all four PEs active.

The second stage has two active PEs: PE3 and PE4.

The third and last stage has only one active PE: PE4.

More importantly, it can also be seen that PE3 and PE4

have to store multiple Lsave values. PE4 must keep

three: Lsave0 through Lsave2, while PE3 keeps two:

Lsave0 and Lsave1. PE1 and PE2 each only keep one:

Lsave0. This has implications toward the code

implementation of the trunkphase on the folded tree as

shown next.

The PE program for the prefix-sum trunk-phase is

given at the bottom of Fig. 4. The description column

shows how data is stored or moves, while the actual

operation is given in the last column. The write/read

register files (RF) columns show how incoming data is

saved/retrieved in local RF, e.g., X@0bY means X is

saved at address 0bY , while 0bY@X loads the value

at 0bY into X. Details of the PE data path and the

trigger handshaking, which can make PEs wait for new

input data (indicated by T), are given in Section V.

The trunk-phase PE program here has three

instructions, which are identical, apart from the

different RF addresses that are used. Due to the fact

that multiple Lsave’s have to be stored, each stage will

have its own RF address to store and retrieve them.

 Page 1182

Fig. Annotated twig-phase graph of 4-PE folded tree.

This is why PE4 (active for 3 stages) needs three

instructions (lines 0 - 2), PE3 (active for 2 stages)

needs two instructions (lines 0 - 1) and PE1 and PE2

(active in first stage only) need one instruction (line 0

). This basically means that the folding of the tree is

traded for the unrolling of the program code.

Now, the twig-phase is considered using Fig. 5. The

tree operates in the opposite direction, so an incoming

value (annotated as S) enters the PE through its O port

[see Fig. 4(top)]. Following Blelloch’s approach, S is

passed to the left and the sum S + Lsave is passed to

the right. Note that here as well none of these

annotations are global. The way the PEs are activated

during the twig-phase again influences how the

programming of the folded tree must happen. To

explain this, Fig. 6 shows each stage of the twig-phase

(as shown in Fig. 5) separately to better see how each

PE is activated during the twig-phase and for how

many stages. The annotations on the graph wires

(circled numbers) relate to the instruction lines of the

program code shown in Fig. 7, which will also be

discussed.

Fig. Activity of different PEs during the stages of the

twig-phase for a 4-PE folded tree: PE4 (top), PE3

(center), PE1 and PE2 (bottom).

 Page 1183

Fig. (top) shows that PE4 is active during all three

stages of the twig-phase. First, an incoming value (in

this case the identity element S2) is passed to the left.

Then it is added to the previously (from the trunk-

phase) stored Lsave2 value and passed to the right.

PE4-instruction 1 will both pass the sum Lsave2 + S2

= S1 to the right (= itself) and pass this S1 also the left

toward PE3. The same applies for the next instruction

2 . The last instruction 3 passes the sum Lsave0+S0.

Looking at the PE3 activity [Fig. 6 (center)], it is only

active in the second and third stage of the twig-phase.

It is indeed only triggered after the first stage when

PE4 passes S2 to the left. The first PE3-instruction 0

passes S2 to PE1, and instruction 1 adds this to the

saved Lsave1, passing this sum T1 to PE2. The same

procedure is repeated for the incoming S1 from PE4 to

PE3, which is passed to its left (instruction 2), while

the sum Lsave0+S1 is passed to its right (instruction 3

). In fact, two pairs of instructions can be identified,

that exhibit the same behavior in terms of its outputs:

the instruction-pair 0 and 1 and the instruction-pair 2

and 3 . Two things are different however. First, the

used register addresses (e.g., tostore Lsave values) are

different. Second, the first pair stores incoming values

S0 and S1 from PE4, while the second pair does not

store anything. These differences due to the folding,

again lead to unrolled program code for PE3.

Last, PE1 and PE2 activity are shown at the bottom of

Fig. 6. They each execute two instructions. First, the

incoming value is passed to the left, followed by

passing the sum of this value with Lsave0 to the right.

The program code for both is shown in the bottom two

tables of Fig.

Fig. Program of the twig-phase of the prefix sum

algorithm for a 4-PE folded tree.

CONCLUSION

This paper presented the folded tree architecture of a

digital signal processor for WSN applications. The

design exploits the fact that many data processing

algorithms for WSN applications can be described

using parallel-prefix operations, introducing the much

needed flexibility. Energy is saved thanks to the

following: 1) limiting the data set by pre-processing

with parallel-prefix operations; 2) the reuse of the

binary tree as a folded tree; and 3) the combination of

data flow and control flow elements to introduce a

local distributed memory, which removes the memory

bottleneck while retaining sufficient flexibility.

The simplicity of the programmable PEs that constitute

the folded tree network resulted in high integration,

fast cycle time, and lower power consumption. Finally,

measurements of a 130-nm silicon implementation of

the 16-bit folded tree with eight PEs were measured to

confirm its performance. It consumes down to 8

pJ/cycle. Compared to existing commercial solutions,

this is at least 10× less in terms of overall energy and

2–3× faster.

REFERENCES

[1] V. Raghunathan, C. Schurgers, S. Park, and M. B.

Srivastava, “Energyaware wireless microsensor

networks,” IEEE Signal Process. Mag., vol. 19, no. 2,

pp. 40–50, Mar. 2002.

[2] C. Walravens and W. Dehaene, “Design of a low-

energy data processing architecture for wsn nodes,” in

Proc. Design, Automat. Test Eur. Conf. Exhibit., Mar.

2012, pp. 570–573.

[3] H. Karl and A. Willig, Protocols and Architectures

for Wireless Sensor Networks, 1st ed. New York:

Wiley, 2005.

[4] J. Hennessy and D. Patterson, Computer

Architecture A Quantitative Approach, 4th ed. San

Mateo, CA: Morgan Kaufmann, 2007.

[5] S. Mysore, B. Agrawal, F. T. Chong, and T.

Sherwood, “Exploring the processor and ISA design

for wireless sensor network applications,” in Proc.

 Page 1184

21th Int. Conf. Very-Large-Scale Integr. (VLSI)

Design, 2008, pp. 59–64.

[6] J. Backus, “Can programming be liberated from the

von neumann style?” in Proc. ACM Turing Award

Lect., 1977, pp. 1–29.

[7] L. Nazhandali, M. Minuth, and T. Austin,

“SenseBench: Toward an accurate evaluation of sensor

network processors,” in Proc. IEEE Workload

Characterizat. Symp., Oct. 2005, pp. 197–203.

[8] P. Sanders and J. Träff, “Parallel prefix (scan)

algorithms for MPI,” in Proc. Recent Adv. Parallel

Virtual Mach. Message Pass. Interf., 2006, pp. 49–57.

[9] G. Blelloch, “Scans as primitive parallel

operations,” IEEE Trans. Comput., vol. 38, no. 11, pp.

1526–1538, Nov. 1989.

[10] N. Weste and D. Harris, CMOS VLSI Design: A

Circuits and Systems Perspective. Reading, MA, USA,

Addison Wesley, 2010.

[11] G. E. Blelloch, “Prefix sums and their

applications,” Carnegie Mellon Univ., Pittsburgh, PA:

USA, Tech. Rep. CMU-CS-90, Nov. 1990.

[12] M. Hempstead, J. M. Lyons, D. Brooks, and G.-

Y. Wei, “Survey of hardware systems for wireless

sensor networks,” J. Low Power Electron., vol. 4, no.

1, pp. 11–29, 2008.

[13] V. N. Ekanayake, C. Kelly, and R. Manohar

“SNAP/LE: An ultra-lowpower processor for sensor

networks,” ACM SIGOPS Operat. Syst. Rev. -

ASPLOS, vol. 38, no. 5, pp. 27–38, Dec. 2004.

[14] V. N. Ekanayake, C. Kelly, and R. Manohar,

“BitSNAP: Dynamic significance compression for a

lowenergy sensor network asynchronous processor,” in

Proc. IEEE 11th Int. Symp. Asynchronous Circuits

Syst., Mar. 2005, pp. 144–154.

