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Abstract: 

Mostly the shortcoming of the patch based methods 

by developing a paradigm for accurately global 

filtering where each pixel is estimated from all pixels 

in the image. The two objectives are- firstly, we 

furnish a statistical analysis of the implemented 

global filter based on the spectral decomposition of 

the corresponding operator and have to find out the 

effect of truncation of it, secondly, develop an 

approximation to the spectral components using the 

Nystrom extension. Using these two objectives, 

illustrate that this global filter can be implemented 

well by sampling a comparatively small percentage of 

the pixels in the image. Implemented system show 

that our approach can successfully globalize any 

existing denoising filters to approximate each pixel 

by means of all pixels in the image, consequently 

improving the best patch-based methods. 

1.1 Introduction 

Digital image processing is electronic data processing 

on a 2-D array of numbers. The array is a numeric 

representation of an image. A real image is formed on 

a sensor when an energy emission strikes the sensor 

with sufficient intensity to create a sensor output. An 

image may be defined as a two-dimensional function, 

f(x, y), where x and y are spatial (plane) coordinates, 

and the amplitude of f at any pair of coordinates (x, y) 

is called the intensity or gray level of the image at that 

point. When x, y, and the amplitude values of f are all 

finite, discrete quantities, we call the image a digital 

image. The field of digital image processing refers to 

processing digital images by means of a digital 

computer. A digital image is composed of a finite 

number of elements, each of which has a particular 

location and value. These elements are referred to as 

picture elements, image elements, pels, and pixels. 

Pixel is most widely used to denote the elements of a 

digital image.Images play the single most important 

role in human perception. Humans are limited to the 

visual band of the electromagnetic (EM) spectrum, 

imaging machines cover almost the entire EM 

spectrum, ranging from gamma to radio waves. They 

can operate on images generated by sources that 

humans are not accustomed to associating with 

images.  

 

These include ultrasound, electron microscopy, and 

computer-generated images. Thus, digital image 

processing encompasses a wide and varied field of 

applications.Digital image processing is the use of 

computer algorithms to perform image processing on 

digital images. Digital image processing has the same 

advantages over analog image processing as digital 

signal processing has over analog signal processing it 

allows a much wider range of algorithms to be applied 

to the input data, and can avoid problems such as the 

build-up of noise and signal distortion during 

processing . Image processing is a subclass of signal 

processing concerned specifically with pictures. 

Improve image quality for human perception and/or 

computer interpretation. 

 

1.2 Fundamental Steps in Digital Image Processing 

1.2.1 Image Acquisition  

An image is captured by a sensor (such as a 

monochrome or color TV camera) and digitized. If the 

output of the camera or sensor is not already in digital 

form, an analog-to-digital converter digitizes it. 

Generally, the image acquisition stage involves 

preprocessing, such as scaling. 
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1.2.2 Image Enhancement 

Image enhancement is among the simplest and most 

appealing areas of digital image processing. Basically, 

the idea behind enhancement techniques is to bring out 

detail that is obscured, or simply to highlight certain 

features of interest in an image. A familiar example of 

enhancement is when we increase the contrast of an 

image because “it looks better.” To bring out detail is 

obscured, or simply to highlight certain features of 

interest in an image. 

 

1.2.3 Image Restoration  

Image restoration is an area that also deals with 

improving the appearance of an image. Image 

restoration is objective, in the sense that restoration 

techniques tend to be based on mathematical or 

probabilistic models of image degradation. 

Enhancement, on the other hand, is based on human 

subjective preferences regarding what constitutes a 

“good” enhancement result. Improving the appearance 

of an image tend to be based on mathematical or 

probabilistic models of image degradation. 

 

1.2.4 Image Compression 

Image Compression deals with techniques for reducing 

the storage required saving an image, or the bandwidth 

required transmitting it. Although storage technology 

has improved significantly over the past decade, the 

same cannot be said for transmission capacity. This is 

true particularly in uses of the Internet, which are 

characterized by significant pictorial content.  Image 

compression is familiar to most users of computers in 

the form of image file extensions, such as the jpg file 

extension used in the JPEG (Joint Photographic 

Experts Group) image compression standard. 

 

1.2.5 Image Segmentation 

Image segmentation is the process of partitioning 

a digital image into multiple segments (sets of pixels, 

also known as super pixels). The goal of segmentation 

is to simplify and/or change the representation of an 

image into something that is more meaningful and 

easier to analyze. Image segmentation is typically used 

to locate objects and boundaries (lines, curves, etc.) in 

images. More precisely, image segmentation is the 

process of assigning a label to every pixel in an image 

such that pixels with the same label share certain 

visual characteristics. 

 

The result of image segmentation is a set of segments 

that collectively cover the entire image, or a set 

of contours extracted from the image (see edge 

detection). Each of the pixels in a region are similar 

with respect to some characteristic or computed 

property, such as color, intensity, or texture. Adjacent 

regions are significantly different with respect to the 

same characteristic(s). When applied to a stack of 

images, typical in medical imaging, the resulting 

contours after image segmentation can be used to 

create 3D reconstructions with the help of interpolation 

algorithms like marching cubes.Edge detection is a 

well-developed field on its own within image 

processing. Region boundaries and edges are closely 

related, since there is often a sharp adjustment in 

intensity at the region boundaries. Edge detection 

techniques have therefore been used as the base of 

another segmentation technique. The edges identified 

by edge detection are often disconnected. To segment 

an object from an image however, one needs closed 

region boundaries. The desired edges are the 

boundaries between such objects. Segmentation 

methods can also be applied to edges obtained from 

edge detectors. Lindeberg and Li developed an 

integrated method that segments edges into straight 

and curved edge segments for parts-based object 

recognition, based on a minimum description length 

(MDL) criterion that was optimized by a split-and-

merge-like method with candidate breakpoint obtained 

from complementary junction cues to obtain more 

likely points at which to consider partitions into 

different segment. 

 

4.1 Global image denoising 

Most on hand up to date image denoising algorithms 

are based on exploiting similarity between a relatively 

modest number of patches. These patch-based methods 

http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Contour_line
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Luminous_intensity
http://en.wikipedia.org/wiki/Image_texture
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Marching_cubes
http://en.wikipedia.org/wiki/Edge_detection
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are decisively reliant on patch matching, and their 

performance is controlled by the capability to 

consistently determine adequately similar patches. As 

the number of patches increases, a point of retreating 

proceeds is reached where the performance 

improvement due to more patches is offset by the 

lower likelihood of ending sufficiently close matches. 

The complete effect is that while patch-based methods, 

such as BM3D, are excellent overall, they are 

ultimately limited in how well they can do on (larger) 

images with increasing complexity. In this proposed 

method, first, we give a statistical analysis of our 

proposed global filter, based on a spectral 

decomposition of its corresponding operator, and we 

study the effect of truncation of this spectral 

decomposition. Second, we derive an approximation to 

the spectral (principal) components using the Nyström 

extension. Using these, we demonstrate that this global 

filter can be implemented efficiently by sampling a 

fairly small percentage of the pixels in the image.The 

Nyström method was originally introduced as a 

method for finding mathematical solution to Eigen 

decomposition problems. The Nyström extension has 

been helpful for different applications such as image 

editing [17], manifold learning [15], and image 

segmentation [16]. Conveniently, in our global 

filtering structure, the filter matrix is not a full-rank 

local filter and thus can be strictly approximated with a 

low-rank matrix with the help of the Nyström 

method.Our effort to this line of research is to bring in 

a new global denoising filter, which takes into relation 

all informative parts of an image. Definitely, with this 

global filter, the idea of patch-based processing is no 

longer limiting, and we are capable to show that 

performances of the on hand patch-based filters are 

improved.The block diagram of the proposed global 

image denoising (GLIDE) construction is illustrated in 

Fig 1. As it can be seen, after applying a pre-filter on 

the noisy image, a small fraction of the pixels are 

sampled to be fed to the Nyström method. Then, the 

global filter is approximated through its Eigen values 

and eigenvectors. The final estimate of the image is 

constructed through reduction of the filter Eigen 

values. 

Fig 4.1: GLIDE’s pipeline 

4.2 Statistical analysis of global filter 

With zi representing the ith underlying pixel, our 

measurement model for the denoising problem is: 

yi = zi +ei, for i = 1,...,n, ------------------------------------

----- (4.1) 

 where yi is the noisy pixel value and ei denotes the 

additive noise. The vectorized measurement model for 

recovering the underlying pixels z = [ z1,...,zn]T is 

given by (15). Most spatial domain filters can be 

represented through the following non-parametric 

restoration framework [2], [6]: 

^zi=argmaxzi∑ [𝒛𝒊 −  𝒚𝒋]^𝟐𝑲𝒊𝒋𝒏
𝒋=𝟏 ------------------------

---------------------- (4.2) 

 

where the kernel function Kij measures the similarity 

between the samples yi and yj, and ^zi denotes the ith 

estimated pixel.Minimizing equation (16) gives a 

normalized weighted averaging process in which some 

data-adaptive weights are assigned to each pixel: 

^ zi = wi
T y,----------------------------------------------- 

(4.3) 

 

where the weight vector wi is  

wi = 
𝟏

∑ 𝑲𝒊𝒋𝒏
𝒋=𝟏

[Ki1, Ki2,...,Kin]T-------------------------  

(4.4) 

in which [Ki1, Ki2,...,Kin] denotes the ith row of the 

symmetric kernel matrix K. The filtering process for 

all the pixels can be represented by stacking the weight 

vectors together: 
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^z=Wy = VSVTy----------------------------------------- 

(4.5) 

 

Where W=[w1
T w2

T ……wn
T]T ,called positive, row-

stochastic filter matrix W is used to estimate 

denoisined signal ^z. The eigenvectors V =[v1,v2,.,vn] 

specify a complete orthonormal basis for Rn and S = 

diag[λ1,.,λn] contains the eigenvalues in decreasing 

order   0 ≤λn ≤···<λ1 = 1. This implies that the image y 

is first projected onto the eigenvectors of W, then each 

mode of the projected signal is reduced by its 

equivalent eigenvalue, and finally after mapping back 

to the signal domain, the recovered signal ^z is 

produced.The computational burden of constructing 

and decomposing such a large matrix as W is 

prohibitively high. However, the Nyström 

approximation, combined with our statistical analysis 

allows a resourceful solution. Before proceeding to the 

filter approximation, the behavior of the filter (in terms 

of MSE) is analyzed. 

 

MSE of the image 

From (16) we can show that each row of W can be 

expressed as: 

------------------------------------- 

(4.6) 

where vj(i) denotes the i-th entry of the j-th 

eigenvector. Then each estimated pixel ^zi has the 

following form: 

------------------------------------ 

(4.7) 

Bias of this estimate can be expressed as: 

 ------------------------ (4.8) 

where b =VT z=[ b1,...,bn]T contains the projected 

signal in all modes. The variance term also has the 

following form:

-------------------- (4.9) 

 

where in the last equation we have vT
j vj’ = δjj’ for the 

orthonormal basis functions. Overall, the MSE of the i-

th estimated pixel is: 

   -----

- (4.10) 

 

This expression can be used to analyze the framework 

given in (4.7). The estimated MSE of the whole image 

is given by: 

--------

-- (4.11) 

Reminding the orthonormality of the eigenvectors VT 

V = VVT = I, the variance term can be written as:  

------------ 

(4.12) 

where in the last equation with   l 

≠ j. 
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From what we have for the squared bias and variance 

we caconclude:  

--------------------- 

(4.13) 

Apparently MSE is a function of the latent signal, 

noise, filter eigen values and eigenvectors. The filter 

eigen values are the shrinkage factors which directly 

tune the filtering performance. 

4.3 Filter Approximation 

Our objective is different because in the end we need 

to approximate the filtering matrix W, hence we first 

review what is done in [16] and then adapt it to the 

approximation we need to effect here. In the following, 

the Nyström approach for approximating the similarity 

(affinity) matrix K is used first and then the Sinkhorn 

method  is applied to estimate the eigen- 

decomposition of the symmetric, doubly-stochastic 

filter W. Since the approximated eigenvectors are not 

exactly orthog- onal, finally an orthogonalization 

procedure is employed to obtain an orthonormal 

approximation for eigen-decomposition of W. These 

steps are shown in Algorithm 1 and we will discuss 

them in more details below: 

 

4.3.1 Nystrom Approximation 

This method is a numerical approximation for 

estimating the eigenvectors of the symmetric kernel 

matrix  

------------------------------------------------

----- (4.14) 

where represents the orthonormal 

eigenvectors and  contains the 

eigen values of K. Nyström [13] suggests that instead 

of computing all the entries of K, we can sample our 

data points and estimate the leading eigenvectors of 

the matrix K and, as a result, an approximation ~K can 

then be built from those estimated eigenvectors.Having 

p pixels in a sampled subimage A, we can compute the 

p × p kernel matrix KA which represents the similarity 

weights of pixels in A. We also define the subimage B 

containing the rest of (n−p) pixels, followed by the 

p×(n−p) matrix KAB, which contains the kernel weights 

between pixels in A and B. The similarity matrix K in 

block form is therefore: 

---------------------------------------

----- (4.15) 

where KB denotes the (n − p)×(n − p) similarity 

weights between pixels in the subimage B. As can be 

seen, (4.3) can be thought of as a permutation of the 

old K. Nyström suggests the following approximation 

for the first p eigenvectors of K: 

 -------------------------------------

--- (4.16) 

where . Intuitively, we can say that 

the first p entries of  are computed exactly, and the 

(n − p) remaining ones are approximated by a 

weighted projection of KAB over the eigenvectors of 

KA. Then the approximated similarity matrix will be: 

 ---------- 

(4.17) 

Comparing (4.15) and (4.17) it can be seen that the 

huge matrix KB is approximated by  

A key aspect of the Nyström approximation is the 

sampling procedure in which the columns (or rows) of 

the original K are selected. The Nyström method was 

first introduced by a uniform distribution sampling 

over data [12]. Efficiency of the uniform sampling has 

been explored in many practical applications [15], 

[16]. More recently, theoretical aspects of nonuniform 
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sampling techniques on real-world data sets have been 

studied [24], [25]. In general, these nonuniform 

sampling procedures are biased toward selection of the 

most informative points of the data-set. However, due 

to the imposed complexity of the nonuniform 

distribution updating procedure, practical application 

of these adaptive methods is limited. In the current 

framework, our data are images which contain a high 

degree of spatial correlation between pixels. This leads 

us to use spatially uniform sampling instead of the 

random sampling procedure. Spatially uniform 

sampling is a simple but effective approach in which 

the spatial distance of the samples are always equally 

fixed.To study the performance of the Nyström 

approximation, we evaluate the relative accuracy 

defined in [25]: 

Relative Accuracy= ----------------

----- (4.18) 

where K and K(r) are the actual kernel and its exact 

rank-r approximation. The approximated kernel  ~K(r) 

is reconstructed by using r leading eigenvectors from 

the Nyström method. The relative accuracy is lower 

bounded by zero and will ideally approach 100%. We 

fixed r = 50 to capture about 90% of the spectral 

energy of the global kernel for each image. The 

samples are uniformly selected over the image lattice, 

and the relative accuracy is averaged for 20 sampling 

realizations. It can be seen that while higher sampling 

percentage leads to smaller error in the approximated 

kernel matrix, a saturation point is reached beyond 

20% sampling density. Furthermore, for a fixed 

sampling rate the error depends on the contents of the 

underlying image. Surprisingly, textured images with 

high frequency components such as Mandrill produce 

less error compared to smooth images like House. This 

observation is consistent with results of [26] where it is 

shown that the error of the Nyström approximation is 

proportional to coherency of the kernel 

eigenvectorsOne could assume that at this point we 

can easily compute our approximated W and we are 

done! But as discussed earlier, statistical analysis of 

this filter needs access to its eigen- decomposition. 

Constructing a huge W matrix and then computing its 

eigenvectors is too expensive. Instead, in the following 

we explore an efficient way to find the eigenvectors of 

W. 

4.3.2 Sinkhorn 

The filter W is the row-normalized kernel matrix K: 

-----------------------------------------------

-- (4.19) 

where . 

We approximate the matrix W with a doubly-

stochastic (symmetric) positive definite matrix, using 

Sinkhorn’s algorithm [20]. Based on this method, 

given a positive valued matrix K, there exist diagonal 

matrices R = diag(r) and C = diag(c) such that   Wsym 

= RKC. Since we have estimated the leading 

eigenvectors of K, there is no need to compute RKC. 

Instead, as can be seen in Algorithm. 1, Wsym is 

approximated by its two sub-blocks WA and WAB 

where: 

------------------------------

-- (4.20) 

Again, the Nyström method could give the 

approximated eigenvectors, but the only minor 

problem is that these eigen- vectors are not quite 

orthogonal. In the following we discuss an 

approximation of the orthogonal eigenvectors. 
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