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ABSTRACT 

In this paper the effect of time delay upon a Networked 

Control System(NCS) is studied and the boundary 

limits of the system with delay is determined 

theoretically in terms of plant parameters. Then a 

Sliding Mode Observer is designed to recognize the 

effects of minor faults and to isolate the effect of them 

in the presence of time delays and loss of information 

during transmission. The error during estimation is 

stabilized based on Lyapunov theory. Optimal integral 

square error can be achieved by obtaining the 

controller parameters by solving bilinear matrix 

inequalities. The overall system is implemented and the 

results are verified by using simulations of MATLAB/ 

Simulink. 

 

Index Terms — Networked Control System, Sliding 

Mode Observer, Integral square error, Lyapunov 

Stability, bilinear matrix inequalities. 

 

INTRODUCTION 

Networked control systems have various applications in 

a space craft, medical, manufacturing and various 

industrial applications. They also have reduced cost, 

good performance and high reliability. In Networked 

system the information from the sensors, actuators etc., 

is send through a communication network. The use of 

communication network will lead to intermittent losses 

or delays of the communicated information. The 

transmission of a continuous signal varying in time 

through a network it requires the signal to be sampled 

first, then encoded then transmitted and then at the 

receiving end it must be decoded. The delay occurs 

during the transfer of information from sensor to 

controller and between controller and actuator. These 

delays have an adverse effect upon the system 

performance and may even destabilize the system. To 

obtain an optimal estimator and controller the network 

induced delay should be shorter than the sampling period 

but in most applications it is always greater than 

sampling time [1-5]. Before each transmission of 

information the node monitors the network, if the 

network before each transmission. When the network is 

inactive it transmits information immediately else it 

waits till network becomes free. During multiple signal 

transmission the signal with the higher priority interrupt 

is transferred first and the low priority message is 

terminated and will be retried when the network is idle.  

 

The network induced delay has a greater effect upon 

these packet dropouts. They can be made bounded and 

constant by periodic transmission of packets. Single 

packet transmission delivers information from sensors or 

actuator at the same time. Multiple packet transmission 

is preferred than single packet as the line can carry a 

fixed amount of information. A fault can be detected 

based upon parity space approaches which employ fault 

detection filters. Observer based method for fault 

detection is gaining popularity which performs the same 

as parity approach. The first step to achieve this is to 

estimate the states by designing an observer; the 

information of these states is used to construct the 

residual signal by weighted output estimation error. The 

residuals are used to have information about faults. Fault 

detection based upon unknown input observers has been 

a greater research area. In this area a lot of papers have 

been published for controller design, stability NCS [3]-

[8]. The delay margin has been calculated theoretically 

based on system parameters and controller values. The 

performance of PI controller in presence of delay is 

studied in detail in [9], in which a disturbance rejection 

determined. The PI controller gains are computed based 
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on linear matrix inequalities. Suboptimal mixed robust 

controller design for NCSs and a performance index 

constraint are minimized. This paper presents a sensor 

fault tolerant Time delayed DC motor system(TDCMS) 

with unknown time delays; information loss during 

transmission, external torque disturbances is studied. At 

first the delay margin for particular parameters and 

control values are calculated theoretically and then 

verified using MATLAB / SIMULINK. Then a sliding 

mode observer is designed to make the observer tolerant 

to sensor faults, Lyapunov stability analysis have been 

used for error minimization. The optimality PI controller 

designed solving bilinear matrix inequalities [13]. The 

paper is organized as follows, In section II the modeling 

of the TDCMS is described in detail. Section III a 

theoretical method and steps to calculate delay margin is 

discussed, later in chapter the sliding mode observer 

equations with state error minimization and optimal PI 

controller designare mentioned. Then SIMULINK 

environment is used to explain the results in detail. 

 

MODELING OF TDCMS 

The state equations of an TDCMS is given by 
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Where   N  k  ,hihit kkkk   11,  . The delay at the kth 

step for the networked system is denoted by k . Both 

sensor-to-controller and controller-to-actuator delays are 

included in inducing the total delay, which is not a 

known value. In this system, the speed controller sends 

the packet at instant hik . It takes k  seconds for the local 

dc-motor chopper to receive the information. The motor 

states depends upon the transmission data till 

information at the next instant 11   kk hi  sec is received. 

It should be noted that packet losses are rooted in this 

model if h   . Since the overall network delay includes 

both induced delays, the sensors used to measure the 

armature current and speed at (t)th second. With 

  T
a

def

a  ix   and assuming than the speed sensor output 

is )()( tt F    Where RtF )(  represents speed sensor 

faults the motor state equations are given by 
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If the drive system is speed sensorless or, equivalently, 

the sensor suffers from complete failure, then 

)()( ttF   , which corresponds to a speed with zero 

sensor output. 

As explained [14] with the assumption that the load 

torque is an extra state variable with very slow variations 

compared to motor time constants and   T

l
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THEORITICAL DELAY MARGIN 

CALCULATION 

The DC motor transfer function is obtained as follows: 
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The PI controller is given by the following transfer 

function: 

                  S

K
KSG I

PC )(
               [6] 

 

 

Fig 1. Block Diagram of a time delayed DC motor 

system 

The PI controller is used to for the speed response to 

reach the desired value As shown in Figure 1, all time 

delays in the feedback loop are lumped together into a 

feedback delay between the output and the controller. 

The characteristic equation of system given by 

0)(GG(S)1)(s, C    seS
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where P(s), Q(s) are polynomials in s with real 

coefficients.These polynomials are given as  
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Where 

  

The location of the roots of the characteristic Equation 

are determined to analyze the stability of DC motor 

control system. The theoretical method is given in detail 

below. For stability the roots of characteristic equation 

should lie in the left half of s-plane. In single delay case, 

our objective is to compute delay margin  for different 

parameters. The characteristic equation 0)(s,   is an 

implicit function of s and  . Because of the complex 

conjugate symmetry 0)(-s,   have same roots as 

cj . Note to find value of delays such that 

0)(s,   and 0)(-s,   have a common root at s = 

cj This result could be stated as follows: 

 sesQsP )()(  

                                   
 sesQsP )()(              

[9]
 

The exponential terms could be easily eliminated and the 

following new characteristic equation is obtained: 

                     0)()()()(  sQsQsPsP          
[10]

 

The replacement s by cj leads to the following 

polynomial in  given by 
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The computation of real roots is easier then the 

computation of imaginary roots from this method. The 

stability of the Networked DC motor speed control 

system could be easily analyzed by obtaining the roots of 

W. Depending upon these roots,  

i) The new polynomial of W does not possess any 

 positive real roots. In this case, the characteristic 

equation of will not have any roots on the j -axis. 

Consequently, the DC motor speed control system 

will be delay-independent stable. 

ii) The polynomial W may have at least one 

positive real root. In this case, the characteristic 

equation will have at least a pair of complex roots on 

j As a result; the DC motor speed control system 

will be delay-dependent stable [11].  
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For a positive real root c the corresponding value of 

delay margin  can be easily computed using 

characteristic equation and W: 
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The characteristic equation has finite real roots 
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The delay margins of real roots for each positive root 
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The delay margin based on polynomial equations is 

given as follows: 
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SLIDING MODE OBSERVER DESIGN 

In this section, a sliding-mode observer is designed to 

estimate the rotor speed and load torque. 

The observer structure is given by 
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where the hat-signed variables stand for the estimated 

ones and )(te denotes the estimation error of network-

induced delay. Furthermore, G and  )(t  are observer 

gain matrix and auxiliary sliding-mode input, 

respectively, and will be designed to guarantee 

asymptotic stability of the observer. Let xxeF
ˆ the 

state estimation error. Thus, the error dynamic equations 

are determined to be 

 

The variations of armature voltage controlled by PWM 

signal is limited during a time period, or mathematically, 

the control signal v(t) is Lipchitz, i.e., 
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where β is known positive scalar. The error system in (6) 

is asymptotically stable if 
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Where )(ˆ)()( titite aai   is the armature current 

estimation error, Λ is a positive-definite matrix, and ε 

denotes an arbitrary positive scalar. This can be verified 

by choosing the following Lyapunov function: 
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T
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[22]
 

 

Therefore, the derivative of the aforementioned function 

along with the error system trajectory is as follows: 
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Since )()/1()( telBte ia
T
F  and from (21) and (22) and the 

assumptions in (23) 

 

Where 

)(min   . 

Consequently,    llt TT  
ˆˆlim . 

 

PI CONTROLLER DESIGN 

The design of an optimal controller is designed in this 

section to achieve complete stability of the time delayed 

DC motor system which can be observed with the DC 

motor speed )(t tracking reference input sr . 

The steady state armature current is given by 

                       lsass Tklrkbi )/()/(                 
[25]

 

With 

 sls

def

ass rTklrkbx )/()/(   And 

assaR xxe          

lakaassRaR TEhiBxteAte  )())(()(             
[26]

 

To achieve zero steady state error 0)( teR
 the control 

voltage sskhi  )(  given 
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The DC motor system to track reference speed the 

controller equation is given by 
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Where 
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The integral term is calculate at each and every time 

instant as 
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The proportional and integral controls are applied 

separately to the speed and current error tracking. The 

armature voltage to dc motor is given by 
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Assuming the reference speed and load torque to be zero. 

The error in estimation is given by  TT

T

FF L
eee  , the 

error vector is given by  

ERR eete )(ˆ  

Combining equations (14) in (13) we get 
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Where   )(ˆ)(ˆ
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The conditions for error minimization and control vector 

design are taken from [10]. 

 

SIMULATION RESULTS 

In this section, for a PI controller gains, delay margin is 

determined based upon given relations in section III. The 

accuracy of theoretical delay margin results is confirmed 

by using MATLAB/Simulink environment. 
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Fig 2. Output response of the system using PI controller 

with varying time delays. 

The DC motor parameters used in this paper are given as 

follows: 
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In fig (2) the speed response of the system for different 

time delays is shown. From this response it shows the 

time delay effect upon the settling time of the system. 

For controller gains 6.2,0.2  ip kk the delay margin 

is calculated, the delay margin is obtained 

as sm 129.0*  ,the theoretical results are then verified 

using simulink as shown in fig 3. 

Fig 3. The motor speed for different delays around the 

theoritically calculated delay margin. 

The reference speed and faulty speed is given by 

)22(10)(85  tuturs  

)45.0cos())65(10)( ttutf   

The load torque disturbance is given by 

)38(14.0  tuTl  

The sliding mode gain is chosen as 05.3  

The observer gain matrix is obtained as [9]  
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The proportional controller gains are obtained as 

3.0,1.0  ip kk . 

The faulty , actual, estimated and reference speeds are 

shown in fig 4. 

Fig (4) Reference, actual ,estimatedand fault speeds of 

the networked dc motor in the presence of sensor fault 

and disturbance with observer-based PI controller. 

The effect of packet dropout with sampling time Ts 

lesser than delay time and greater than delay time are 

shownin Fig (5). 

Fig 5. The effect of packet dropout with different 

sampling time and delay time. 
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CONCLUSION 

This paper has analyzed the closed loop stability of the 

networked DC motor speed with time delays in its 

feedback and feed forward paths. A theoretical method is 

used to compute delay margins which depend on 

parameters and PI controller values. Then a speed 

sensorless technique has been used and the error stability 

between estimated model and original model based upon 

Lyapunov approach. Then to achieve optimum 

performance an PI controller based on linear matrix 

inequalities and sliding mode observer is designed to 

reduce the effect of varying delays and packet dropouts. 
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