
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 497

ABSTRACT:

Keyword queries on databases provide easy access to
data, but often suffer from low ranking quality, i.e., low
precision and/or recall, as shown in recent benchmarks. It
would be useful to identify queries that are likely to have
low ranking quality to improve the user satisfaction. For
instance, the system may suggest to the user alternative
queries for such hard queries. In this paper, we analyze
the characteristics of hard queries and propose a novel
framework to measure the degree of difficulty for a key-
word query over a database, considering both the struc-
ture and the content of the database and the query results.
We evaluate our query difficulty prediction model against
two effectiveness benchmarks for popular keyword
search ranking methods. Our empirical results show that
our model predicts the hard queries with high accuracy.
Further, we present a suite of optimizations to minimize
the incurred time overhead.

Index Terms:
Query performance, query effectiveness, keyword query,
robustness, databases

I.INTRODUCTION :

Keyword query interfaces (KQIs) for databases have
attracted much attention in the last decade due to their
flexibility and ease of use in searching and exploring the
data. Since any entity in a data set that contains the query
keywords is a potential answer, keyword queries typically
have many possible answers. KQIs must identify the in-
formation needs behind keyword queries and rank the an-
swers so that the desired answers appear at the top of the
list. Unless otherwise noted, it refers to keyword query as
query in the remainder of this project. Databases contain
entities, and entities contain attributes that take attribute
values. Some of the difficulties of answering a query are
as follows: First, unlike queries in languages like SQL, us-
ers do not normally specify the desired schema element(s)
for each query term.

For instance, query Q1: Godfather on the IMDB database
(http://www.imdb.com) does not specify if the user is
interested in movies whose title is Godfather or movies
distributed by the Godfather Company. Thus, a KQI must
find the desired attributes associated with each term in the
query. Second, the schema of the output is not specified,
i.e., users do not give enough information to single out
exactly their desired entities. For example, Q1 may return
movies or actors or producers. It is important for a KQI to
recognize such queries and warn the user or employ alter-
native techniques like query reformulation or query sug-
gestions. It may also use techniques such as query results
diversification. To the best of our knowledge, there has
not been any work on predicting or analyzing the difficul-
ties of queries over databases. Researchers have proposed
some methods to detect difficult queries over plain text
document collections. However, these techniques are not
applicable to our problem since they ignore the structure
of the database. In particular, as mentioned earlier, a KQI
must assign each query term to a schema element(s) in
the database. It must also distinguish the desired result
type(s).

II. RELATED WORK:

Prediction of query performance has long been of inter-
est in information retrieval. It is invested under a differ-
ent names query difficulty, query ambiguity and some-
times hard query. Keyword Searching and Browsing in
Databases using BANKS [4] describe techniques for
keyword searching and browsing on databases that we
have developed as part of the BANKS system (BANKS
is an acronym for Browsing ANd Keyword Searching).
The BANKS system enables data and schema browsing
together with keyword-based search for relational data-
bases. BANKS enables a user to get information by typ-
ing a few keywords, following hyperlinks, and interact-
ing with controls on the displayed results; absolutely no
query language or programming is required. The greatest
value of BANKS lies in near zero-effort web publishing
of relational data which would otherwise remain invisible
to the web.

Gurramkonda Lakshmi Priyanka
P.G. Scholar (M. Tech),

Department of CSE,
Srinivasa Institute of Technology & Sciences,

Ukkayapalli, Kadapa, Andhra Pradesh.

K.Rajasekhar Reddy
Assistant Professor,
Department of CSE,

Srinivasa Institute of Technology & Sciences,
Ukkayapalli, Kadapa, Andhra Pradesh.

Efficient Prediction of Difficult Keyword Queries over Databases

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 498

BANKS may be used to publish organizational data, bib-
liographic data, and electronic catalogs. Search facilities
for such applications can be hand crafted: many web sites
provide forms to carry out limited types of queries on
their backend databases. For example, a university web
site may provide form interface to search for faculty and
students. Searching for departments would require yet an-
other form, as would search for courses offered. Creating
an interface for each such task is laborious, and is also
confusing to users since they must first expend effort find-
ing which form to use Efficient IR-Style Keyword Search
over Relational Databases [2] A key contribution of this
work is the incorporation of IR-style relevance ranking of
tuple trees into our query processing framework.

In particular, our scheme fully exploits single-attribute
relevance-ranking results if the RDBMS of choice has
text-indexing capabilities (e.g., as is the case for Oracle
9.1, as discussed above). By leveraging state-of-the-art IR
relevance-ranking functionality already present in mod-
ern RDBMSs, we are able to produce high quality results
for free-form keyword queries. For example, a query
[disk crash on a net vista] would still match the comments
attribute of the first Complaints tuple above with a high
relevance score, after word stemming (so that “crash”
matches “crashed”) and stop-word elimination (so that
the absence of “a” is not weighed too highly).

III.STRUCTURED ROBUSTNESS ALGO-
RITHM :

Algorithm shows the Structured Robustness Algorithm
(SR Algorithm), which computes the exact SR score
based on the top K result entities. Each ranking algorithm
uses some statistics about query terms or attributes values
over the whole content of DB. Some examples of such
statistics are the number of occurrences of a query term in
all attributes values of the DB or total number of attribute
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in
the SR Algorithm pseudocode. SR Algorithm generates
the noise in the DB on-the-fly during query processing.
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform
any extra I/O access to the DB, except to lookup some
statistics. Moreover, it uses the information which is al-
ready computed and stored in inverted indexes and does
not require any extra index.

Algorithm1 CorruptTopResults(Q,L,M,I,N)
 Input: Query Q, Top-K result list L of Q by ranking func-
tion g, Metadata M, Inverted indexes I, Number of cor-
rupted iteration N.
Output: S R score for Q.
 1: S R ← 0; C ← { }; // C caches λT, λS for keywords
in Q
 2: FOR i=1 → N DO
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M
and L
 4: FOR each result R in L DO
 5: FOR each attribute value A in R DO
 6: A′ ← A; // Corrupted versions of A
 7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation
9: IF # of w varies in A′ and A THEN
 10: Update A′, M′ and entry of w in I′;
 11: Add A′ to R′;
 12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I′, M′;
 14: S R += Sim(L,L′); // Sim computes Spearman cor-
relation
 15: RETURN S R ← S R / N; // AVG score over N
rounds

Algorithm
Algorithm shows the Structured Robustness Algorithm
(SR Algorithm), which computes the exact SR score
based on the top K result entities. Each ranking algorithm
uses some statistics about query terms or attributes values
over the whole content of DB. Some examples of such
statistics are the number of occurrences of a query term in
all attributes values of the DB or total number of attribute
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in
the SR Algorithm pseudocode. SR Algorithm generates
the noise in the DB on-the-fly during query processing.
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform
any extra I/O access to the DB, except to lookup some
statistics.Fig. 1.(a) shows the execution flow of SR Al-
gorithm. Once we get the ranked list of top K entities for
Q, the corruption module produces corrupted entities and
updates the global statistics of DB. Then, SR Algorithm
passes the corrupted results and updated global statistics
to the ranking module to compute the corrupted ranking
list. SR Algorithm spends a large portion of the robustness
calculation time on the loop that re-ranks the corrupted
results (Line 13 in SR Algorithm), by taking into account
the updated global statistics. Since the value of K

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 499

(e.g., 10 or 20) is much smaller than the number of enti-
ties in the DB, the top K entities constitute a very small
portion of the DB.the global statistics largely remain un-
changed or change very little. Hence, we use the global
statistics of the original version of the DB to re-rank the
corrupted entities. If we refrain from updating the global
statistics, we can combine the corruption and ranking
module together. This way re-ranking is done on-the-fly
during corruption. SGS-Approx algorithm is illustrated in
Fig. 1.(b)

SYSTEM ARCHITECTURE:

Figure1.Execution flow of SR algorithm And SGS

–Approx (a)SR algorithm (b)SGS –Approx.

IV.PREDICTION FRAMEWORK
4.1 Noise Generation in Databases

In order to compute SR, we need to define the noise gen-
eration model fXDB (M) for database DB. It will show
that each attribute value is corrupted by a combination of
three corruption levels: on the value itself, its attribute and
its entity set. Now the details: Since the ranking methods
for queries over structured data do not generally consider
the terms in V that do not belong to query Q, we consider
their frequencies to be the same across the original and
noisy versions of DB. The corruption model must reflect
the challenges about search on structured data, where we
showed that it is important to capture the statistical prop-
erties of the query keywords in the attribute values, at-
tributes and entity sets. We must introduce content noise
(recall that we do not corrupt the attributes or entity sets
but only the values of attribute values) to the attributes
and entity sets, which will propagate down to the attri-
bute values. For instance, if an attribute value of attribute
title contains keyword Godfather, then Godfather may ap-
pear in any attribute value of attribute title in a corrupted
database instance. Similarly, if Godfather appears in an
attribute value of entity set movie, then Godfather may
appear in any attribute value of entity set movie in a cor-
rupted instance.

4.2 Ranking in Original & Corrupted Database With the
mapping probabilities estimated as described above, the
probabilistic retrieval model for semi-structured data
(PRMS) can use them as weights for combining the score
from each element into a document score, as follows:

Here, the mapping probability PM(Ej|w) is calculated and
the element-level query-likelihood score PQL(w|ej) is es-
timated in the same way as in the HLM approach.

The rationale behind this weighting is that the mapping
probability is the result of the inference procedure to de-
cide V. Basic Estimation Techniques:

Data sets:

The INEX data set is from the INEX 2010 Data Centric
Track [14]. The INEX data set contains two entity sets:
movie and person. Each entity in the movie entity set rep-
resents one movie with attributes like title, keywords, and
year. The person entity set contains attributes like name,
nickname, and biography. The SemSearch data set is a
subset of the data set used in Semantic Search 2010 chal-
lenge [15]. The original data set contains 116 files with
about one billion RDF triplets. Since the size of this data
set is extremely large, it takes a very long time to index
and run queries over this data set. Hence, we have used
a subset of the original data set in our experiments. We
first removed duplicate RDF triplets. Then, for each file
in SemSearch data set, we calculated the total number
of distinct query terms in SemSearch query workload
in the file. We selected the 20, out of the 116, files that
contain the largest number of query keywords for our
experiments. We converted each distinct RDF subject in
this data set to an entity whose identifier is the subject
identifier. The RDF properties are mapped to attributes
in our model. The values of RDF properties that end with
substring ―#type” indicates the type of a subject. Hence,
we set the entity set of each entity to the concatenation of
the values of RDF properties of its RDF subject that end
with substring ―#type”. If the subject of an entity does
not have any property that ends with substring ―#type”,
we set its entity set to ―UndefinedType”.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 498

BANKS may be used to publish organizational data, bib-
liographic data, and electronic catalogs. Search facilities
for such applications can be hand crafted: many web sites
provide forms to carry out limited types of queries on
their backend databases. For example, a university web
site may provide form interface to search for faculty and
students. Searching for departments would require yet an-
other form, as would search for courses offered. Creating
an interface for each such task is laborious, and is also
confusing to users since they must first expend effort find-
ing which form to use Efficient IR-Style Keyword Search
over Relational Databases [2] A key contribution of this
work is the incorporation of IR-style relevance ranking of
tuple trees into our query processing framework.

In particular, our scheme fully exploits single-attribute
relevance-ranking results if the RDBMS of choice has
text-indexing capabilities (e.g., as is the case for Oracle
9.1, as discussed above). By leveraging state-of-the-art IR
relevance-ranking functionality already present in mod-
ern RDBMSs, we are able to produce high quality results
for free-form keyword queries. For example, a query
[disk crash on a net vista] would still match the comments
attribute of the first Complaints tuple above with a high
relevance score, after word stemming (so that “crash”
matches “crashed”) and stop-word elimination (so that
the absence of “a” is not weighed too highly).

III.STRUCTURED ROBUSTNESS ALGO-
RITHM :

Algorithm shows the Structured Robustness Algorithm
(SR Algorithm), which computes the exact SR score
based on the top K result entities. Each ranking algorithm
uses some statistics about query terms or attributes values
over the whole content of DB. Some examples of such
statistics are the number of occurrences of a query term in
all attributes values of the DB or total number of attribute
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in
the SR Algorithm pseudocode. SR Algorithm generates
the noise in the DB on-the-fly during query processing.
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform
any extra I/O access to the DB, except to lookup some
statistics. Moreover, it uses the information which is al-
ready computed and stored in inverted indexes and does
not require any extra index.

Algorithm1 CorruptTopResults(Q,L,M,I,N)
 Input: Query Q, Top-K result list L of Q by ranking func-
tion g, Metadata M, Inverted indexes I, Number of cor-
rupted iteration N.
Output: S R score for Q.
 1: S R ← 0; C ← { }; // C caches λT, λS for keywords
in Q
 2: FOR i=1 → N DO
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M
and L
 4: FOR each result R in L DO
 5: FOR each attribute value A in R DO
 6: A′ ← A; // Corrupted versions of A
 7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation
9: IF # of w varies in A′ and A THEN
 10: Update A′, M′ and entry of w in I′;
 11: Add A′ to R′;
 12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I′, M′;
 14: S R += Sim(L,L′); // Sim computes Spearman cor-
relation
 15: RETURN S R ← S R / N; // AVG score over N
rounds

Algorithm
Algorithm shows the Structured Robustness Algorithm
(SR Algorithm), which computes the exact SR score
based on the top K result entities. Each ranking algorithm
uses some statistics about query terms or attributes values
over the whole content of DB. Some examples of such
statistics are the number of occurrences of a query term in
all attributes values of the DB or total number of attribute
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in
the SR Algorithm pseudocode. SR Algorithm generates
the noise in the DB on-the-fly during query processing.
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform
any extra I/O access to the DB, except to lookup some
statistics.Fig. 1.(a) shows the execution flow of SR Al-
gorithm. Once we get the ranked list of top K entities for
Q, the corruption module produces corrupted entities and
updates the global statistics of DB. Then, SR Algorithm
passes the corrupted results and updated global statistics
to the ranking module to compute the corrupted ranking
list. SR Algorithm spends a large portion of the robustness
calculation time on the loop that re-ranks the corrupted
results (Line 13 in SR Algorithm), by taking into account
the updated global statistics. Since the value of K

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 499

(e.g., 10 or 20) is much smaller than the number of enti-
ties in the DB, the top K entities constitute a very small
portion of the DB.the global statistics largely remain un-
changed or change very little. Hence, we use the global
statistics of the original version of the DB to re-rank the
corrupted entities. If we refrain from updating the global
statistics, we can combine the corruption and ranking
module together. This way re-ranking is done on-the-fly
during corruption. SGS-Approx algorithm is illustrated in
Fig. 1.(b)

SYSTEM ARCHITECTURE:

Figure1.Execution flow of SR algorithm And SGS

–Approx (a)SR algorithm (b)SGS –Approx.

IV.PREDICTION FRAMEWORK
4.1 Noise Generation in Databases

In order to compute SR, we need to define the noise gen-
eration model fXDB (M) for database DB. It will show
that each attribute value is corrupted by a combination of
three corruption levels: on the value itself, its attribute and
its entity set. Now the details: Since the ranking methods
for queries over structured data do not generally consider
the terms in V that do not belong to query Q, we consider
their frequencies to be the same across the original and
noisy versions of DB. The corruption model must reflect
the challenges about search on structured data, where we
showed that it is important to capture the statistical prop-
erties of the query keywords in the attribute values, at-
tributes and entity sets. We must introduce content noise
(recall that we do not corrupt the attributes or entity sets
but only the values of attribute values) to the attributes
and entity sets, which will propagate down to the attri-
bute values. For instance, if an attribute value of attribute
title contains keyword Godfather, then Godfather may ap-
pear in any attribute value of attribute title in a corrupted
database instance. Similarly, if Godfather appears in an
attribute value of entity set movie, then Godfather may
appear in any attribute value of entity set movie in a cor-
rupted instance.

4.2 Ranking in Original & Corrupted Database With the
mapping probabilities estimated as described above, the
probabilistic retrieval model for semi-structured data
(PRMS) can use them as weights for combining the score
from each element into a document score, as follows:

Here, the mapping probability PM(Ej|w) is calculated and
the element-level query-likelihood score PQL(w|ej) is es-
timated in the same way as in the HLM approach.

The rationale behind this weighting is that the mapping
probability is the result of the inference procedure to de-
cide V. Basic Estimation Techniques:

Data sets:

The INEX data set is from the INEX 2010 Data Centric
Track [14]. The INEX data set contains two entity sets:
movie and person. Each entity in the movie entity set rep-
resents one movie with attributes like title, keywords, and
year. The person entity set contains attributes like name,
nickname, and biography. The SemSearch data set is a
subset of the data set used in Semantic Search 2010 chal-
lenge [15]. The original data set contains 116 files with
about one billion RDF triplets. Since the size of this data
set is extremely large, it takes a very long time to index
and run queries over this data set. Hence, we have used
a subset of the original data set in our experiments. We
first removed duplicate RDF triplets. Then, for each file
in SemSearch data set, we calculated the total number
of distinct query terms in SemSearch query workload
in the file. We selected the 20, out of the 116, files that
contain the largest number of query keywords for our
experiments. We converted each distinct RDF subject in
this data set to an entity whose identifier is the subject
identifier. The RDF properties are mapped to attributes
in our model. The values of RDF properties that end with
substring ―#type” indicates the type of a subject. Hence,
we set the entity set of each entity to the concatenation of
the values of RDF properties of its RDF subject that end
with substring ―#type”. If the subject of an entity does
not have any property that ends with substring ―#type”,
we set its entity set to ―UndefinedType”.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 500

We have added the values of other RDF properties for the
subject as attributes of its entity. We stored the informa-
tion about each entity in a separate XML file. We have
removed the relevance judgment information for the sub-
jects that do not reside in these 20 files. The sizes of the
two data sets are quite close; however, SemSearch is more
heterogeneous than INEX as it contains a larger number
of attributes and entity sets.

Query Workloads:

Since we use a subset of the dataset from SemSearch, some
queries in its query workload may not contain enough
candidate answers. We picked the 55 queries from the 92
in the query workload that have at least 50 candidate an-
swers in our dataset. Because the number of entries for
each query in the relevance judgment file has also been
reduced, we discarded another two queries (Q6 and Q92)
without any relevant answers in our dataset, according to
the relevance judgment file. Hence, our experiments is
done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31,
33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56- 58, 60, 65,
68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch
query workload. 26 query topics are provided with rel-
evance judgments in the INEX 2010 Data Centric Track.
Some query topics contain characters ―+” and ―−” to
indicate the conjunctive and exclusive conditions. In our
experiments, we do not use these conditions and remove
the keywords after character ―−”. Some searching sys-
tems use these operators to improve search quality.

Top-K results:

Generally, the basic information units instructured data
sets, attribute values, are much shorter than text docu-
ments. Thus, a structured data set contains a larger num-
ber of information units than an unstructured data set of
the same size. For instance, each XML document in the
INEX data centric collection constitutes hundreds of ele-
ments with textual contents. Hence, computing Equation 3
for a large DB is so inefficient as to be impractical. Hence,
similar to [13], we corrupt only the top-K entity results
of the original data set. We re-rank these results and shift
them up to be the top-K answers for the corrupted ver-
sions of DB. In addition to the time savings, our empirical
results in Section 8.2 show that relatively small values for
K predict the difficulty of queries better than large values.
For instance, we found that K = 20 delivers the best per-
formance prediction quality in our datasets.

Number of corruption iterations (N): Computing the ex-
pectation in Equation 3 for all possible values of _x is
very inefficient. Hence, we estimate the expectation using
N >0 samples over M(|A|× V). That is, we use N corrupted
copies of the data. Obviously, smaller N is preferred for
the sake of efficiency. However, if we choose very small
values for N the corruption model becomes unstable.

VI.RESULTS:

Figure 2

Figure 3

VII.CONCLUSION :

We introduced SR algorithm for difficult keyword queries
over databases .The problem of predicting the effective-
ness of difficult keyword queries over databases is intro-
duced in this paper. We showed that the current prediction
methods for queries over unstructured data sources can-
not be effectively used to solve this problem. We set forth
a principled framework and proposed novel algorithms
to measure the degree of the difficulty of a query over a
DB, using the ranking robustness principle. Based on our
framework, we propose novel algorithms that efficiently
predict the effectiveness of a keyword query.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 501

REFERENCES :

1. V..Hristidis, L. Gravano, and Y. Papakonstantinou, “Ef-
ficient IRstyle keyword search over relational databases,”
in Proc. 29th VLDB Conf., Berlin, Germany, 2003, pp.
850–861

2. Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k
keyword query in relational databases,” in Proc. 2007
ACM SIGMOD, Beijing, China, pp. 115–126.

3. V. Ganti, Y. He, and D. Xin, “Keyword++: A frame-
work to improve keyword search over entity databases,”
in Proc. VLDB Endowment, Singapore, Sept. 2010, vol.
3, no. 1–2, pp. 711–722.

4. J. Kim, X. Xue, and B. Croft, “A probabilistic retrieval
model for semistructured data,” in Proc. ECIR, Tolouse,
France, 2009, pp. 228

5. A. Nandi and H. V. Jagadish, “Assisted querying using
instant-response interfaces,” in Proc. SIGMOD 07 , Bei-
jing, China,pp. 1156–1158.

6. O. Kurland, A. Shtok, D. Carmel, and S. Hummel, “A
Unified framework for post-retrieval query-performance
prediction,” in Proc. 3rd Int. ICTIR, Bertinoro, Italy,
2011, pp. 15–26.

7. S. Cheng, A. Termehchy, and V. Hristidis, “Predicting
the effec-tiveness of keyword queries on databases,” in
Proc. 21st ACMInt. CIKM , Maui, HI, 2012, pp. 1213-
1222.

8. C. Hauff, L. Azzopardi, D. Hiemstra, and F. Jong,
“Query perfor-mance prediction: Evaluation contrasted
with effectiveness,” in Proc. 32nd ECIR, Milton Keynes,
U.K., 2010, pp. 204–216.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 500

We have added the values of other RDF properties for the
subject as attributes of its entity. We stored the informa-
tion about each entity in a separate XML file. We have
removed the relevance judgment information for the sub-
jects that do not reside in these 20 files. The sizes of the
two data sets are quite close; however, SemSearch is more
heterogeneous than INEX as it contains a larger number
of attributes and entity sets.

Query Workloads:

Since we use a subset of the dataset from SemSearch, some
queries in its query workload may not contain enough
candidate answers. We picked the 55 queries from the 92
in the query workload that have at least 50 candidate an-
swers in our dataset. Because the number of entries for
each query in the relevance judgment file has also been
reduced, we discarded another two queries (Q6 and Q92)
without any relevant answers in our dataset, according to
the relevance judgment file. Hence, our experiments is
done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31,
33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56- 58, 60, 65,
68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch
query workload. 26 query topics are provided with rel-
evance judgments in the INEX 2010 Data Centric Track.
Some query topics contain characters ―+” and ―−” to
indicate the conjunctive and exclusive conditions. In our
experiments, we do not use these conditions and remove
the keywords after character ―−”. Some searching sys-
tems use these operators to improve search quality.

Top-K results:

Generally, the basic information units instructured data
sets, attribute values, are much shorter than text docu-
ments. Thus, a structured data set contains a larger num-
ber of information units than an unstructured data set of
the same size. For instance, each XML document in the
INEX data centric collection constitutes hundreds of ele-
ments with textual contents. Hence, computing Equation 3
for a large DB is so inefficient as to be impractical. Hence,
similar to [13], we corrupt only the top-K entity results
of the original data set. We re-rank these results and shift
them up to be the top-K answers for the corrupted ver-
sions of DB. In addition to the time savings, our empirical
results in Section 8.2 show that relatively small values for
K predict the difficulty of queries better than large values.
For instance, we found that K = 20 delivers the best per-
formance prediction quality in our datasets.

Number of corruption iterations (N): Computing the ex-
pectation in Equation 3 for all possible values of _x is
very inefficient. Hence, we estimate the expectation using
N >0 samples over M(|A|× V). That is, we use N corrupted
copies of the data. Obviously, smaller N is preferred for
the sake of efficiency. However, if we choose very small
values for N the corruption model becomes unstable.

VI.RESULTS:

Figure 2

Figure 3

VII.CONCLUSION :

We introduced SR algorithm for difficult keyword queries
over databases .The problem of predicting the effective-
ness of difficult keyword queries over databases is intro-
duced in this paper. We showed that the current prediction
methods for queries over unstructured data sources can-
not be effectively used to solve this problem. We set forth
a principled framework and proposed novel algorithms
to measure the degree of the difficulty of a query over a
DB, using the ranking robustness principle. Based on our
framework, we propose novel algorithms that efficiently
predict the effectiveness of a keyword query.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 501

REFERENCES :

1. V..Hristidis, L. Gravano, and Y. Papakonstantinou, “Ef-
ficient IRstyle keyword search over relational databases,”
in Proc. 29th VLDB Conf., Berlin, Germany, 2003, pp.
850–861

2. Y. Luo, X. Lin, W. Wang, and X. Zhou, “SPARK: Top-k
keyword query in relational databases,” in Proc. 2007
ACM SIGMOD, Beijing, China, pp. 115–126.

3. V. Ganti, Y. He, and D. Xin, “Keyword++: A frame-
work to improve keyword search over entity databases,”
in Proc. VLDB Endowment, Singapore, Sept. 2010, vol.
3, no. 1–2, pp. 711–722.

4. J. Kim, X. Xue, and B. Croft, “A probabilistic retrieval
model for semistructured data,” in Proc. ECIR, Tolouse,
France, 2009, pp. 228

5. A. Nandi and H. V. Jagadish, “Assisted querying using
instant-response interfaces,” in Proc. SIGMOD 07 , Bei-
jing, China,pp. 1156–1158.

6. O. Kurland, A. Shtok, D. Carmel, and S. Hummel, “A
Unified framework for post-retrieval query-performance
prediction,” in Proc. 3rd Int. ICTIR, Bertinoro, Italy,
2011, pp. 15–26.

7. S. Cheng, A. Termehchy, and V. Hristidis, “Predicting
the effec-tiveness of keyword queries on databases,” in
Proc. 21st ACMInt. CIKM , Maui, HI, 2012, pp. 1213-
1222.

8. C. Hauff, L. Azzopardi, D. Hiemstra, and F. Jong,
“Query perfor-mance prediction: Evaluation contrasted
with effectiveness,” in Proc. 32nd ECIR, Milton Keynes,
U.K., 2010, pp. 204–216.

