
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 444

ABSTRACT:

The cloud computing paradigm has achieved widespread
adoption in recent years. Its success is due largely to cus-
tomers’ ability to use services on demand with a pay-as-
you go pricing model, which has proved convenient in
many respects. Low costs and high flexibility make mi-
grating to the cloud compelling. Despite its obvious ad-
vantages, however, many companies hesitate to “move to
the cloud,” mainly because of concerns related to service
availability, data lock-in, and legal uncertainties.1 Lock
in is particularly problematic. For one thing, even though
public cloud availability is generally high, outages still
occur.2 Businesses locked into such a cloud are essen-
tially at a standstill until the cloud is back online. More-
over, public cloud providers generally don’t guarantee
particular service level agreements (SLAs)3 — that is,
businesses locked into a cloud have no guarantees that
it will continue to provide the required quality of service
(QoS). Finally, most public cloud providers’ terms of ser-
vice let that provider unilaterally change pricing at any
time. Hence, a business locked into a cloud has no mid- or
long term control over its own IT costs. At the core of all
these problems, we can identify a need for businesses to
permanently monitor the cloud they’re using and be able
to rapidly “change horses” — that is, migrate to a differ-
ent cloud if they discover problems or if their estimates
predict future issues.

EXISTING SYSTEM:

Cloud providers are flooding the market with a confusing
body of services, including computer services such as
the Amazon Elastic Compute Cloud (EC2) and VMware
v Cloud, or key-value stores, such as the Amazon Simple
Storage Service (S3). Some of these services are

conceptually comparable to each other, whereas others
are vastly different, but they’re all, ultimately, technically
incompatible and follow no standards but their own. To
further complicate the situation, many companies not
(only) build on public clouds for their cloud computing
needs, but combine public offerings with their own pri-
vate clouds, leading to so-called hybrid clouds.

DISADVANTAGES OF EXISTING SYS-
TEM:

vastly Some of these services are conceptually compara-
ble to each other, whereas others are different, but they’re
all, ultimately, technically incompatible and follow no
standards but their own.

PROPOSED SYSTEM:

Here, we introduce the concept of a meta cloud that in-
corporates design time and runtime components. This
meta cloud would abstract away from existing offerings’
technical incompatibilities, thus mitigating vendor lock-
in. It helps users find the right set of cloud services for
a particular use case and supports an application’s initial
deployment and runtime migration.

ADVANTAGES OF PROPOSED SYSTEM:

This meta cloud would abstract away from existing offer-
ings’ technical incompatibilities, thus mitigating vendor
lock-in. It helps users find the right set of cloud services
for particular use case and supports an application’s initial
deployment and runtime migration.

Winds of Change: From Vendor Lock-in to the Meta Cloud

Konduru Bhuvaneswari
Dept of Software Engineering,

SKR College of Engineering and Technology,
Nh-5, Kondurusatram, Manubolu, Spsr Nellore,Ap.

Syed Baji, Ph.D
Associate Professor,

Dept of Software Engineering,
SKR College of Engineering and Technology,

Nh-5, Kondurusatram, Manubolu, Spsr Nellore,Ap.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 445

Cloud Computing Use Case:

Let’s consider a Web-based sports portal for an event such
as the Olympic Games, which allows users to place bets.
An event this large requires an enormously efficient and
reliable infrastructure, and the cloud computing paradigm
provides the necessary flexibility and elasticity for such
a scenario. It lets service providers handle short-term
usage spikes without needing respective dedicated re-
sources available continuously. The problem, however, is
that once an application has been developed based on one
particular provider’s cloud services and using its specific
API, that application is bound to that provider; deploy-
ing it on another cloud would usually require completely
redesigning and rewriting it.

Such vendor lock-in leads to strong dependence on the
cloud service operator. In the sports portal example, in
addition to the ability to scale applications up and down
by dynamically allocating and releasing resources, we
must consider additional aspects, such as resource costs
and regional communication bandwidth and latency.Let’s
assume the sports betting portal application is based on a
load balancer that forwards HTTP requests to numerous
computing nodes hosting a Web application that lets users
submit a bet. Request handlers place bet records in a mes-
sage queue and subsequently store them in a relational
database.

Let’s fur ther assume a service provider realizes this sce-
nario using only Amazon Web Services (AWS), EC2 to
host applications, Simple Queue Service (SQS) as its
cloud message queue, and the Relational Database Ser-
vice (RDS) as a database system. Instead of being bound
to one cloud operator, however, the betting application
should be hosted in an optimal cloud environment. To le-
verage a more diverse cloud landscape, support f lexibili-
ty, and avoid vendor lock-in, the meta cloud must achieve
two main goals:

• find the optimal combination of cloud services for a cer-
tain application with regard to QoS for users and price for
hosting; and

• develop a cloud-based application once, then run it any-
where, including support for runtime migration. Lately,
the meta cloud idea has received some attention, and sev-
eral approaches try to tackle at least parts of the problem.

Current Weather in the (Meta) Cloud:

First, standardized programming APIs must enable de-
velopers to create cloud-neutral applications that aren’t
hardwired to any single provider or cloud service. Cloud
provider abstraction libraries such as libcloud (http:// lib-
cloud.apache.org), fog (http://fog.io), and jclouds (www.
jclouds.org) provide unified APIs for accessing different
vendors’ cloud products.Using these libraries, developers
are relieved of technological vendor lockin because they
can switch cloud providers for their applications with
relatively low overhead. As a second ingredient, the meta
cloud uses resource templates to define concrete features
that the application requires from the cloud. For instance,
an application must be able to specify that it requires a
given number of computing resources, Internet access,
and database storage. Some current tools and initiatives
— for example, Amazon’s CloudFormation (http:// aws.
amazon.com/cloudformation/) or the upcoming\ TOSCA
specification(www.oasis open.org/committees/ tosca) —
are working toward similar goals and can be adapted to
provide these required features for the meta cloud. In
addition to resource templates, the automated formation
and provisioning of cloud applications also depends on
sophisticated features to actually deploy and install ap-
plications automatically.

Predictable and controlled application deployment is a
central issue for cost-effective and efficient deployments
in the cloud, and even more so for the meta cloud. Sev-
eral application provisioning solutions exist, enabling
developers and administrators to declaratively specify
deployment artifacts and dependencies to allow for re-
peatable and managed resource provisioning. Notable
examples include Opscode Chef(www.opscode.com/
chef),Puppet(http://puppetlabs.com), and juju (http://juju.
ubuntu.com). At runtime, an important aspect of the meta
cloud is application monitoring, which enables the meta
cloud to decide whether it’s necessary to provision new
instances of the application or migrate parts of it. Various
vendors provide tools for cloud monitoring, ranging from
system-level monitoring (such as CPU and bandwith) to
application-level monitoring (Amazon’s CloudWatch;
http://aws.amazon.com/cloudwatch/) to SLA monitoring
(as with monitis; http://portal.monitis.com/index. php/
cloud-monitoring). However, the meta cloud requi res
more sophisticated monitoring techniques and, in par-
ticular, approaches for making automated provisioning
decisions at runtime based on current application users’
context and location.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 446

Inside the Meta Cloud:

To some extent, we can realize the meta cloud based on a
combination of existing tools and concepts, part of which
we just examined. Figure 1 depicts the meta cloud’s main
components. We can categorize these components based
on whether they’r e impor tant mainly for cloud software
engineers during development time or whether they per-
form tasks during runtime. We illustrate their interplay
using the sports betting portal example.

Meta Cloud API:

The meta cloud API provides a unified programming in-
terface to abstract from the differences among provider
API implementations. For customers, using this API pre-
vents their application from being hard wired to a specific
cloud service offering. The meta cloud API can build on
available cloud provider abstraction APIs, as previously
mentioned. Although these deal mostly with keyvalue
stores and compute services, in principle, all services can
be covered that are abstract enough for more than one
provider to offer and whose specific APIs don’t differ too
much, conceptually.

Resource Templates:

Developers describe the cloud services necessary to run
an application using resource templates. They can spec-
ify service types with additional proper ties, and a graph
model expresses the interrelation and functional depen-
dencies between services. Developers create the meta
cloud resource templates using a simple domain-specific
language (DSL), letting them concisely specify required
resources. Resource definitions are based on a hierarchi-
cal composition model; thus developers can create config-
urable and reusable template components, which enable
them and their teams to share and reuse common resource
templates in different projects. Using the DSL, develop-
ers model their application components and their basic
runtime requirements, such as (provider independently
normalized) CPU, memor y, and I/O capacit ies, as well as
dependencies and weighted communication relations be-
tween these components. The provisioning strategy uses
the weighted component relations to determine the ap-
plication’s optimal deployment configuration. Moreover,
resource templates allow developers to define constraints
based on costs, component proximity, and geographical
distribution.

Migration and Deployment Recipes:

Deployment recipes are an important ingredient for au-
tomation in the meta cloud infrastructure. Such recipes
allow for controlled deployment of the application, in-
cluding installing packages, starting required services,
managing package and application parameters, and es-
tablishing links between related components. Automation
tools such as Opscode Chef provide an extensive set of
functionalities that are directly integrated into the meta
cloud environment.

Migration recipes go one step further and describe how
to migrate an application during runtime — for example,
migrate storage functionality from one service provider
to another. Recipes only describe initial deployment and
migration; the provisioning strategy and the meta cloud
proxy execute the actual process using the aforemen-
tioned automation tools.

Meta Cloud Proxy:

The meta cloud provides proxy objects, which are de-
ployed with the application and run on the provisioned
cloud resources. They serve as mediators between the
application and the cloud provider. These proxies expose
the meta cloud API to the application, transform appli-
cation requests into cloud-provider-specific requests,
and forward them to the respective cloud services. Prox-
ies provide a way to execute deployment and migration
recipes triggered by the meta cloud’s provisioning strat-
egy. Moreover, proxy objects send QoS statistics to the
resource monitoring component running within the meta
cloud.

The meta cloud obtains the data by intercepting the ap-
plication’s calls to the underlying cloud services and mea-
suring their processing time, or by executing short bench-
mark programs. Applications can also define and monitor
custom QoS metrics that the proxy objects send to the
resource monitoring component to enable advanced, ap-
plication-specific management strategies. To avoid high
load and computational bottlenecks, communication be-
tween proxies and the meta cloud is kept at a minimum.
Proxies don’t run inside the meta cloud, and regular ser-
vice calls from the application to the proxy aren’t routed
through the meta cloud, either.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 447

Resource Monitoring:

On an applicat ion’s request, the resource monitor ing
component receives data collected by meta cloud prox-
ies about the resources they’re using. The component fil-
ters and processes these data and then stores them on the
knowledge base for further processing. This helps gener-
ate comprehensive QoS information about cloud service
providers and the particular services they provide, includ-
ing response time, availability, and more service-specific
quality statements.

Provisioning Strategy:

The provisioning strategy component primarily match-
es an application’s cloud service requirements to actual
cloud service providers. It finds and ranks cloud services
based on data in the knowledge base. The initial deploy-
ment decision is based on the resource templates, specify-
ing the resource requirements of an application, together
with QoS and pricing information about service provid-
ers. The result is a list of possible cloud service combi-
nations ranked according to expected QoS and costs. At
runtime, the component can reason about whether migrat-
ing a resource to another resource provider is beneficial
based on new insights into the application’s behavior
and updated cloud provider QoS or pricing data. Reason-
ing about migrating also involves calculating migration
costs.Decisions about the provisioning strategy result in
the component executing customer-defined deployment
or migration scripts.

Knowledge Base:

The knowledge base stores data about cloud provider ser-
vices, their pricing and QoS, and information necessary to
estimate migration costs. It also stores customer-provided
resource templates and migration or deployment recipes.
The knowledge base indicates which cloud providers are
eligible for a certain customer. These usually comprise
all providers the customer has an account with and pro-
viders that offer possibilities for creating (sub)accounts
on the fly. Several information sources contribute to the
knowledge base: meta cloud proxies regularly send data
about application behavior and cloud service QoS. Users
can add cloud service providers’ pricing and capabilities
manually or use crawling techniques that can get this in-
formation automatically.5.

A Meta Cloud Use Case:

Let’s come back to the sports application use case. A
meta-cloud-compliant variant of this application access-
es cloud services using the meta cloud API and doesn’t
directly talk to the cloud-provider-specific service APIs.
For our particular case, this means the application doesn’t
depend on Amazon EC2, SQS, or RDS service APIs, but
rather on the meta cloud’s compute, message queue, and
relational database service APIs. For initial deployment,
the developer submits the application’s resource template
to the meta cloud. It specifies not only the three types of
cloud services needed to run the sports application, but
also their necessary properties and how they depend on
each other. For compute resources, for instance, the de-
veloper can specify CPU, RAM, and disk space according
to terminology defined by the meta cloud resource tem-
plate DSL. Each resource can be named in the template,
which allows for referencing during deployment, run-
time, and migration. The resource template specification
should also contain interdependencies, such as the direct
connection between the Web service compute instances
and the message queue service. The rich information that
resource templates provide helps the provisioning strat-
egy component make profound decisions about cloud ser-
vice ranking.

We can explain the working principle for initial deploy-
ment with a Web search analogy, in which resource tem-
plates are queries and cloud service provider QoS and
pricing information represent indexed documents. Algo-
rithmic aspects of the actual ranking are beyond this ar-
ticle’s scope. If some resources in the resource graph are
only loosely coupled, then the meta cloud will be more
likely to select resources from different cloud providers
for a single application. In our use case, however, we as-
sume that the provisioning strategy ranks the respective
Amazon cloud services first, and that the customer follows
this recommendation. After the resources are determined,
the meta cloud deploys the application, together with an
instance of the meta cloud proxy, according to customer-
provided recipes. During runtime, the meta cloud proxy
mediates between the application components and the
Amazon cloud resources and sends monitoring data to the
resource monitoring component running within the meta
cloud.Monitoring data helps refine the application’s re-
source template and the provider’s overall QoS values,
both stored in the knowledge base. The provisioning strat-
egy component regularly checks this updated information,
which might trigger a migration.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 446

Inside the Meta Cloud:

To some extent, we can realize the meta cloud based on a
combination of existing tools and concepts, part of which
we just examined. Figure 1 depicts the meta cloud’s main
components. We can categorize these components based
on whether they’r e impor tant mainly for cloud software
engineers during development time or whether they per-
form tasks during runtime. We illustrate their interplay
using the sports betting portal example.

Meta Cloud API:

The meta cloud API provides a unified programming in-
terface to abstract from the differences among provider
API implementations. For customers, using this API pre-
vents their application from being hard wired to a specific
cloud service offering. The meta cloud API can build on
available cloud provider abstraction APIs, as previously
mentioned. Although these deal mostly with keyvalue
stores and compute services, in principle, all services can
be covered that are abstract enough for more than one
provider to offer and whose specific APIs don’t differ too
much, conceptually.

Resource Templates:

Developers describe the cloud services necessary to run
an application using resource templates. They can spec-
ify service types with additional proper ties, and a graph
model expresses the interrelation and functional depen-
dencies between services. Developers create the meta
cloud resource templates using a simple domain-specific
language (DSL), letting them concisely specify required
resources. Resource definitions are based on a hierarchi-
cal composition model; thus developers can create config-
urable and reusable template components, which enable
them and their teams to share and reuse common resource
templates in different projects. Using the DSL, develop-
ers model their application components and their basic
runtime requirements, such as (provider independently
normalized) CPU, memor y, and I/O capacit ies, as well as
dependencies and weighted communication relations be-
tween these components. The provisioning strategy uses
the weighted component relations to determine the ap-
plication’s optimal deployment configuration. Moreover,
resource templates allow developers to define constraints
based on costs, component proximity, and geographical
distribution.

Migration and Deployment Recipes:

Deployment recipes are an important ingredient for au-
tomation in the meta cloud infrastructure. Such recipes
allow for controlled deployment of the application, in-
cluding installing packages, starting required services,
managing package and application parameters, and es-
tablishing links between related components. Automation
tools such as Opscode Chef provide an extensive set of
functionalities that are directly integrated into the meta
cloud environment.

Migration recipes go one step further and describe how
to migrate an application during runtime — for example,
migrate storage functionality from one service provider
to another. Recipes only describe initial deployment and
migration; the provisioning strategy and the meta cloud
proxy execute the actual process using the aforemen-
tioned automation tools.

Meta Cloud Proxy:

The meta cloud provides proxy objects, which are de-
ployed with the application and run on the provisioned
cloud resources. They serve as mediators between the
application and the cloud provider. These proxies expose
the meta cloud API to the application, transform appli-
cation requests into cloud-provider-specific requests,
and forward them to the respective cloud services. Prox-
ies provide a way to execute deployment and migration
recipes triggered by the meta cloud’s provisioning strat-
egy. Moreover, proxy objects send QoS statistics to the
resource monitoring component running within the meta
cloud.

The meta cloud obtains the data by intercepting the ap-
plication’s calls to the underlying cloud services and mea-
suring their processing time, or by executing short bench-
mark programs. Applications can also define and monitor
custom QoS metrics that the proxy objects send to the
resource monitoring component to enable advanced, ap-
plication-specific management strategies. To avoid high
load and computational bottlenecks, communication be-
tween proxies and the meta cloud is kept at a minimum.
Proxies don’t run inside the meta cloud, and regular ser-
vice calls from the application to the proxy aren’t routed
through the meta cloud, either.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 447

Resource Monitoring:

On an applicat ion’s request, the resource monitor ing
component receives data collected by meta cloud prox-
ies about the resources they’re using. The component fil-
ters and processes these data and then stores them on the
knowledge base for further processing. This helps gener-
ate comprehensive QoS information about cloud service
providers and the particular services they provide, includ-
ing response time, availability, and more service-specific
quality statements.

Provisioning Strategy:

The provisioning strategy component primarily match-
es an application’s cloud service requirements to actual
cloud service providers. It finds and ranks cloud services
based on data in the knowledge base. The initial deploy-
ment decision is based on the resource templates, specify-
ing the resource requirements of an application, together
with QoS and pricing information about service provid-
ers. The result is a list of possible cloud service combi-
nations ranked according to expected QoS and costs. At
runtime, the component can reason about whether migrat-
ing a resource to another resource provider is beneficial
based on new insights into the application’s behavior
and updated cloud provider QoS or pricing data. Reason-
ing about migrating also involves calculating migration
costs.Decisions about the provisioning strategy result in
the component executing customer-defined deployment
or migration scripts.

Knowledge Base:

The knowledge base stores data about cloud provider ser-
vices, their pricing and QoS, and information necessary to
estimate migration costs. It also stores customer-provided
resource templates and migration or deployment recipes.
The knowledge base indicates which cloud providers are
eligible for a certain customer. These usually comprise
all providers the customer has an account with and pro-
viders that offer possibilities for creating (sub)accounts
on the fly. Several information sources contribute to the
knowledge base: meta cloud proxies regularly send data
about application behavior and cloud service QoS. Users
can add cloud service providers’ pricing and capabilities
manually or use crawling techniques that can get this in-
formation automatically.5.

A Meta Cloud Use Case:

Let’s come back to the sports application use case. A
meta-cloud-compliant variant of this application access-
es cloud services using the meta cloud API and doesn’t
directly talk to the cloud-provider-specific service APIs.
For our particular case, this means the application doesn’t
depend on Amazon EC2, SQS, or RDS service APIs, but
rather on the meta cloud’s compute, message queue, and
relational database service APIs. For initial deployment,
the developer submits the application’s resource template
to the meta cloud. It specifies not only the three types of
cloud services needed to run the sports application, but
also their necessary properties and how they depend on
each other. For compute resources, for instance, the de-
veloper can specify CPU, RAM, and disk space according
to terminology defined by the meta cloud resource tem-
plate DSL. Each resource can be named in the template,
which allows for referencing during deployment, run-
time, and migration. The resource template specification
should also contain interdependencies, such as the direct
connection between the Web service compute instances
and the message queue service. The rich information that
resource templates provide helps the provisioning strat-
egy component make profound decisions about cloud ser-
vice ranking.

We can explain the working principle for initial deploy-
ment with a Web search analogy, in which resource tem-
plates are queries and cloud service provider QoS and
pricing information represent indexed documents. Algo-
rithmic aspects of the actual ranking are beyond this ar-
ticle’s scope. If some resources in the resource graph are
only loosely coupled, then the meta cloud will be more
likely to select resources from different cloud providers
for a single application. In our use case, however, we as-
sume that the provisioning strategy ranks the respective
Amazon cloud services first, and that the customer follows
this recommendation. After the resources are determined,
the meta cloud deploys the application, together with an
instance of the meta cloud proxy, according to customer-
provided recipes. During runtime, the meta cloud proxy
mediates between the application components and the
Amazon cloud resources and sends monitoring data to the
resource monitoring component running within the meta
cloud.Monitoring data helps refine the application’s re-
source template and the provider’s overall QoS values,
both stored in the knowledge base. The provisioning strat-
egy component regularly checks this updated information,
which might trigger a migration.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 448

The meta cloud could migrate front-end nodes to other
providers to place them closer to the application’s us-
ers, for example. Another reason for a migration might
be updated pricing data. After a price cut by Rackspace,
for example, services might migrate to its cloud offerings.
To make these decisions, the provisioning strategy com-
ponent must consider potential migration costs regarding
time and money.

The actual migration is performed based on customer-
provided migration recipes. Working on the meta cloud,
we face the following technical challenges. Resource
monitoring must collect and process data describing dif-
ferent cloud providers’ services such that the provisioning
strategy can compare and rank their QoS properties in a
normalized, provider in dependent fashion.

Although solutions for deployment in the cloud are rela-
tively mature, application migration isn’t as well support-
ed. Finding the balance between migration facilities pro-
vided by the meta cloud andthe application is particularly
important. Cloud-centric migration makes the meta cloud
infrastructure responsible for most migration aspects,
leading to issues with application specific intricacies,
whereas in application-centric migration, the meta cloud
only triggers the migration process, leaving its execution
mostly to the application. We argue that the meta cloud
should control the migration process but offer many in-
terception points for applications to influence the process
at all stages.

The provisioning strategy — the most integrative compo-
nent, which derives strategies mainly based on input from
runtime monitoring and resource templates and effects
them by executing migration and deployment recipes —
requires fur ther research into combining approaches from
the information retrieval and autonomic computing fields.
The meta cloud can help mitigate vendor lock-in and
promises transparent use of cloud computing services.

Most of the basic technologies necessary to realize the
meta cloud already exist, yet lack integration. Thus, inte-
grating these state-of-the-art tools promises a huge leap
toward the meta cloud. To avoid meta cloud lock in, the
community must drive the ideas and create a truly open
meta cloud with added value for all customers and broad
support for different providers and implementation tech-
nologies.

References:

1. M. Armbrust et al., “A View of Cloud Computing,”
Comm. ACM, vol. 53, no. 4, 2010, pp. 50–58.
2. B.P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and
Survey of Cloud Computing Systems,” Proc. Int’l Conf.
Networked Computing and Advanced Information Man-
agement, IEEE CS Press, 2009, pp. 44–51.
3. J. Skene, D.D. Lamanna, and W. Emmerich, “Precise
Service Level Agreements,” Proc. 26th Int’l Conf. Soft-
ware Eng. (ICSE 04), IEEE CS Press, 2004, pp. 179–
188.
4. Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Com-
puting: State-of-the-Art and Research Challenges,” J. In-
ternet Services and Applications, vol. 1, no. 1, 2010, pp.
7–18.
5. M.D. Dikaiakos, A. Katsifodimos, and G. Pallis, “Min-
ersoft: Software Retrieval in Grid and Cloud Computing
Infrastructures,” ACM Trans. Internet Technology, vol.
12, no. 1, 2012, pp. 2:1–2:34.

About Authors:
1.Konduru Bhuvaneswari She Was Born In Ojili
Rachapalem [V], Ojili [M], S.P.S.R.Nellore [Dt], Andhra
Pradesh, India. She Received The B.Tech Degree In In-
formation Technology From Jnt University, Anantapur In
2013 And Pursuing M.Tech Degree In Software Engineer-
ing From Jnt University, Anantapur. She Completed Her
B.Tech Degree In Narayana Engineering College, Dhur-
jati Nagar, Gudur [T] [M], S.P.S.R.Nellore [Dt], Andhra
Pradesh And M.Tech Degree In Skr College Of Engineer-
ing & Technology, Konduru Satram [V], Manubolu [M],
S.P.S.R.Nellore [Dt], Andhra Pradesh, India.

2.Mr. Syed Baji He Was Born In Andhra Pradesh,
India. He Received The Bachelor Of Computer Appli-
cations Degree From Sri Krishnadevaraya University,
Anantapur In 1998-2001 And Master Of Science In In-
formation Technology From Bharath Institute Of Science
& Technology, Madras University, Chennai In 2001-2003
And Master Of Technology In Information Technology
From Bharath Institute Of Higher Education & Research
From Bharath University, Chennai In 2003-2005. He Has
10 Years Experience In The Field Of Associate Profes-
sor And Hod In Dept .Of Cse & It. He Had Working As
Associate Professor And P.G Co-Ordinator In Dept. Of
Software Engineering In Skr College Of Engineering &
Technology, Konduru Satram [V], Manubolu [M], S.P.S.R
Nellore [Dt], Andhra Pradesh, India.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 449

