
 
 

 Page 1515 
 

Implementation of Boundary Cutting Algorithm Using Packet 

Classification 

Dasari Mallesh 

M.Tech Student 

Department of CSE 

Vignana Bharathi Institute of Technology, 

Hyderabad. 

V Sridhar Reddy 

Associate Professor 

Department of CSE 

Vignana Bharathi Institute of Technology, 

Hyderabad. 

 

ABSTRACT: 

Decision-tree-based packet classification algorithms 

such as HiCuts, HyperCuts, and EffiCuts show 

excellent search performance by exploiting the 

geometrical representation of rules in a classifier and 

searching for a geometric subspace to which each 

input packet belongs. However, decision tree 

algorithms involve complicated heuristics for 

determining the field and number of cuts. Moreover, 

fixed interval-based cutting not relating to the actual 

space that each rule covers is ineffective and results 

in a huge storage requirement. A new efficient packet 

classification algorithm using boundary cutting is 

proposed in this paper. The proposed algorithm finds 

out the space that each rule covers and performs the 

cutting according to the space boundary. Hence, the 

cutting in the proposed algorithm is deterministic 

rather than involving the complicated heuristics, and 

it is more effective in providing improved search 

performance and more efficient in memory 

requirement. For rule sets with 1000–100 000 rules, 

simulation results show that the proposed boundary 

cutting algorithm provides a packet classification 

through 10–23 on-chip memory accesses and 1–4 off-

chip memory accesses in average. 

 

Index Terms — Binary search, boundary cutting, 

decision tree algorithms, HiCuts, packet 

classification. 

 

INTRODUCTION: 

PACKET classification is an essential function in 

Internet routers that provides value-added services 

such as network security and quality of service (QoS) 

[1]. A packet classifier should comparemultiple header 

fields of the received packet against a set of predefined 

rules and return the identity of the highest-priority rule 

that matches the packet header. The use of application-

specific integrated circuits (ASICs) with off-chip 

ternary content addressable memories (TCAMs) has 

been the best solution for wire-speed packet 

forwarding [2], [3]. However, TCAMs have some 

limitations. TCAMs consume 150 more power per bit 

than staticrandom access memories (SRAMs). TCAMs 

consume around 30%–40% of total line card power 

[4], [5]. When line cards are stacked together, TCAMs 

impose a high cost on cooling systems. TCAMs also 

cost about 30 more per bit of storage than double-data-

rate SRAMs. Moreover, for an -bit port range field, it 

may require TCAM entries, making the exploration of 

algorithmic alternatives necessary. Many algorithms 

and architectures have been proposed over the years in 

an effort to identify an effective packet classification 

solution [6]–[35]. Use of a high bandwidth and a small 

on-chipmemorywhile the rule database for packet 

classification resides in the slower and higher capacity 

off-chip memory by proper partitioning is desirable 

[36], [37]. Performance metrics for packet 

classification algorithms primarily include the 

processing speed, as packet classification should be 

carried out in wire-speed for every incoming packet. 

Processing speed is evaluated using the number of off-

chip memory accesses required to determine the class 

of a packet because it is the slowest operation in 

packet classification. The amount of memory required 

to store the packet classification table should be also 

considered. Most traditional applications require the 

highest priority 



 
 

 Page 1516 
 

matching. However, the multimatch classification 

concept is becoming an important research item 

because of the increasing need for network security, 

such as network intrusion detection systems (NIDS) 

and worm detection, or in new application programs 

such as load balancing and packet-level accounting 

[7]. In NIDS, a packet may match multiple rule 

headers, in which case the related rule options for all 

of the matching rule headers need to be identified to 

enable later verification. In accounting, multiple 

counters may need to be updated for a given packet, 

making multimatch classification necessary for the 

identification of the relevant counters for each packet 

[4]. 

 

Existing System: 

Our study analyzed various decision-tree-based packet 

classification algorithms. If a decision tree is properly 

partitioned so that the internal tree nodes are stored in 

an on-chip memory and a large rule database is stored 

in an off-chip memory, the decision tree algorithm can 

provide very high-speed search performance. 

Moreover, decision tree algorithms naturally enable 

both the highest-priority match and the multimatch 

packet classification. Earlier decision tree algorithms 

such as HiCuts [8] and HyperCuts [9] select the field 

and number of cuts based on a locally optimized 

decision, which compromises the search speed and the 

memory requirement. This process requires a fair 

amount of preprocessing,which involves complicated 

heuristics related to each given rule set. The 

computation required for the preprocessing consumes 

much memory and construction time, making it 

difficult for those algorithms to be extended to large 

rule sets because of memory problems in building the 

decision trees. Moreover, the cutting is based on a 

fixed interval, which does not consider the actual space 

that each rule covers; hence it is ineffective. 

 

Proposed System: 

In this paper, we propose a new efficient packet 

classification algorithm based on boundary cutting. 

Cutting in the proposed algorithm is based on the 

disjoint space covered by each rule. Hence, the packet 

classification table using the proposed algorithm is 

deterministically built and does not require the 

complicated heuristics used by earlier decision tree 

algorithms. The proposed algorithm has two main 

advantages. First, the boundary cutting of the proposed 

algorithm is more effective than that of earlier 

algorithms since it is based on rule boundaries rather 

than fixed intervals. Hence, the amount of required 

memory is significantly reduced. Second, although BC 

loses the indexing ability at internal nodes, the binary 

search at internal nodes provides good search 

performance. The organization of the paper is as 

follows. Section II provides an overview of the earlier 

decision tree algorithms. Section III describes the 

proposed BC algorithm. Section IV describes the 

refined structure of the BC algorithm, termed selective 

BC. Section V shows the data structure of each 

decision tree algorithm. Section VI shows the 

performance evaluation results using three different 

types of rule sets with 1000–100 000 rules each 

acquired from a publicly available database. 

 

RELATED WORKS 

 

Packet classification can be formally defined as 

follows [10]: Packet P matches rule , for , if all the 

header fields , for , of the packet match the 

corresponding fields in , where is the number of rules 

and is the number of fields. If a packet matches 

multiple rules, the rule with the highest priority is 

returned for a single-best-match packet classification 

problem and the list of matching rules is returned for 



 
 

 Page 1517 
 

the multimatch packet classification problem. Rule sets 

are generally composed of five fields. The first two 

fields are related to source and destination prefixes and 

require prefix match operation. The next two fields are 

related to source and destination port ranges (or 

numbers), which require range match. The last field is 

related to protocol type and requires an exact match. 

 

HiCuts 

 

Each rule defines a five-dimensional hypercube in a 

five-dimensional space, and each packet header 

defines a point in the space. The HiCuts algorithm [8] 

recursively cuts the space into subspaces using one 

dimension per step. Each subspace ends up with fewer 

overlapped rule hypercubes that allow for a linear 

search. In the construction of a decision tree of the 

HiCuts algorithm, a large number of cuts consumes 

more storage, and a small number of cuts causes 

slower search performance. It is challenging to balance 

the storage requirement and the search speed. The 

HiCuts algorithm uses two parameters, a space factor 

(spfac) and a threshold (binth), in tuning the heuristics, 

which trade off the depth of the decision tree against 

the memory amount. The field in which a cut may be 

executed is chosen to minimize the maximum number 

of rules included in any subspace. 

 

HyperCuts 

 

While the HiCuts algorithm only considers one field at 

a time for selecting cut dimension, the HyperCuts 

algorithm [9] considers multiple fields at a time. For 

the same example set, the decision tree of the 

HyperCuts algorithm is shown in Fig. 3. The spfac and 

binth are set as 1.5 and 3, respectively. As shown at 

the root node, the and fields are used simultaneously 

for cutting. Note that each edge of the root node 

represents the bit combination of 00, 10, 01, and 11, 

respectively, which is one bit in the first field followed 

by one bit in the second field. 

 

PROPOSED ALGORITHM 

HiCuts and HyperCuts algorithms perform cutting 

based on a fixed interval, and hence the partitioning is 

ineffective in reducing the number of rules belonging 

to a subspace. Moreover, when the number of cuts in a 

field is being determined, complicated preprocessing 

should be made to balance the required memory size 

and the search performance. In this study, we propose 

a deterministic cutting algorithm based on each rule 

boundary, termed as boundary cutting (BC) algorithm. 

 

Building a BC Decision Tree 

When the cutting of a prefix plane according to rule 

boundaries is performed, both the starting and the 

ending boundaries of each rule can be used for cutting, 

but cutting by either is sufficient since decision tree 

algorithms generally search for a subspace in which an 

input packet belongs and the headers of the given input 

are compared for entire fields to the rules belonging to 

the subspace (represented by a leaf node of the 

decision tree). 

 

Searching in the BC Algorithm 

The cuts at each internal node of the BC decision tree 

do not have fixed intervals. Hence, at each internal 

node of the tree, a binary search is required to 

determine the proper edge to follow for a given input. 

However, it will be shown in Section VI that the BC 

algorithm provides better search performance than the 

HiCuts algorithm despite of the memory access for the 

binary search at the internal nodes. 



 
 

 Page 1518 
 

DATA STRUCTURE 

There are two different ways of storing rules in 

decision tree algorithms. The first way separates a rule 

table from a decision tree. In this case, each rule is 

stored only once in the rule table, while each leaf node 

of a decision tree has pointers to the rule table for the 

rules included in the leaf. The number of rule pointers 

that each leaf must hold equals the binth. In searching 

for the best matching rule for a given packet or the list 

of all matching rules, after a leaf node in the decision 

tree is reached and the number of rules included in the 

leaf is identified, extra memory accesses are required 

to access the rule table. The other way involves storing 

rules within leaf nodes. In this case, search 

performance is better since extra access to the rule 

table is avoided, but extra memory overhead is caused 

due to rule replication. In our simulation in this paper, 

it is assumed that rules are stored in leaf nodes since 

the search performance is more important than the 

required memory. 

 

SIMULATION RESULTS 

Simulations using C++ have been extensively 

performed for rule sets created by Classbench [38]. 

Three different types of rule sets—access control list 

(ACL), firewall (FW), and Internet protocol chain 

(IPC)—are generated with sizes of approximately 

1000, 5000, 10 000, 50 000, and 100 000 rules each. 

Rule sets are named using the set type followed by the 

size such as with ACL1K, which means an ACL type 

set with about 1000 rules. 

 

Setting binth: 

The HiCuts and HyperCuts algorithms do not have a 

cut-stop condition other than binth. Setting binth as an 

arbitrary small number will cause an infinite loop of 

unnecessary cutting if there is no rule boundary inside 

the subspace covered by an internal node. The 

optimization of rule overlapping that removes rules 

except the highest-priority rule in such nodes can solve 

this problem. However, no rule should be ignored for 

multimatch packet classification. 

 

Decision Tree Characteristics 

In the second step, we constructed decision trees of 

BC, SBC, HiCuts, and HyperCuts algorithms setting 

binth as the identified lower bound value. Cutting is 

recursively performed and stopped if the number of 

rules included in a subspace is less than or equal to the 

lower bound binth. The performances of the HiCuts 

and HyperCuts algorithms depend on spfac as well. In 

our simulation, spfac was set to 1.5 for 1K sets and 2 

for all other sets. 

 

CONCLUSIONS 

In this paper, decision tree algorithms have been 

studied, and a new decision tree algorithm is proposed. 

Throughout the extensive simulation using Classbench 

databases [38] for the previous decision tree 

algorithms, HiCuts and HyperCuts, we discovered that 

the performance of decision tree algorithms is highly 

dependent on the rule set characteristics, especially the 

number of rules with a wildcard or a short-length 

prefix. For example, the HiCuts algorithm can provide 

high-speed search performance, but the memory 

overhead for large sets or sets with many wildcard 

rules makes its use impractical. We also discovered 

that the HyperCuts algorithm either does not provide 

high-speed search performance or requires a huge 

amount of memory depending on how to implement 

the pushing upward optimization. While the cutting in 

the earlier decision tree algorithms is based on a 

regular interval, the cutting in the proposed algorithm 

is based on rule boundaries; hence, the cutting in our 

proposed algorithm is deterministic and very effective. 

Furthermore, to avoid rule replication caused by 

unnecessary cutting, a refined structure of the 

proposed algorithm has been proposed. The proposed 

algorithms consume a lot less memory space compared 

to the earlier decision tree algorithms, and it is upto 

several kilobytes per rule except for FW50K and 

FW100K. The proposed algorithms achieve a packet 

classification by 10–23 on-chip memory accesses and 

1.0–4.0 off-chip memory accesses in average. New 

network applications have recently demanded a 

multimatch packet classification [4] in which all 



 
 

 Page 1519 
 

matching results along with the highest-priority 

matching rule must be returned. It is necessary to 

explore efficient algorithms to solve both classification 

problems. The decision tree algorithms including the 

proposed algorithms in this paper naturally enable both 

the highest priority match and the multimatch packet 

classification. 

 

REFERENCES 

[1] H. J. Chao, “Next generation routers,” Proc. IEEE, 

vol. 90, no. 9, pp.1518–1588, Sep. 2002. 

[2] A. X. Liu, C.R.Meiners, andE.Torng, 

“TCAMrazor: A systematic approach towards 

minimizing packet classifiers in TCAMs,” IEEE/ACM 

Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010. 

[3] C. R. Meiners, A. X. Liu, and E. Torng, 

“Topological transformation approaches to TCAM-

based packet classification,” IEEE/ACM Trans. Netw., 

vol. 19, no. 1, pp. 237–250, Feb. 2011. 

[4] F. Yu and T. V. Lakshnam, “Efficient multimatch 

packet classification and lookup with TCAM,” IEEE 

Micro, vol. 25, no. 1, pp. 50–59, Jan. –Feb. 2005. 

[5] F. Yu, T. V. Lakshman, M. A. Motoyama, and R. 

H. Katz, “Efficient multimatch packet classification 

for network security applications,” IEEE J. Sel. Areas 

Commun., vol. 24, no. 10, pp. 1805–1816, Oct. 2006. 

[6] H. Yu and R. Mahapatra, “A memory-efficient 

hashing by multi-predicate bloom filters for packet 

classification,” in Proc. IEEE INFOCOM, 2008, pp. 

2467–2475. 

[7] H. Song and J. W. Lockwood, “Efficient packet 

classification for network intrusion detection using 

FPGA,” in Proc. ACM SIGDA FPGA, 2005, pp. 238–

245. 

[8] P. Gupta and N. Mckeown, “Classification using 

hierarchical intelligent cuttings,” IEEE Micro, vol. 20, 

no. 1, pp. 34–41, Jan.–Feb. 2000. 

[9] S. Singh, F. Baboescu, G. Varghese, and J. Wang, 

“Packet classification using multidimensional cutting,” 

in Proc. SIGCOMM, 2003, pp. 213–224. 

[10] P. Gupta and N. Mckeown, “Algorithms for 

packet classification,” IEEE Netw., vol. 15, no. 2, pp. 

24–32, Mar.–Apr. 2001. 

[11] B. Vamanan, G. Voskuilen, and T. N. 

Vijaykumar, “EffiCuts: Optimizing packet 

classification for memory and throughput,” in Proc. 

ACM SIGCOMM, 2010, pp. 207–218. 

[12] H. Song, M. Kodialam, F. Hao, and T. V. 

Lakshman, “Efficient trie braiding in scalable virtual 

routers,” IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 

1489–1500, Oct. 2012. 

[13] J. Treurniet, “A network activity classification 

schema and its application to scan detection,” 

IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1396–

1404, Oct. 2011. 

[14] L. Choi, H. Kim, S. Ki, and M. H. Kim, “Scalable 

packet classification through rulebase partitioning 

using the maximum entropy hashing,” IEEE/ACM 

Trans. Netw., vol. 17, no. 6, pp. 1926–1935, Dec. 

2009. 

[15] F. Baboescu and G. Varghese, “Scalable packet 

classification,” IEEE/ACM Trans. Netw., vol. 13, no. 

1, pp. 2–14, Feb. 2005. 

[16] P. C. Wang, C. L. Lee, C. T. Chan, and H. Y. 

Chang, “Performance improvement of two-

dimensional packet classification by filter rephrasing,” 

IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 906–917, 

Aug. 2007. 

[17] P. C. Wang, C. L. Lee, C. T. Chan, and H. Y. 

Chang, “O(log W) multidimensional packet 

classification,” IEEE/ACM Trans. Netw., vol. 15, no. 

2, pp. 462–472, Apr. 2007. 

[18] X. Sun, S. K. Sahni, and Y. Q. Zhao, “Packet 

classification consuming small amount of memory,” 



 
 

 Page 1520 
 

IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1135–

1145, Oct. 2005. 

[19] W. Lu and S. Sahni, “Succinct representation of 

static packet classifiers,” IEEE/ACM Trans. Netw., 

vol. 17, no. 3, pp. 803–816, Jun. 2009. 


