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ABSTRACT 

The aim of this paper is to introduce Lexisearch the 

structure of the search algorithm does not require 

huge dynamic memory during execution. 

Mathematical programming is concerned with 

finding optimal solutions rather than obtaining good 

solutions. The Lexisearch derives its name from 

lexicography .This approach has been used to solve 

various combinatorial problems efficiently, the 

Assignment problem, the Travelling Salesman 

Problem, the job scheduling problem etc. 

  

In all these problems the lexicographic search was 

found to be more efficient than the Branch bound 

algorithms. This algorithm is deterministic and is 

always guaranteed to find an optimal solution. The 

problem of mathematical programming is to find the 

maximum or minimum of an objective function 

whose variables are required to satisfy a set of well-

defined constraints. If the objective function is 

continuous in the variable values that also lie in a 

feasible region, which is compact, then it is a 

continuous programming problem. Where as if the 

decision variables take only discrete values then it is 

known as discrete programming problem. If the set of 

solutions is a finite discrete set or not necessarily of 

variables in the usual sense but, May even be of other 

entities like permutations or combinations, then the 

problem is one of discrete programming. Operations 

research problems are outlined slightly combinatorial 

and non-combinatorial having a common feature in 

that the objective function is to be minimized is the 

maximum of a set of function values. 

1.1 INTRODUCTION: 

A mathematical programming problem solving is 

concerned with discovering ideal arrangements as 

opposed to acquiring great arrangements. The idea of 

improvement is antiquated and has quickened hugely 

with the advancement of machines and direct 

programming in the late 1940‟s. The numerical 

programming issues are comprehensively grouped into 

two classes specifically:  

1. Continuous programming issues  

2. Discrete programming issues.  

The issue of mathematical programming is to discover 

the greatest or least of a target work whose variables 

are obliged to fulfill a set of decently characterized 

obligations.  

In the event that the target capacity is constant in the 

variable values that likewise lie in a plausible area, 

which is minimal, then it is a consistent programming 

issue. This kind of issues are fathomed by simplex 

methodology (Hadely 1994), Lagrangian multipliers 

system (Rao, 1984), where as though the choice 
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variables take just discrete values then it is known as 

discrete programming issue. In the event that the set of 

arrangements is a limited to discrete situated or not so 

much of variables in the standard sense yet, may even 

be of different substances like stages or mixes, then the 

issue is one of discrete programming. Operations 

research issues are delineated somewhat combinatorial 

and non-combinatorial having a typical peculiarity in 

that the target capacity is to be minimized is the 

greatest of a set of capacity qualities.  

Combinatorial issue: If the arrangement space of an 

issue comprises of combinatorial elements, then it is 

known as combinatorial issue. As indicated by Pandit 

(1963), the combinatorial programming issues can be 

portrayed as: "There is a numerical capacity 

characterized over the area of courses of action or 

choices of a set of components. There are additionally 

possibility criteria .Now, the issues to discover the 

courses of action which are plausible and which 

enhance the numerical capacity".  

The combinatorial issues are not new to arithmetic; 

maybe one of the methods for describing them is by 

saying that they are concerned examples, normally 

arrangements that can be discovered of a limited 

number of components. the regular combinatorial 

issues are concerned with identification of examples 

fitting in with a given structure; class-significant zones 

of diagram hypothesis are of this type. Like the 

numerical issues by and large, in combinatorial 

programming additionally we are less keen on the 

quantity of examples of a given sort, yet in partner in 

any case, a numerical quality is to each example of 

investment and afterward asking regarding how to get 

that example which minimizes (or maximizes)this 

numerical worth, among a decently characterized 

set(essentially of a limited cardinality) of examples.  

As it were, "the scope of the variable of the 

combinatorial capacities" is the set of examples 

frequently changes, mixes are more convoluted image 

chains and the exceptionally advantageous ideas of 

neighboring smoothness and related thoughts are 

totally immaterial in this minimax improvement issue. 

A few sorts of combinatorial programming issues have 

the markovian emphasize as in they can be 

consecutively handled, with the structure empowering 

that the area of arrangement resulting to one phase of 

the arrangement is autonomous of the prior piece of 

arrangement yet depends just on the current stage 

arrangement. It can be related to cooperatively be the 

phases of arrangements and when arrangements of the 

issue can be figured interms of a appropriate operation, 

it will be seen that the concerned operation is affiliated 

and is of extraordinary hugeness numerically. If not 

additionally hypothetically, settling the issue. 

Numerous combinatorial programming issues 

shockingly don't fall in this classification they are non-

markovian in that at any phase of arrangement, 

lingering piece of the issue can't be connected from the 

halfway arrangement up to that stage. A traditional 

illustration of this sort is the Travelling salesperson 

and the Assignment issues. One has maybe, to be 

content with an anticipated calculation to tackle with 

the issue however as in Assignment issue, the 

combinatorial structure may prompt fascinating side 

results, which, if one is fortunate, can likewise be of 

some combinatorial noteworthy.  

Truth be told, the range of combinatorial writing 

computer programs is loaded with such issues with 

some defense, we might hypothetically say that the 

bringing together element which ties all these issues 

into one class is that they can't be characteristically 

brought under one head by any positive definition, and 

maybe the main method for handling is by contriving 

suitable calculations focused around thoughts of 

hieratically organized numerical set of capacities i.e., 

designs, that can't be orchestrated in an order in the 

estimation of the capacity which prompts the 

Lexisearch and extension bound calculations. 

Correlation of calculations for arrangements of any 

such issues is fairly troublesome and is frequently 

certain judgments about relative weight age to be 

given to distinctive segments of calculation. It is 

standard to disregard the quantity of augmentations 

and subtractions however divisions in the execution of 
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the calculation. Combinatorial programming 

calculations frequently include a lot of augmentation 

on the setting of spotting in the machine memory the 

different dimensional variables. In the previous one 

may be compelled to acknowledge the certain yet 

exceptionally unacceptable feedback of the time 

needed for taking care of various issues with 

haphazardly produced information on any accessible 

machine, which was moderate. Anyhow the present 

situation is truly diverse where we can create various 

issues of different sizes and explain then with no time, 

due to the quick processing office. An issue, which is 

basically not combinatorial, is the one where 

calculations for its answers are produced in the 

investigative way utilizing coherence ideas, yet 

physically it creates the impression that there ought to 

be an ideal answer for any self-assertive issue of this 

sort.  

Nonetheless, it is not generally conceivable to perceive 

a proposed arrangements, one can characterize a set of 

homogeneous mathematical statements with a few 

variables limited to be negative and ask whether the 

framework has arrangement. In the event that the 

answer is YES, the arrangement can be fundamentally 

being made strides. On the off chance that the answer 

is NO it is an ideal arrangement. In this way, different 

creators addressed this question one way or other by a 

couple of trials changing the arrangement without 

altering the minimax worth and eventually having the 

capacity to get an identifiable ideal arrangement. 

1.2 TRAVELLING SALESMAN PROBLEM: 

The origins of the travelling salesman problem are 

unclear. A handbook for travelling salesmen from 

1832 mentions the problem and includes example tours 

through Germany and Switzerland, but contains no 

mathematical treatment. 

Mathematical problems related to the Travelling 

salesman problem were treated in the 1800s by the 

Irish mathematician W. R. Hamilton and by the British 

mathematician Thomas Kirkman. Hamilton’s Icosian 

Game was a recreational puzzle based on finding a 

Hamiltonian cycle. The general form of the TSP 

appears to have been first studied by mathematicians 

during the 1930s in Vienna and at Harvard, notably by 

Karl Menger, who defines the problem, considers the 

obvious brute-force algorithm, and observes the non-

optimality of the nearest neighbor heuristic.In the 

1950s and 1960s, the problem became increasingly 

popular in scientific circles in Europe and the USA.  

Notable contributions were made by George Dantzig, 

Delbert Ray Fulkerson and Selmer M. Johnson at the 

RAND Corporation in Santa Monica, who expressed 

the problem as an integer linear program and 

developed the cutting planemethod for its solution. 

With these new methods they solved an instance with 

49 cities to optimality by constructing a tour and 

proving that no other tour could be shorter. In the 

following decades, the problem was studied by many 

researchers from mathematics, computer science, 

chemistry, physics, and other sciences. 

Richard M. Karp showed in 1972 that the Hamiltonian 

cycle problem was NP-complete, which implies the 

NP-hardness of TSP. This supplied a scientific 

explanation for the apparent computational difficulty 

of finding optimal tours.Great progress was made in 

the late 1970s and 1980, when Grötschel, Padberg, 

Rinaldi and other managed to exactly solve instances 

with up to 2392 cities, using cutting planes and 

branch-and-bound.In the 1990s, Applegate, Bixby, 

Chvátal, and Cook developed the program Concorde 

that has been used in many recent record solutions.  

Gerhard Reinelt published the TSPLIB in 1991, a 

collection of benchmark instances of varying 

difficulty, which has been used by many research 

groups for comparing results. In 2005, Cook and 

others computed an optimal tour through a 33,810-city 

instance given by a microchip layout problem, 

currently the largest solved TSPLIB instance. For 

many other instances with millions of cities, solutions 

can be found that are provably within 1% of optimal 

tour. 
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1.3 LEXI SEARCH METHOD: 

Lexicographic Search Approach is a systematized 

Branch and Bound approach, developed by Pandit in 

the context of solving a loading problem in1962i.e. 

Even before the Little et al came out with their Branch 

and Bound for the Travelling Salesman problem. This 

approach has been found to be fruitful in many of the 

Combinatorial Programming Problems.  

 

In principle, it is essentially similar to the Branch and 

Bound method as adopted by Little et al -1963 and it is 

worth mentioning that Branch and Bound can be 

viewed as a particular case of Lexicographic Search 

approach [Pandit -1965] The name lexicographic 

Search itself suggests that, the search for an optimal 

solution is done in a systematic manner, just as one 

searches for the meaning of a word in a dictionary and 

it is derived from Lexicography the science of 

effective storage and retrieval of information. This 

approach is based on the following grounds [Pandit-

1963].(i)It is possible to list all the solutions or related 

configurations in a structural hierarchy which also 

reflects a hierarchical ordering of the corresponding 

values of these configurations. 

 

(ii)Effective bounds can be set to the values of the 

objective function, when structural combinatorial 

restraints are placed on the Allowable 

configurations.The basic principle is described as 

follows [Rajbhongshi-1982]. Consider a set of symbols 

A= (1, 2, 3,......,n ) and the different possible sequences 

of length k of these symbols. Thus (1, 2, ...,k) is 

13a k-word formed from the alphabet of n symbols 1, 

2, 3 ..... ,n, the ith letter in the word is i A.  

 

For a particular problem, we can define all solutions of 

the problem as a subset of possible words with this 

alphabet and attach a value to each of the words. By 

defining analphabetic order on the elements of A, we 

will be able to define a unique ordered list of words of 

length not exceeding m, where m is finite. Words of 

length k <= m are called  

 

Incomplete words standing for the set or block of the 

(m-k)! Words of length k having the incomplete word 

(1, 2...k) as their leader. Numerical values can be 

associated for these words which have the property 

that as the word-length is increased by a concatenation 

i.e. attaching of more letters to the right of the word 

will monotonically non-decrease the values of words 

and an effective bound can be computed with relative 

case for the values of words belonging to a block 

defined by a leader. We can even generalize this, by 

considering m alphabets, A1, A2, A3...A m and 

defining the words (1, 2,......, m) where iAi, i = 

1, 2, ......, m. After this, searching for an optimum 

word is problem of finding the word of minimum 

value (in the case of a minimizing problem)in the Lexi 

Search defined by the solution of the problem. 

 

This concept can be better understood by considering 

the Travelling Salesman problem. Travelling Salesman 

problem is one of the oldest of the combinatorial 

problems and its structure is close to that of the 

Assignment Problem with a difference that the solution 

set of the Travelling Salesman problem is rather more 

restrictive. That is, the permutation (solution) matrix is 

a feasible solution to the Assignment Problem if the 

matrix is non-decomposable then it is a solution to 

TSP. 

 

2. TRAVELLING SALESMAN PROBLEM IN 

DIAGRAMMATIC APPROACH: 

A breakthrough came when George Dantzig, Ray 

Fulkerson, and Selmer Johnson (1954) published a 

description of a method for solving the TSP and 

illustrated the power of this method by solving an 

instance with 49 cities, an impressive size at that time. 

They created this instance by picking one city from 

each of the 48 states in the U.S.A. (Alaska and Hawaii 

became states only in 1959) and adding Washington, 

D.C.; the costs of travel between these cities were 

defined by road distances.  

Rather than solving this problem, they solved the 42-

city problem obtained by removing Baltimore, 

Wilmington, Philadelphia, Newark, New York, 
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Hartford, and Providence. As it turned out, an optimal 

tour through the 42 cities used the edge joining 

Washington, D.C. to Boston; since the shortest route 

between these two cities passes through the seven 

removed cities, this solution of the 42-city problem 

yields a solution of the 49-city problem. 

 

Figure 1.1: 48states of USA 

3.1 LEXISEARCH APPROACH: 

The travelling salesman problem with the following 

restrictions was solved by Scroggs and Tharp (1972) 

and Das Shila(l976). 

i. Some ordered pairs of cities are given such 

that the  salesman should  visit the  first city 

before the second;  this  is  called  the   

'precedence’ constraint  

ii. Some cities are specified as to be visited at 

specific steps from the headquarters; this is 

called the ‘fixed position’ constraint. 

In the present chapter we will study the following 

generalisation which can be  called  the   'Truncated 

Travelling Salesman Problem. 

There are n cities and N={1,2,3,….,n} The distance 

d(i, j) between any pair of cities (i,j) is known. A 

subset of the n cities HQ constitutes the potential 

places for setting up a headquarters. A salesman has to 

visit only m out of the n cities, with the restriction that 

his tour should include at least one city from HQ. The 

problem is to find a feasible tour of m cities with a 

minimum length.  

At the outset the above problem can be thought of as 

choosing all possible sets of m cities from N which 

includes a city from HQ and solve this as a m-city, 

travelling salesman problem. In this case the number 

of problems will be 

         n Cm-(n-h) Cm where h=[HQ] 

Obviously the number grows very high for even 

moderate values of m and n. Hence solving the above 

problems as a series of m-city salesman problems win 

be impracticable. In the sequel, we will develop a lexi-

search algorithm, based on 'Pattern Recognition 

Technique’, to solve this problem. 

The concepts and the algorithm developed will be 

illustrated by a numerical example for which n=8, 

m=5, and h=3.  Let N={1,2,3,4,5,6,7,8} and HQ = 

{1,4,7}.   

The distance matrix D is given as Table  3.1. 

 

d (i,j), i = 1,2,.,…,8, are taken as ∞, as they are 

irrelevant in calculating a tour for the salesman. 

Though d(i, j)e  are taken as  positive integers,  we  

could have as  well  chosen any real value. 

An n x n indicator matrix X = [x (i, j)= 0 or l] 

represents a trip-schedule for the salesman, in which 

x(i, j)=1 indicates that the salesman visits city J from 

city i, and  if there is no such trip, it is indicated by x 

(i, j) = 0. X is called a 'solution'.   

The indicator matrix X given by Table 3.2 is a solution 

to the numerical example, and represents the following 

trip-schedule. 
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The salesman visits cities 3 and 6 from city I, visits 

city 4.  from city 3, visits city 6 from city 4 and visits 

cities 1, 7 and  8 from city 6. Obviously,  this solution 

is not  a feasible solution since the cities 

{1,3,4,5,6,7,8} which are seven in number are 

involved in this trip-schedule, whereas he has to visit 

only m=5 cities, and also there is no tour connecting 

all these cities. The matrix X given by the Table 3,3 is 

also not  a feasible solution since there is no tour 

connecting the five cities {2,4,5,7,8}, which are in the 

trip-schedule defined by it. The matrix given in Table 

3.4 is a feasible solution, which involves the five cities 

{ 2,4,5,7,8} in the trip-schedule; there is a tour 

connecting these cities (8-5-7-2-4-8) and cities 4 and 

HQ. 

 

 
 

3.2 DEFINITION OF PATTERNS: 

An indicator matrix, which is associated with a trip- 

schedule, is called a 'pattern'. A pattern is said to be 

feasible if the matrix X is a feasible solution. The patte 

given by the tables 3.2 and 3.3    are not feasible 

whereas the pattern given by Table 3.4 is a feasible 

pattern. V(X), the value of the pattern X, is defined as 

V(X) = ∑ ∑ 𝒅(𝒊, 𝒋), 𝒙(𝒊, 𝒋)𝒎
𝒋=𝟏

𝒎
𝒊=𝟏  

The words “pattern”, “'pattern X”, matrix X’ and l 

word(which is defined later are used, in the sequel, 

synonymously V(X), for the pattern given by Table 3.2 

is 

V(X) = 40+38+ 23+48+34+16+41 = 239 

V(X) for the patterns given by Tables 3.3 and 3.4 are 

respectively 147 and 93. 

Each pattern X can also be represented by the set of all 

ordered pairs {(I, j)} for which x (i,j)=1 with the 

understanding that the value of the ordered (other) 

pairs is zero (vide 2.2).  

Thus the ordered pairs set {(x1, y1)}, i=1,2,……,7 

= {((l, 3), (1,6), (3,4), (4,6), (5,1), (5,7), (5,8)} 

represents the pattern X given by Table 3.2.    

Similarly, the sets of ordered pairs {(2,4), (4,2), (5,8), 

(7,8), (8,4)} and {(2,4), (4,8), (5,7), (7,2), (8,5)} 



 
 

 Page 1007 
 

represent respectively, the patterns given by Tables 3.3 

and  3.4. 

There are n ordered pairs in a matrix X. For 

convenience there are arranged in an increasing order 

of their corresponding distances and are indexed from 

1to n2 (vide 2.2). Let B=(l,2,...,n2)  be the set of n2 

indices. Let BD be the corresponding set of distances. 

If α, β€B and α<β, than BD(α) ≤ BD(β). 

Also lit the arrays R and C be the arrays of raw and 

column Indices of the ordered pairs represented by B 

and m be the array of the cumulative sums of the 

elements of BD. The value of the arrays B, BD, DD, R 

and C for the example is given as Table 3.5. 

To illustrate the entries in the Table, consider 12GB. It 

represents the ordered  pair  

(R(12), C(12)) = (5, 7).  Then BD (12) = d (5,7) = 15 

and DD (12) = 122 

 

4. APPLICATIONS OF TSP 

In this chapter we list some of the TSP problems in the 

literature. Application TSP and its solution using 

different methods and techniques are illustrated here in 

this chapter. 

Problem:  Given a complete undirected graph G=(V, 

E) that has non-negative integer cost  c(u, 

v) associated with each edge (u, v) in E, 

the 

problem is 

to find a 

hamiltonia

n cycle 

(tour) of G 

with 

minimum 

cost.      

A salespersons 

starts from the city 1 

and has to visit six cities (1 through 6) and must come 

back to the starting city i.e., 1. The first route (left 

side) 1→ 4 → 2 → 5 → 6 → 3 → 1 with the total 

length of 62 km, is a relevant selection but is not the 

best solution. 

The second route (right side) 1 → 2 → 5 → 4 

→ 6 → 3 → 1 represents the must better solution as 

the total distance, 48 km, is less than for the first 

route. Suppose c(A) denoted the total cost of the edges 

in the subset A subset of E i.e., 

c(A) = ∑u,vin A c(u, v) 

Moreover, the cost function satisfies the triangle 

inequality. That is, for all vertices u, v, w in V, w have 

c(u, w) ≤ c(u, v) + c(v, w). 

Note that the TSP problem is NP-complete even if we 

require that the cost function satisfies the triangle 

inequality. This means that it is unlikely that we can 

find a polynomial-time algorithm for TSP. 

4.1 TSP WITH THE TRIANGLE-INEQUALITY: 

When the cost function satisfies the triangle inequality, 

we can design an approximate algorithm for TSP that 

returns a tour whose cost is not more than twice the 

cost of an optimal tour. 

 

Outline of an APPROX-TSP-TOUR: 

First, compute a MST (minimum spanning tree) 

whose weight is a lower bound on the length of an 

optimal TSP tour. Then, use MST to build a tour 

whose cost is no more than twice that of MST's 

weight as long as the cost function satisfies triangle 

inequality. 

 

Operation of APPROX-TSP-TOUR: 

Let root r be a in following given set of points 

(graph). 
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Construct MST from root a using MST-PRIM (G, c, 

r). 

  

 List vertices visited in preorder walk. L = {a, b, c, h, 

d, e, f, g} 

 

Return Hamiltonian cycle. 

 
 

Optimal TSP tour for a given problem (graph) would 

be 

 

which is about 23% shorter. 

Theorem: APPROX-TSP-TOUR is a polynomial-time 

2-approximation algorithm for TSP with triangle 

inequality. 

Proof:   

1. We have already shown that APPROX-TSP-TOUR-

time. 

2. Let H* denote the optimal tour. Observe that a TSP 

with one edge removed is a spanning tree (not 

necessarily MST). 

It implies that the weight of the MST T is in lower 

bound on the cost of an optimal tour. 

        c(T) = c(H*) 

A "Full" walk, W, traverse every edge of MST, T, 

exactly twice. That is, 

        c(w) = 2c(T) 

which means  

        c(w) ≤ 2c(H*) 

and we have 

        c(w)/c(H*) ≤ p(n) = 2 

That is, the cost of walk, c(w), of the solution produced 

by the algorithm is within a factor of p(n)=2 of the cost 

c(H*) of an optimal solution. 
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4.2 THE GENERAL TSP: 

Without the triangle inequality, a polynomial time 

approximate algorithm with constant approximation 

ratio not exist unless P=NP. 

Theorem: If P ≠ NP, there is no polynomial-time 

algorithm with approximation ratio p≥1 for general 

TSP. 

Proof: 

Suppose to the contrary that there exists a polynomial-

time algorithm A for p≥1. 

Now, use algorithm A to solve instance of HAM-

CYCLE problem in polynomial-time. Since HAM-

CYCLE problem is NP-complete then by theorem 

If any NP-complete problem is polynomial-time 

solvable, then P=NP. Equivalently, if any problem in 

NP is not polynomial-time solvable than no NP-

complete problem is polynomial solvable. 

Solving HAM-CYCLE in polynomial-time implies 

that P=NP. 

Since the HAM-CYCLE is NP-complete and we 

assumed and we assumed that P≠NP, a contradiction is 

arise. 

Reduction: 

Let G = (V, E) be an instance of Hamiltonian cycle 

problem. We want to determine efficiently whether G 

contains a Hamiltonian cycle by making use of an 

algorithm A. We transform G into an instance of the 

TSP problem as follows: 

Consider a complete graph G`=(V, E`) where E` = {(u, 

v): u, v in V and u≠v}. Assign an integer cost to each 

edge in E` as follows: 

 

Because algorithm A is guaranteed to return a tour of 

cost no more than P times the cost of an optimal tour, 

if graph G contains a Hamiltonian cycle, then A must 

return it. If G has no Hamiltonian cycle, then A returns 

a tour of cost more than P|V|. Therefore, we can use 

algorithm A to solve Hamiltonian cycle problem in 

polynomial time and this is impossible unless P=NP. 

Example:  Heuristic algorithm for the Traveling 

Salesman Problem (T.S.P) . 

This is one of the most known problems ,and is often 

called as a difficult problem. A salesman must visit n 

cities, passing through each city only once, beginning 

from one of them which is considered as his base, and 

returning to it.  

The cost of the transportation among the cities 

(whichever combination possible) is given. The 

program of the journey is requested, that is the order of 

visiting the cities in such a way that the cost is the 

minimum. 

Let's number the cities from 1 to n ,and let city 1 be the 

city-base of the salesman.  Also let's assume that c(i,j) 

is the visiting cost from i to j. There can be 

c(i,j)<>c(j,i).Apparently all the possible solutions are 

(n-1)!.Someone could probably determine them 

systematically, find the cost for each and every one of 

these solutions and finally keep the one with the 

minimum cost. These requires at least (n-1)! steps. 

f for example there were 21 cities the steps required 

are (n-1)!=(21-1)!=20! steps. If every step required a 

msec we would need about 770 centuries of 

calculations.Apparently,the exhausting examination of 

all possible solutions is out of the question.Since we 

are not aware of any other quick algorithm that finds a 

best solution we will use a heuristic algorithm. 

According to this algorithm whenever the salesman is 

in town i he chooses as his next city,the city j for 

which the c(i,j) cost,is the minimum among all c(i,k) 

costs, where k are the pointers of the city the salesman 

has not visited yet (Applegate, D., Bixby, R., Chvatal, 

V., and Cook, W., 1998). 
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There is also a simple rule just in case more than one 

cities give the minimum cost,for example in such a 

case the city with the smaller k will be chosen.This is a 

greedy algorithm which selects in every step the 

cheapest visit and does not care whether this will lead 

to a wrong result or not. 

4.3 TSP IN C-LANGUAGE 

PSEUDO CODE: 

Input: Number of cities n and array of costs c(i,j) 

i,j=1,..n (We begin from city number 1) 

Output: Vector of cities and total cost. 

 (* starting values *) 

 C=0 

 cost=0 

 visits=0 

 e=1 (*e=pointer of the visited city) 

 (* determination of round and cost) 

 for r=1 to n-1 do 

o choose of pointer j with 

o minimum=c(e,j)=min{c(e,k);visits(k)=

0 and k=1,..,n} 

o cost=cost+minimum 

o e=j 

o C(r)=j 

 end r-loop 

 C(n)=1 

 cost=cost+c(e,1) 

We can find situations in which the TSP algorithm 

doesn’t give the best solution.We can also succeed on 

improving the algorithm.For example we can apply the 

algorithm t times for t different cities and keep the best 

round every time.We can also unbend the greeding in 

such a way to reduce the algorithm problem, that is 

there is no room for choosing cheep sides at the end of 

algorithm because the cheapest sides have been 

exhausted. 

CONCLUSION 

In the Lexisearch the structure of the search algorithm 

does not require huge dynamic memory during 

execution. Hence, particularly for larger problems 

Lexisearch appears to have relatively smaller space 

complexity. Also, Lexisearch allows parallelization of 

the algorithm as compared to the Branch and Bound 

algorithm. In terms of the complexity also Lexisearch 

appears quite competitive as reported by many 

investigators on the basis of simulation studies. Till 

recently, the approach of Lexisearch methodology is 

established in various fields of operations research and 

this method is being tried in parallel computing.  

This algorithm described a search based algorithm for 

finding optimal solution to the Travelling Salesperson 

Problem. This algorithm is deterministic and is always 

guaranteed to find an optimal solution, unlike the 

conventional dynamic programming or Branch and 

Bound algorithms, which require exponential space; 

the lexicographic algorithm required only a linear 

space with respect to the problem size. This algorithm 

is easily parallelizable and found that this method is 

superior to the existing methods. 
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