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ABSTRACT:

Keyword queries on databases provide easy access to 
data, but often suffer from low ranking quality, i.e., low 
precision and/or recall, as shown in recent benchmarks. It 
would be useful to identify queries that are likely to have 
low ranking quality to improve the user satisfaction. For 
instance, the system may suggest to the user alternative 
queries for such hard queries. In this paper, we analyze 
the characteristics of hard queries and propose a novel 
framework to measure the degree of difficulty for a key-
word query over a database, considering both the struc-
ture and the content of the database and the query results. 
We evaluate our query difficulty prediction model against 
two effectiveness benchmarks for popular keyword 
search ranking methods. Our empirical results show that 
our model predicts the hard queries with high accuracy. 
Further, we present a suite of optimizations to minimize 
the incurred time overhead.

Index Terms:
Query performance, query effectiveness, keyword query, 
robustness, databases
 
I.INTRODUCTION :

Keyword query interfaces (KQIs) for databases have 
attracted much attention in the last decade due to their 
flexibility and ease of use in searching and exploring the 
data. Since any entity in a data set that contains the query 
keywords is a potential answer, keyword queries typically 
have many possible answers. KQIs must identify the in-
formation needs behind keyword queries and rank the an-
swers so that the desired answers appear at the top of the 
list. Unless otherwise noted, it refers to keyword query as 
query in the remainder of this project. Databases contain 
entities, and entities contain attributes that take attribute 
values. Some of the difficulties of answering a query are 
as follows: First, unlike queries in languages like SQL, us-
ers do not normally specify the desired schema element(s) 
for each query term.

For instance, query Q1: Godfather on the IMDB database 
(http://www.imdb.com) does not specify if the user is 
interested in movies whose title is Godfather or movies 
distributed by the Godfather Company. Thus, a KQI must 
find the desired attributes associated with each term in the 
query. Second, the schema of the output is not specified, 
i.e., users do not give enough information to single out 
exactly their desired entities. For example, Q1 may return 
movies or actors or producers. It is important for a KQI to 
recognize such queries and warn the user or employ alter-
native techniques like query reformulation or query sug-
gestions. It may also use techniques such as query results 
diversification. To the best of our knowledge, there has 
not been any work on predicting or analyzing the difficul-
ties of queries over databases. Researchers have proposed 
some methods to detect difficult queries over plain text 
document collections. However, these techniques are not 
applicable to our problem since they ignore the structure 
of the database. In particular, as mentioned earlier, a KQI 
must assign each query term to a schema element(s) in 
the database. It must also distinguish the desired result 
type(s).

II. RELATED WORK:

Prediction of query performance has long been of inter-
est in information retrieval. It is invested under a differ-
ent names query difficulty, query ambiguity and some-
times hard query. Keyword Searching and Browsing in 
Databases using BANKS [4] describe techniques for 
keyword searching and browsing on databases that we 
have developed as part of the BANKS system (BANKS 
is an acronym for Browsing ANd Keyword Searching). 
The BANKS system enables data and schema browsing 
together with keyword-based search for relational data-
bases. BANKS enables a user to get information by typ-
ing a few keywords, following hyperlinks, and interact-
ing with controls on the displayed results; absolutely no 
query language or programming is required. The greatest 
value of BANKS lies in near zero-effort web publishing 
of relational data which would otherwise remain invisible 
to the web.
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BANKS may be used to publish organizational data, bib-
liographic data, and electronic catalogs. Search facilities 
for such applications can be hand crafted: many web sites 
provide forms to carry out limited types of queries on 
their backend databases. For example, a university web 
site may provide form interface to search for faculty and 
students. Searching for departments would require yet an-
other form, as would search for courses offered. Creating 
an interface for each such task is laborious, and is also 
confusing to users since they must first expend effort find-
ing which form to use Efficient IR-Style Keyword Search 
over Relational Databases [2] A key contribution of this 
work is the incorporation of IR-style relevance ranking of 
tuple trees into our query processing framework. 

In particular, our scheme fully exploits single-attribute 
relevance-ranking results if the RDBMS of choice has 
text-indexing capabilities (e.g., as is the case for Oracle 
9.1, as discussed above). By leveraging state-of-the-art IR 
relevance-ranking functionality already present in mod-
ern RDBMSs, we are able to produce high quality results 
for free-form keyword queries. For example, a query 
[disk crash on a net vista] would still match the comments 
attribute of the first Complaints tuple above with a high 
relevance score, after word stemming (so that “crash” 
matches “crashed”) and stop-word elimination (so that 
the absence of “a” is not weighed too highly). 

III.STRUCTURED ROBUSTNESS ALGO-
RITHM :

Algorithm shows the Structured Robustness Algorithm 
(SR Algorithm), which computes the exact SR score 
based on the top K result entities. Each ranking algorithm 
uses some statistics about query terms or attributes values 
over the whole content of DB. Some examples of such 
statistics are the number of occurrences of a query term in 
all attributes values of the DB or total number of attribute 
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in 
the SR Algorithm pseudocode. SR Algorithm generates 
the noise in the DB on-the-fly during query processing. 
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform 
any extra I/O access to the DB, except to lookup some 
statistics. Moreover, it uses the information which is al-
ready computed and stored in inverted indexes and does 
not require any extra index.

Algorithm1 CorruptTopResults(Q,L,M,I,N)
 Input: Query Q, Top-K result list L of Q by ranking func-
tion g, Metadata M, Inverted indexes I, Number of cor-
rupted iteration N. 
Output: S R score for Q.
 1: S R ← 0; C ← { }; // C caches λT, λS for keywords 
in Q
 2: FOR i=1 → N DO 
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M 
and L
 4: FOR each result R in L DO
 5: FOR each attribute value A in R DO
 6: A′ ← A; // Corrupted versions of A
 7: FOR each keywords w in Q DO 
8: Compute # of w in A′ by Equation 
9: IF # of w varies in A′ and A THEN
 10: Update A′, M′ and entry of w in I′;
 11: Add A′ to R′;
 12: Add R′ to L′; 
13: Rank L′ using g, which returns L, based on I′, M′;
 14: S R += Sim(L,L′); // Sim computes Spearman cor-
relation
 15: RETURN S R ← S R / N; // AVG score over N 
rounds 

Algorithm
Algorithm shows the Structured Robustness Algorithm 
(SR Algorithm), which computes the exact SR score 
based on the top K result entities. Each ranking algorithm 
uses some statistics about query terms or attributes values 
over the whole content of DB. Some examples of such 
statistics are the number of occurrences of a query term in 
all attributes values of the DB or total number of attribute 
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in 
the SR Algorithm pseudocode. SR Algorithm generates 
the noise in the DB on-the-fly during query processing. 
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform 
any extra I/O access to the DB, except to lookup some 
statistics.Fig. 1.(a) shows the execution flow of SR Al-
gorithm. Once we get the ranked list of top K entities for 
Q, the corruption module produces corrupted entities and 
updates the global statistics of DB. Then, SR Algorithm 
passes the corrupted results and updated global statistics 
to the ranking module to compute the corrupted ranking 
list. SR Algorithm spends a large portion of the robustness 
calculation time on the loop that re-ranks the corrupted 
results (Line 13 in SR Algorithm), by taking into account 
the updated global statistics. Since the value of K
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(e.g., 10 or 20) is much smaller than the number of enti-
ties in the DB, the top K entities constitute a very small 
portion of the DB.the global statistics largely remain un-
changed or change very little. Hence, we use the global 
statistics of the original version of the DB to re-rank the 
corrupted entities. If we refrain from updating the global 
statistics, we can combine the corruption and ranking 
module together. This way re-ranking is done on-the-fly 
during corruption. SGS-Approx algorithm is illustrated in 
Fig. 1.(b)

SYSTEM ARCHITECTURE:

 
Figure1.Execution flow of SR algorithm And SGS 

–Approx (a)SR algorithm (b)SGS –Approx.

IV.PREDICTION FRAMEWORK 
4.1 Noise Generation in Databases 

In order to compute SR, we need to define the noise gen-
eration model fXDB (M) for database DB. It will show 
that each attribute value is corrupted by a combination of 
three corruption levels: on the value itself, its attribute and 
its entity set. Now the details: Since the ranking methods 
for queries over structured data do not generally consider 
the terms in V that do not belong to query Q, we consider 
their frequencies to be the same across the original and 
noisy versions of DB. The corruption model must reflect 
the challenges about search on structured data, where we 
showed that it is important to capture the statistical prop-
erties of the query keywords in the attribute values, at-
tributes and entity sets. We must introduce content noise 
(recall that we do not corrupt the attributes or entity sets 
but only the values of attribute values) to the attributes 
and entity sets, which will propagate down to the attri-
bute values. For instance, if an attribute value of attribute 
title contains keyword Godfather, then Godfather may ap-
pear in any attribute value of attribute title in a corrupted 
database instance. Similarly, if Godfather appears in an 
attribute value of entity set movie, then Godfather may 
appear in any attribute value of entity set movie in a cor-
rupted instance.

4.2 Ranking in Original & Corrupted Database With the 
mapping probabilities estimated as described above, the 
probabilistic retrieval model for semi-structured data 
(PRMS) can use them as weights for combining the score 
from each element into a document score, as follows:

Here, the mapping probability PM(Ej|w) is calculated and 
the element-level query-likelihood score PQL(w|ej) is es-
timated in the same way as in the HLM approach.

The rationale behind this weighting is that the mapping 
probability is the result of the inference procedure to de-
cide V. Basic Estimation Techniques: 

Data sets:

The INEX data set is from the INEX 2010 Data Centric 
Track [14]. The INEX data set contains two entity sets: 
movie and person. Each entity in the movie entity set rep-
resents one movie with attributes like title, keywords, and 
year. The person entity set contains attributes like name, 
nickname, and biography. The SemSearch data set is a 
subset of the data set used in Semantic Search 2010 chal-
lenge [15]. The original data set contains 116 files with 
about one billion RDF triplets. Since the size of this data 
set is extremely large, it takes a very long time to index 
and run queries over this data set. Hence, we have used 
a subset of the original data set in our experiments. We 
first removed duplicate RDF triplets. Then, for each file 
in SemSearch data set, we calculated the total number 
of distinct query terms in SemSearch query workload 
in the file. We selected the 20, out of the 116, files that 
contain the largest number of query keywords for our 
experiments. We converted each distinct RDF subject in 
this data set to an entity whose identifier is the subject 
identifier. The RDF properties are mapped to attributes 
in our model. The values of RDF properties that end with 
substring ―#type” indicates the type of a subject. Hence, 
we set the entity set of each entity to the concatenation of 
the values of RDF properties of its RDF subject that end 
with substring ―#type”. If the subject of an entity does 
not have any property that ends with substring ―#type”, 
we set its entity set to ―UndefinedType”.
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BANKS may be used to publish organizational data, bib-
liographic data, and electronic catalogs. Search facilities 
for such applications can be hand crafted: many web sites 
provide forms to carry out limited types of queries on 
their backend databases. For example, a university web 
site may provide form interface to search for faculty and 
students. Searching for departments would require yet an-
other form, as would search for courses offered. Creating 
an interface for each such task is laborious, and is also 
confusing to users since they must first expend effort find-
ing which form to use Efficient IR-Style Keyword Search 
over Relational Databases [2] A key contribution of this 
work is the incorporation of IR-style relevance ranking of 
tuple trees into our query processing framework. 

In particular, our scheme fully exploits single-attribute 
relevance-ranking results if the RDBMS of choice has 
text-indexing capabilities (e.g., as is the case for Oracle 
9.1, as discussed above). By leveraging state-of-the-art IR 
relevance-ranking functionality already present in mod-
ern RDBMSs, we are able to produce high quality results 
for free-form keyword queries. For example, a query 
[disk crash on a net vista] would still match the comments 
attribute of the first Complaints tuple above with a high 
relevance score, after word stemming (so that “crash” 
matches “crashed”) and stop-word elimination (so that 
the absence of “a” is not weighed too highly). 

III.STRUCTURED ROBUSTNESS ALGO-
RITHM :

Algorithm shows the Structured Robustness Algorithm 
(SR Algorithm), which computes the exact SR score 
based on the top K result entities. Each ranking algorithm 
uses some statistics about query terms or attributes values 
over the whole content of DB. Some examples of such 
statistics are the number of occurrences of a query term in 
all attributes values of the DB or total number of attribute 
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in 
the SR Algorithm pseudocode. SR Algorithm generates 
the noise in the DB on-the-fly during query processing. 
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform 
any extra I/O access to the DB, except to lookup some 
statistics. Moreover, it uses the information which is al-
ready computed and stored in inverted indexes and does 
not require any extra index.

Algorithm1 CorruptTopResults(Q,L,M,I,N)
 Input: Query Q, Top-K result list L of Q by ranking func-
tion g, Metadata M, Inverted indexes I, Number of cor-
rupted iteration N. 
Output: S R score for Q.
 1: S R ← 0; C ← { }; // C caches λT, λS for keywords 
in Q
 2: FOR i=1 → N DO 
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M 
and L
 4: FOR each result R in L DO
 5: FOR each attribute value A in R DO
 6: A′ ← A; // Corrupted versions of A
 7: FOR each keywords w in Q DO 
8: Compute # of w in A′ by Equation 
9: IF # of w varies in A′ and A THEN
 10: Update A′, M′ and entry of w in I′;
 11: Add A′ to R′;
 12: Add R′ to L′; 
13: Rank L′ using g, which returns L, based on I′, M′;
 14: S R += Sim(L,L′); // Sim computes Spearman cor-
relation
 15: RETURN S R ← S R / N; // AVG score over N 
rounds 

Algorithm
Algorithm shows the Structured Robustness Algorithm 
(SR Algorithm), which computes the exact SR score 
based on the top K result entities. Each ranking algorithm 
uses some statistics about query terms or attributes values 
over the whole content of DB. Some examples of such 
statistics are the number of occurrences of a query term in 
all attributes values of the DB or total number of attribute 
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes) in 
the SR Algorithm pseudocode. SR Algorithm generates 
the noise in the DB on-the-fly during query processing. 
Since it corrupts only the top K entities, which are any-
ways returned by the ranking module, it does not perform 
any extra I/O access to the DB, except to lookup some 
statistics.Fig. 1.(a) shows the execution flow of SR Al-
gorithm. Once we get the ranked list of top K entities for 
Q, the corruption module produces corrupted entities and 
updates the global statistics of DB. Then, SR Algorithm 
passes the corrupted results and updated global statistics 
to the ranking module to compute the corrupted ranking 
list. SR Algorithm spends a large portion of the robustness 
calculation time on the loop that re-ranks the corrupted 
results (Line 13 in SR Algorithm), by taking into account 
the updated global statistics. Since the value of K
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(e.g., 10 or 20) is much smaller than the number of enti-
ties in the DB, the top K entities constitute a very small 
portion of the DB.the global statistics largely remain un-
changed or change very little. Hence, we use the global 
statistics of the original version of the DB to re-rank the 
corrupted entities. If we refrain from updating the global 
statistics, we can combine the corruption and ranking 
module together. This way re-ranking is done on-the-fly 
during corruption. SGS-Approx algorithm is illustrated in 
Fig. 1.(b)

SYSTEM ARCHITECTURE:

 
Figure1.Execution flow of SR algorithm And SGS 

–Approx (a)SR algorithm (b)SGS –Approx.

IV.PREDICTION FRAMEWORK 
4.1 Noise Generation in Databases 

In order to compute SR, we need to define the noise gen-
eration model fXDB (M) for database DB. It will show 
that each attribute value is corrupted by a combination of 
three corruption levels: on the value itself, its attribute and 
its entity set. Now the details: Since the ranking methods 
for queries over structured data do not generally consider 
the terms in V that do not belong to query Q, we consider 
their frequencies to be the same across the original and 
noisy versions of DB. The corruption model must reflect 
the challenges about search on structured data, where we 
showed that it is important to capture the statistical prop-
erties of the query keywords in the attribute values, at-
tributes and entity sets. We must introduce content noise 
(recall that we do not corrupt the attributes or entity sets 
but only the values of attribute values) to the attributes 
and entity sets, which will propagate down to the attri-
bute values. For instance, if an attribute value of attribute 
title contains keyword Godfather, then Godfather may ap-
pear in any attribute value of attribute title in a corrupted 
database instance. Similarly, if Godfather appears in an 
attribute value of entity set movie, then Godfather may 
appear in any attribute value of entity set movie in a cor-
rupted instance.

4.2 Ranking in Original & Corrupted Database With the 
mapping probabilities estimated as described above, the 
probabilistic retrieval model for semi-structured data 
(PRMS) can use them as weights for combining the score 
from each element into a document score, as follows:

Here, the mapping probability PM(Ej|w) is calculated and 
the element-level query-likelihood score PQL(w|ej) is es-
timated in the same way as in the HLM approach.

The rationale behind this weighting is that the mapping 
probability is the result of the inference procedure to de-
cide V. Basic Estimation Techniques: 

Data sets:

The INEX data set is from the INEX 2010 Data Centric 
Track [14]. The INEX data set contains two entity sets: 
movie and person. Each entity in the movie entity set rep-
resents one movie with attributes like title, keywords, and 
year. The person entity set contains attributes like name, 
nickname, and biography. The SemSearch data set is a 
subset of the data set used in Semantic Search 2010 chal-
lenge [15]. The original data set contains 116 files with 
about one billion RDF triplets. Since the size of this data 
set is extremely large, it takes a very long time to index 
and run queries over this data set. Hence, we have used 
a subset of the original data set in our experiments. We 
first removed duplicate RDF triplets. Then, for each file 
in SemSearch data set, we calculated the total number 
of distinct query terms in SemSearch query workload 
in the file. We selected the 20, out of the 116, files that 
contain the largest number of query keywords for our 
experiments. We converted each distinct RDF subject in 
this data set to an entity whose identifier is the subject 
identifier. The RDF properties are mapped to attributes 
in our model. The values of RDF properties that end with 
substring ―#type” indicates the type of a subject. Hence, 
we set the entity set of each entity to the concatenation of 
the values of RDF properties of its RDF subject that end 
with substring ―#type”. If the subject of an entity does 
not have any property that ends with substring ―#type”, 
we set its entity set to ―UndefinedType”.
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We have added the values of other RDF properties for the 
subject as attributes of its entity. We stored the informa-
tion about each entity in a separate XML file. We have 
removed the relevance judgment information for the sub-
jects that do not reside in these 20 files. The sizes of the 
two data sets are quite close; however, SemSearch is more 
heterogeneous than INEX as it contains a larger number 
of attributes and entity sets. 

Query Workloads: 

Since we use a subset of the dataset from SemSearch, some 
queries in its query workload may not contain enough 
candidate answers. We picked the 55 queries from the 92 
in the query workload that have at least 50 candidate an-
swers in our dataset. Because the number of entries for 
each query in the relevance judgment file has also been 
reduced, we discarded another two queries (Q6 and Q92) 
without any relevant answers in our dataset, according to 
the relevance judgment file. Hence, our experiments is 
done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31, 
33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56- 58, 60, 65, 
68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch 
query workload. 26 query topics are provided with rel-
evance judgments in the INEX 2010 Data Centric Track. 
Some query topics contain characters ―+” and ―−” to 
indicate the conjunctive and exclusive conditions. In our 
experiments, we do not use these conditions and remove 
the keywords after character ―−”. Some searching sys-
tems use these operators to improve search quality. 

Top-K results: 

Generally, the basic information units instructured data 
sets, attribute values, are much shorter than text docu-
ments. Thus, a structured data set contains a larger num-
ber of information units than an unstructured data set of 
the same size. For instance, each XML document in the 
INEX data centric collection constitutes hundreds of ele-
ments with textual contents. Hence, computing Equation 3 
for a large DB is so inefficient as to be impractical. Hence, 
similar to [13], we corrupt only the top-K entity results 
of the original data set. We re-rank these results and shift 
them up to be the top-K answers for the corrupted ver-
sions of DB. In addition to the time savings, our empirical 
results in Section 8.2 show that relatively small values for 
K predict the difficulty of queries better than large values. 
For instance, we found that K = 20 delivers the best per-
formance prediction quality in our datasets. 

Number of corruption iterations (N): Computing the ex-
pectation in Equation 3 for all possible values of _x is 
very inefficient. Hence, we estimate the expectation using 
N >0 samples over M(|A|× V). That is, we use N corrupted 
copies of the data. Obviously, smaller N is preferred for 
the sake of efficiency. However, if we choose very small 
values for N the corruption model becomes unstable.

VI.RESULTS:

 
Figure 2 

 

Figure 3

VII.CONCLUSION :

We introduced SR algorithm for difficult keyword queries 
over databases .The problem of predicting the effective-
ness of difficult keyword queries over databases is intro-
duced in this paper. We showed that the current prediction 
methods for queries over unstructured data sources can-
not be effectively used to solve this problem. We set forth 
a principled framework and proposed novel algorithms 
to measure the degree of the difficulty of a query over a 
DB, using the ranking robustness principle. Based on our 
framework, we propose novel algorithms that efficiently 
predict the effectiveness of a keyword query. 
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jects that do not reside in these 20 files. The sizes of the 
two data sets are quite close; however, SemSearch is more 
heterogeneous than INEX as it contains a larger number 
of attributes and entity sets. 

Query Workloads: 

Since we use a subset of the dataset from SemSearch, some 
queries in its query workload may not contain enough 
candidate answers. We picked the 55 queries from the 92 
in the query workload that have at least 50 candidate an-
swers in our dataset. Because the number of entries for 
each query in the relevance judgment file has also been 
reduced, we discarded another two queries (Q6 and Q92) 
without any relevant answers in our dataset, according to 
the relevance judgment file. Hence, our experiments is 
done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31, 
33-34, 37-39, 41-42, 45, 47, 49, 52-54, 56- 58, 60, 65, 
68, 71, 73-74, 76, 78, 80-83, 88-91) from the SemSearch 
query workload. 26 query topics are provided with rel-
evance judgments in the INEX 2010 Data Centric Track. 
Some query topics contain characters ―+” and ―−” to 
indicate the conjunctive and exclusive conditions. In our 
experiments, we do not use these conditions and remove 
the keywords after character ―−”. Some searching sys-
tems use these operators to improve search quality. 

Top-K results: 

Generally, the basic information units instructured data 
sets, attribute values, are much shorter than text docu-
ments. Thus, a structured data set contains a larger num-
ber of information units than an unstructured data set of 
the same size. For instance, each XML document in the 
INEX data centric collection constitutes hundreds of ele-
ments with textual contents. Hence, computing Equation 3 
for a large DB is so inefficient as to be impractical. Hence, 
similar to [13], we corrupt only the top-K entity results 
of the original data set. We re-rank these results and shift 
them up to be the top-K answers for the corrupted ver-
sions of DB. In addition to the time savings, our empirical 
results in Section 8.2 show that relatively small values for 
K predict the difficulty of queries better than large values. 
For instance, we found that K = 20 delivers the best per-
formance prediction quality in our datasets. 

Number of corruption iterations (N): Computing the ex-
pectation in Equation 3 for all possible values of _x is 
very inefficient. Hence, we estimate the expectation using 
N >0 samples over M(|A|× V). That is, we use N corrupted 
copies of the data. Obviously, smaller N is preferred for 
the sake of efficiency. However, if we choose very small 
values for N the corruption model becomes unstable.

VI.RESULTS:

 
Figure 2 

 

Figure 3

VII.CONCLUSION :

We introduced SR algorithm for difficult keyword queries 
over databases .The problem of predicting the effective-
ness of difficult keyword queries over databases is intro-
duced in this paper. We showed that the current prediction 
methods for queries over unstructured data sources can-
not be effectively used to solve this problem. We set forth 
a principled framework and proposed novel algorithms 
to measure the degree of the difficulty of a query over a 
DB, using the ranking robustness principle. Based on our 
framework, we propose novel algorithms that efficiently 
predict the effectiveness of a keyword query. 
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