

 Page 1001

Review of Travelling Salesmen Problem through Lexi Search

Method

Nabeel Naeem Hasan

Masters in Mathematics, Student

Department of Mathematics,

College of Science,

Osmania University, Hyderabad, India.

ABSTRACT

The aim of this paper is to introduce Lexisearch the

structure of the search algorithm does not require

huge dynamic memory during execution.

Mathematical programming is concerned with

finding optimal solutions rather than obtaining good

solutions. The Lexisearch derives its name from

lexicography .This approach has been used to solve

various combinatorial problems efficiently, the

Assignment problem, the Travelling Salesman

Problem, the job scheduling problem etc.

In all these problems the lexicographic search was

found to be more efficient than the Branch bound

algorithms. This algorithm is deterministic and is

always guaranteed to find an optimal solution. The

problem of mathematical programming is to find the

maximum or minimum of an objective function

whose variables are required to satisfy a set of well-

defined constraints. If the objective function is

continuous in the variable values that also lie in a

feasible region, which is compact, then it is a

continuous programming problem. Where as if the

decision variables take only discrete values then it is

known as discrete programming problem. If the set of

solutions is a finite discrete set or not necessarily of

variables in the usual sense but, May even be of other

entities like permutations or combinations, then the

problem is one of discrete programming. Operations

research problems are outlined slightly combinatorial

and non-combinatorial having a common feature in

that the objective function is to be minimized is the

maximum of a set of function values.

1.1 INTRODUCTION:

A mathematical programming problem solving is

concerned with discovering ideal arrangements as

opposed to acquiring great arrangements. The idea of

improvement is antiquated and has quickened hugely

with the advancement of machines and direct

programming in the late 1940‟s. The numerical

programming issues are comprehensively grouped into

two classes specifically:

1. Continuous programming issues

2. Discrete programming issues.

The issue of mathematical programming is to discover

the greatest or least of a target work whose variables

are obliged to fulfill a set of decently characterized

obligations.

In the event that the target capacity is constant in the

variable values that likewise lie in a plausible area,

which is minimal, then it is a consistent programming

issue. This kind of issues are fathomed by simplex

methodology (Hadely 1994), Lagrangian multipliers

system (Rao, 1984), where as though the choice

 Page 1002

variables take just discrete values then it is known as

discrete programming issue. In the event that the set of

arrangements is a limited to discrete situated or not so

much of variables in the standard sense yet, may even

be of different substances like stages or mixes, then the

issue is one of discrete programming. Operations

research issues are delineated somewhat combinatorial

and non-combinatorial having a typical peculiarity in

that the target capacity is to be minimized is the

greatest of a set of capacity qualities.

Combinatorial issue: If the arrangement space of an

issue comprises of combinatorial elements, then it is

known as combinatorial issue. As indicated by Pandit

(1963), the combinatorial programming issues can be

portrayed as: "There is a numerical capacity

characterized over the area of courses of action or

choices of a set of components. There are additionally

possibility criteria .Now, the issues to discover the

courses of action which are plausible and which

enhance the numerical capacity".

The combinatorial issues are not new to arithmetic;

maybe one of the methods for describing them is by

saying that they are concerned examples, normally

arrangements that can be discovered of a limited

number of components. the regular combinatorial

issues are concerned with identification of examples

fitting in with a given structure; class-significant zones

of diagram hypothesis are of this type. Like the

numerical issues by and large, in combinatorial

programming additionally we are less keen on the

quantity of examples of a given sort, yet in partner in

any case, a numerical quality is to each example of

investment and afterward asking regarding how to get

that example which minimizes (or maximizes)this

numerical worth, among a decently characterized

set(essentially of a limited cardinality) of examples.

As it were, "the scope of the variable of the

combinatorial capacities" is the set of examples

frequently changes, mixes are more convoluted image

chains and the exceptionally advantageous ideas of

neighboring smoothness and related thoughts are

totally immaterial in this minimax improvement issue.

A few sorts of combinatorial programming issues have

the markovian emphasize as in they can be

consecutively handled, with the structure empowering

that the area of arrangement resulting to one phase of

the arrangement is autonomous of the prior piece of

arrangement yet depends just on the current stage

arrangement. It can be related to cooperatively be the

phases of arrangements and when arrangements of the

issue can be figured interms of a appropriate operation,

it will be seen that the concerned operation is affiliated

and is of extraordinary hugeness numerically. If not

additionally hypothetically, settling the issue.

Numerous combinatorial programming issues

shockingly don't fall in this classification they are non-

markovian in that at any phase of arrangement,

lingering piece of the issue can't be connected from the

halfway arrangement up to that stage. A traditional

illustration of this sort is the Travelling salesperson

and the Assignment issues. One has maybe, to be

content with an anticipated calculation to tackle with

the issue however as in Assignment issue, the

combinatorial structure may prompt fascinating side

results, which, if one is fortunate, can likewise be of

some combinatorial noteworthy.

Truth be told, the range of combinatorial writing

computer programs is loaded with such issues with

some defense, we might hypothetically say that the

bringing together element which ties all these issues

into one class is that they can't be characteristically

brought under one head by any positive definition, and

maybe the main method for handling is by contriving

suitable calculations focused around thoughts of

hieratically organized numerical set of capacities i.e.,

designs, that can't be orchestrated in an order in the

estimation of the capacity which prompts the

Lexisearch and extension bound calculations.

Correlation of calculations for arrangements of any

such issues is fairly troublesome and is frequently

certain judgments about relative weight age to be

given to distinctive segments of calculation. It is

standard to disregard the quantity of augmentations

and subtractions however divisions in the execution of

 Page 1003

the calculation. Combinatorial programming

calculations frequently include a lot of augmentation

on the setting of spotting in the machine memory the

different dimensional variables. In the previous one

may be compelled to acknowledge the certain yet

exceptionally unacceptable feedback of the time

needed for taking care of various issues with

haphazardly produced information on any accessible

machine, which was moderate. Anyhow the present

situation is truly diverse where we can create various

issues of different sizes and explain then with no time,

due to the quick processing office. An issue, which is

basically not combinatorial, is the one where

calculations for its answers are produced in the

investigative way utilizing coherence ideas, yet

physically it creates the impression that there ought to

be an ideal answer for any self-assertive issue of this

sort.

Nonetheless, it is not generally conceivable to perceive

a proposed arrangements, one can characterize a set of

homogeneous mathematical statements with a few

variables limited to be negative and ask whether the

framework has arrangement. In the event that the

answer is YES, the arrangement can be fundamentally

being made strides. On the off chance that the answer

is NO it is an ideal arrangement. In this way, different

creators addressed this question one way or other by a

couple of trials changing the arrangement without

altering the minimax worth and eventually having the

capacity to get an identifiable ideal arrangement.

1.2 TRAVELLING SALESMAN PROBLEM:

The origins of the travelling salesman problem are

unclear. A handbook for travelling salesmen from

1832 mentions the problem and includes example tours

through Germany and Switzerland, but contains no

mathematical treatment.

Mathematical problems related to the Travelling

salesman problem were treated in the 1800s by the

Irish mathematician W. R. Hamilton and by the British

mathematician Thomas Kirkman. Hamilton’s Icosian

Game was a recreational puzzle based on finding a

Hamiltonian cycle. The general form of the TSP

appears to have been first studied by mathematicians

during the 1930s in Vienna and at Harvard, notably by

Karl Menger, who defines the problem, considers the

obvious brute-force algorithm, and observes the non-

optimality of the nearest neighbor heuristic.In the

1950s and 1960s, the problem became increasingly

popular in scientific circles in Europe and the USA.

Notable contributions were made by George Dantzig,

Delbert Ray Fulkerson and Selmer M. Johnson at the

RAND Corporation in Santa Monica, who expressed

the problem as an integer linear program and

developed the cutting planemethod for its solution.

With these new methods they solved an instance with

49 cities to optimality by constructing a tour and

proving that no other tour could be shorter. In the

following decades, the problem was studied by many

researchers from mathematics, computer science,

chemistry, physics, and other sciences.

Richard M. Karp showed in 1972 that the Hamiltonian

cycle problem was NP-complete, which implies the

NP-hardness of TSP. This supplied a scientific

explanation for the apparent computational difficulty

of finding optimal tours.Great progress was made in

the late 1970s and 1980, when Grötschel, Padberg,

Rinaldi and other managed to exactly solve instances

with up to 2392 cities, using cutting planes and

branch-and-bound.In the 1990s, Applegate, Bixby,

Chvátal, and Cook developed the program Concorde

that has been used in many recent record solutions.

Gerhard Reinelt published the TSPLIB in 1991, a

collection of benchmark instances of varying

difficulty, which has been used by many research

groups for comparing results. In 2005, Cook and

others computed an optimal tour through a 33,810-city

instance given by a microchip layout problem,

currently the largest solved TSPLIB instance. For

many other instances with millions of cities, solutions

can be found that are provably within 1% of optimal

tour.

 Page 1004

1.3 LEXI SEARCH METHOD:

Lexicographic Search Approach is a systematized

Branch and Bound approach, developed by Pandit in

the context of solving a loading problem in1962i.e.

Even before the Little et al came out with their Branch

and Bound for the Travelling Salesman problem. This

approach has been found to be fruitful in many of the

Combinatorial Programming Problems.

In principle, it is essentially similar to the Branch and

Bound method as adopted by Little et al -1963 and it is

worth mentioning that Branch and Bound can be

viewed as a particular case of Lexicographic Search

approach [Pandit -1965] The name lexicographic

Search itself suggests that, the search for an optimal

solution is done in a systematic manner, just as one

searches for the meaning of a word in a dictionary and

it is derived from Lexicography the science of

effective storage and retrieval of information. This

approach is based on the following grounds [Pandit-

1963].(i)It is possible to list all the solutions or related

configurations in a structural hierarchy which also

reflects a hierarchical ordering of the corresponding

values of these configurations.

(ii)Effective bounds can be set to the values of the

objective function, when structural combinatorial

restraints are placed on the Allowable

configurations.The basic principle is described as

follows [Rajbhongshi-1982]. Consider a set of symbols

A= (1, 2, 3,......,n) and the different possible sequences

of length k of these symbols. Thus (1, 2, ...,k) is

13a k-word formed from the alphabet of n symbols 1,

2, 3 ,n, the ith letter in the word is i A.

For a particular problem, we can define all solutions of

the problem as a subset of possible words with this

alphabet and attach a value to each of the words. By

defining analphabetic order on the elements of A, we

will be able to define a unique ordered list of words of

length not exceeding m, where m is finite. Words of

length k <= m are called

Incomplete words standing for the set or block of the

(m-k)! Words of length k having the incomplete word

(1, 2...k) as their leader. Numerical values can be

associated for these words which have the property

that as the word-length is increased by a concatenation

i.e. attaching of more letters to the right of the word

will monotonically non-decrease the values of words

and an effective bound can be computed with relative

case for the values of words belonging to a block

defined by a leader. We can even generalize this, by

considering m alphabets, A1, A2, A3...A m and

defining the words (1, 2,......, m) where iAi, i =

1, 2,, m. After this, searching for an optimum

word is problem of finding the word of minimum

value (in the case of a minimizing problem)in the Lexi

Search defined by the solution of the problem.

This concept can be better understood by considering

the Travelling Salesman problem. Travelling Salesman

problem is one of the oldest of the combinatorial

problems and its structure is close to that of the

Assignment Problem with a difference that the solution

set of the Travelling Salesman problem is rather more

restrictive. That is, the permutation (solution) matrix is

a feasible solution to the Assignment Problem if the

matrix is non-decomposable then it is a solution to

TSP.

2. TRAVELLING SALESMAN PROBLEM IN

DIAGRAMMATIC APPROACH:

A breakthrough came when George Dantzig, Ray

Fulkerson, and Selmer Johnson (1954) published a

description of a method for solving the TSP and

illustrated the power of this method by solving an

instance with 49 cities, an impressive size at that time.

They created this instance by picking one city from

each of the 48 states in the U.S.A. (Alaska and Hawaii

became states only in 1959) and adding Washington,

D.C.; the costs of travel between these cities were

defined by road distances.

Rather than solving this problem, they solved the 42-

city problem obtained by removing Baltimore,

Wilmington, Philadelphia, Newark, New York,

 Page 1005

Hartford, and Providence. As it turned out, an optimal

tour through the 42 cities used the edge joining

Washington, D.C. to Boston; since the shortest route

between these two cities passes through the seven

removed cities, this solution of the 42-city problem

yields a solution of the 49-city problem.

Figure 1.1: 48states of USA

3.1 LEXISEARCH APPROACH:

The travelling salesman problem with the following

restrictions was solved by Scroggs and Tharp (1972)

and Das Shila(l976).

i. Some ordered pairs of cities are given such

that the salesman should visit the first city

before the second; this is called the

'precedence’ constraint

ii. Some cities are specified as to be visited at

specific steps from the headquarters; this is

called the ‘fixed position’ constraint.

In the present chapter we will study the following

generalisation which can be called the 'Truncated

Travelling Salesman Problem.

There are n cities and N={1,2,3,….,n} The distance

d(i, j) between any pair of cities (i,j) is known. A

subset of the n cities HQ constitutes the potential

places for setting up a headquarters. A salesman has to

visit only m out of the n cities, with the restriction that

his tour should include at least one city from HQ. The

problem is to find a feasible tour of m cities with a

minimum length.

At the outset the above problem can be thought of as

choosing all possible sets of m cities from N which

includes a city from HQ and solve this as a m-city,

travelling salesman problem. In this case the number

of problems will be

 n Cm-(n-h) Cm where h=[HQ]

Obviously the number grows very high for even

moderate values of m and n. Hence solving the above

problems as a series of m-city salesman problems win

be impracticable. In the sequel, we will develop a lexi-

search algorithm, based on 'Pattern Recognition

Technique’, to solve this problem.

The concepts and the algorithm developed will be

illustrated by a numerical example for which n=8,

m=5, and h=3. Let N={1,2,3,4,5,6,7,8} and HQ =

{1,4,7}.

The distance matrix D is given as Table 3.1.

d (i,j), i = 1,2,.,…,8, are taken as ∞, as they are

irrelevant in calculating a tour for the salesman.

Though d(i, j)e are taken as positive integers, we

could have as well chosen any real value.

An n x n indicator matrix X = [x (i, j)= 0 or l]

represents a trip-schedule for the salesman, in which

x(i, j)=1 indicates that the salesman visits city J from

city i, and if there is no such trip, it is indicated by x

(i, j) = 0. X is called a 'solution'.

The indicator matrix X given by Table 3.2 is a solution

to the numerical example, and represents the following

trip-schedule.

 Page 1006

The salesman visits cities 3 and 6 from city I, visits

city 4. from city 3, visits city 6 from city 4 and visits

cities 1, 7 and 8 from city 6. Obviously, this solution

is not a feasible solution since the cities

{1,3,4,5,6,7,8} which are seven in number are

involved in this trip-schedule, whereas he has to visit

only m=5 cities, and also there is no tour connecting

all these cities. The matrix X given by the Table 3,3 is

also not a feasible solution since there is no tour

connecting the five cities {2,4,5,7,8}, which are in the

trip-schedule defined by it. The matrix given in Table

3.4 is a feasible solution, which involves the five cities

{ 2,4,5,7,8} in the trip-schedule; there is a tour

connecting these cities (8-5-7-2-4-8) and cities 4 and

HQ.

3.2 DEFINITION OF PATTERNS:

An indicator matrix, which is associated with a trip-

schedule, is called a 'pattern'. A pattern is said to be

feasible if the matrix X is a feasible solution. The patte

given by the tables 3.2 and 3.3 are not feasible

whereas the pattern given by Table 3.4 is a feasible

pattern. V(X), the value of the pattern X, is defined as

V(X) = ∑ ∑ 𝒅(𝒊, 𝒋), 𝒙(𝒊, 𝒋)𝒎
𝒋=𝟏

𝒎
𝒊=𝟏

The words “pattern”, “'pattern X”, matrix X’ and l

word(which is defined later are used, in the sequel,

synonymously V(X), for the pattern given by Table 3.2

is

V(X) = 40+38+ 23+48+34+16+41 = 239

V(X) for the patterns given by Tables 3.3 and 3.4 are

respectively 147 and 93.

Each pattern X can also be represented by the set of all

ordered pairs {(I, j)} for which x (i,j)=1 with the

understanding that the value of the ordered (other)

pairs is zero (vide 2.2).

Thus the ordered pairs set {(x1, y1)}, i=1,2,……,7

= {((l, 3), (1,6), (3,4), (4,6), (5,1), (5,7), (5,8)}

represents the pattern X given by Table 3.2.

Similarly, the sets of ordered pairs {(2,4), (4,2), (5,8),

(7,8), (8,4)} and {(2,4), (4,8), (5,7), (7,2), (8,5)}

 Page 1007

represent respectively, the patterns given by Tables 3.3

and 3.4.

There are n ordered pairs in a matrix X. For

convenience there are arranged in an increasing order

of their corresponding distances and are indexed from

1to n2 (vide 2.2). Let B=(l,2,...,n2) be the set of n2

indices. Let BD be the corresponding set of distances.

If α, β€B and α<β, than BD(α) ≤ BD(β).

Also lit the arrays R and C be the arrays of raw and

column Indices of the ordered pairs represented by B

and m be the array of the cumulative sums of the

elements of BD. The value of the arrays B, BD, DD, R

and C for the example is given as Table 3.5.

To illustrate the entries in the Table, consider 12GB. It

represents the ordered pair

(R(12), C(12)) = (5, 7). Then BD (12) = d (5,7) = 15

and DD (12) = 122

4. APPLICATIONS OF TSP

In this chapter we list some of the TSP problems in the

literature. Application TSP and its solution using

different methods and techniques are illustrated here in

this chapter.

Problem: Given a complete undirected graph G=(V,

E) that has non-negative integer cost c(u,

v) associated with each edge (u, v) in E,

the

problem is

to find a

hamiltonia

n cycle

(tour) of G

with

minimum

cost.

A salespersons

starts from the city 1

and has to visit six cities (1 through 6) and must come

back to the starting city i.e., 1. The first route (left

side) 1→ 4 → 2 → 5 → 6 → 3 → 1 with the total

length of 62 km, is a relevant selection but is not the

best solution.

The second route (right side) 1 → 2 → 5 → 4

→ 6 → 3 → 1 represents the must better solution as

the total distance, 48 km, is less than for the first

route. Suppose c(A) denoted the total cost of the edges

in the subset A subset of E i.e.,

c(A) = ∑u,vin A c(u, v)

Moreover, the cost function satisfies the triangle

inequality. That is, for all vertices u, v, w in V, w have

c(u, w) ≤ c(u, v) + c(v, w).

Note that the TSP problem is NP-complete even if we

require that the cost function satisfies the triangle

inequality. This means that it is unlikely that we can

find a polynomial-time algorithm for TSP.

4.1 TSP WITH THE TRIANGLE-INEQUALITY:

When the cost function satisfies the triangle inequality,

we can design an approximate algorithm for TSP that

returns a tour whose cost is not more than twice the

cost of an optimal tour.

Outline of an APPROX-TSP-TOUR:

First, compute a MST (minimum spanning tree)

whose weight is a lower bound on the length of an

optimal TSP tour. Then, use MST to build a tour

whose cost is no more than twice that of MST's

weight as long as the cost function satisfies triangle

inequality.

Operation of APPROX-TSP-TOUR:

Let root r be a in following given set of points

(graph).

 Page 1008

Construct MST from root a using MST-PRIM (G, c,

r).

 List vertices visited in preorder walk. L = {a, b, c, h,

d, e, f, g}

Return Hamiltonian cycle.

Optimal TSP tour for a given problem (graph) would

be

which is about 23% shorter.

Theorem: APPROX-TSP-TOUR is a polynomial-time

2-approximation algorithm for TSP with triangle

inequality.

Proof:

1. We have already shown that APPROX-TSP-TOUR-

time.

2. Let H* denote the optimal tour. Observe that a TSP

with one edge removed is a spanning tree (not

necessarily MST).

It implies that the weight of the MST T is in lower

bound on the cost of an optimal tour.

 c(T) = c(H*)

A "Full" walk, W, traverse every edge of MST, T,

exactly twice. That is,

 c(w) = 2c(T)

which means

 c(w) ≤ 2c(H*)

and we have

 c(w)/c(H*) ≤ p(n) = 2

That is, the cost of walk, c(w), of the solution produced

by the algorithm is within a factor of p(n)=2 of the cost

c(H*) of an optimal solution.

 Page 1009

4.2 THE GENERAL TSP:

Without the triangle inequality, a polynomial time

approximate algorithm with constant approximation

ratio not exist unless P=NP.

Theorem: If P ≠ NP, there is no polynomial-time

algorithm with approximation ratio p≥1 for general

TSP.

Proof:

Suppose to the contrary that there exists a polynomial-

time algorithm A for p≥1.

Now, use algorithm A to solve instance of HAM-

CYCLE problem in polynomial-time. Since HAM-

CYCLE problem is NP-complete then by theorem

If any NP-complete problem is polynomial-time

solvable, then P=NP. Equivalently, if any problem in

NP is not polynomial-time solvable than no NP-

complete problem is polynomial solvable.

Solving HAM-CYCLE in polynomial-time implies

that P=NP.

Since the HAM-CYCLE is NP-complete and we

assumed and we assumed that P≠NP, a contradiction is

arise.

Reduction:

Let G = (V, E) be an instance of Hamiltonian cycle

problem. We want to determine efficiently whether G

contains a Hamiltonian cycle by making use of an

algorithm A. We transform G into an instance of the

TSP problem as follows:

Consider a complete graph G`=(V, E`) where E` = {(u,

v): u, v in V and u≠v}. Assign an integer cost to each

edge in E` as follows:

Because algorithm A is guaranteed to return a tour of

cost no more than P times the cost of an optimal tour,

if graph G contains a Hamiltonian cycle, then A must

return it. If G has no Hamiltonian cycle, then A returns

a tour of cost more than P|V|. Therefore, we can use

algorithm A to solve Hamiltonian cycle problem in

polynomial time and this is impossible unless P=NP.

Example: Heuristic algorithm for the Traveling

Salesman Problem (T.S.P) .

This is one of the most known problems ,and is often

called as a difficult problem. A salesman must visit n

cities, passing through each city only once, beginning

from one of them which is considered as his base, and

returning to it.

The cost of the transportation among the cities

(whichever combination possible) is given. The

program of the journey is requested, that is the order of

visiting the cities in such a way that the cost is the

minimum.

Let's number the cities from 1 to n ,and let city 1 be the

city-base of the salesman. Also let's assume that c(i,j)

is the visiting cost from i to j. There can be

c(i,j)<>c(j,i).Apparently all the possible solutions are

(n-1)!.Someone could probably determine them

systematically, find the cost for each and every one of

these solutions and finally keep the one with the

minimum cost. These requires at least (n-1)! steps.

f for example there were 21 cities the steps required

are (n-1)!=(21-1)!=20! steps. If every step required a

msec we would need about 770 centuries of

calculations.Apparently,the exhausting examination of

all possible solutions is out of the question.Since we

are not aware of any other quick algorithm that finds a

best solution we will use a heuristic algorithm.

According to this algorithm whenever the salesman is

in town i he chooses as his next city,the city j for

which the c(i,j) cost,is the minimum among all c(i,k)

costs, where k are the pointers of the city the salesman

has not visited yet (Applegate, D., Bixby, R., Chvatal,

V., and Cook, W., 1998).

 Page 1010

There is also a simple rule just in case more than one

cities give the minimum cost,for example in such a

case the city with the smaller k will be chosen.This is a

greedy algorithm which selects in every step the

cheapest visit and does not care whether this will lead

to a wrong result or not.

4.3 TSP IN C-LANGUAGE

PSEUDO CODE:

Input: Number of cities n and array of costs c(i,j)

i,j=1,..n (We begin from city number 1)

Output: Vector of cities and total cost.

 (* starting values *)

 C=0

 cost=0

 visits=0

 e=1 (*e=pointer of the visited city)

 (* determination of round and cost)

 for r=1 to n-1 do

o choose of pointer j with

o minimum=c(e,j)=min{c(e,k);visits(k)=

0 and k=1,..,n}

o cost=cost+minimum

o e=j

o C(r)=j

 end r-loop

 C(n)=1

 cost=cost+c(e,1)

We can find situations in which the TSP algorithm

doesn’t give the best solution.We can also succeed on

improving the algorithm.For example we can apply the

algorithm t times for t different cities and keep the best

round every time.We can also unbend the greeding in

such a way to reduce the algorithm problem, that is

there is no room for choosing cheep sides at the end of

algorithm because the cheapest sides have been

exhausted.

CONCLUSION

In the Lexisearch the structure of the search algorithm

does not require huge dynamic memory during

execution. Hence, particularly for larger problems

Lexisearch appears to have relatively smaller space

complexity. Also, Lexisearch allows parallelization of

the algorithm as compared to the Branch and Bound

algorithm. In terms of the complexity also Lexisearch

appears quite competitive as reported by many

investigators on the basis of simulation studies. Till

recently, the approach of Lexisearch methodology is

established in various fields of operations research and

this method is being tried in parallel computing.

This algorithm described a search based algorithm for

finding optimal solution to the Travelling Salesperson

Problem. This algorithm is deterministic and is always

guaranteed to find an optimal solution, unlike the

conventional dynamic programming or Branch and

Bound algorithms, which require exponential space;

the lexicographic algorithm required only a linear

space with respect to the problem size. This algorithm

is easily parallelizable and found that this method is

superior to the existing methods.

REFERENCE:

 Aiex. R. M., Resende, M. G. C., Pardalos, P.

M. and Toraldo G. (2005): Grasp with Path

Relinking for Three-Index Assignment.

INFORMS J. On Computing, 17(2): 224–247.

 Adaptive Ant Colony Optimization for the

Traveling Salesman Problem, Michael Maur

(2009).

 Bhavani & Sundara Murthy, M. (2006):

Truncated M-Travelling Salesmen Problem,

OPSEARCH, Vol.43, No. 2.

 Boyd, A.B., 2002. Discrete mathematics topics

in the secondary school curriculum.

 De Maio, A &Roveda, C. (1971): An all 0-1

Algorithm for a Certain Class of

Transportation Problems, Op. Res.19, pp

1406-1418.

 Page 1011

 Gavish, B., Srikanth, K, 1986. An optimal

solution method for large-scale multiple

traveling salesmen problems. Operations

research, 34(5), 698-717.

 Huang, G. and Lim A. (2006): A Hybrid

Genetic Algorithm for the Three-Index

Assignment Problem. European Journal of

Operational Research, 172(1):249–257.

 Karapetyan, D., Gutin, G. and Goldengorin, B.

(2008): Empirical Evaluation of Construction

Heuristics for the Multidimensional

Assignment Problem. In: London

Algorithmics 2008: Theory and Practice.

 Lin, S., Kernighan, B.W., 1973. An effective

heuristic algorithm for the traveling-salesman

problem. Operations research, 21(2), 498-516.

 P.Rama Murthy-“ Operations Research linear

programming”-e books.

 Ross, G.T. &Soland, R.M. (1975): An

Algorithm for the Generalized Assignment

Problem. Mathematical Programming; pp 91-

103.

 Shapiro, J. F., 1989. Convergent duality for

the traveling salesman problem. Operations

research center, 1-14.

 Srinivasan V. & G.L. Thompson (1973). An

Algorithm for Assigning Uses to Sources in a

Special Class of Transportation Problems, Op.

Res., Vol. 21, No.1.

 The Advantage of Intelligent Algorithms for

TSP, Traveling Salesman Problem, Theory

and Applications, Prof. Donald Davendra and

Yuan-bin Mo (2010).

