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Abstract 

In Very Large Scale Integration (VLSI) designs, 

Parallel prefix adders (PPA) have the better delay 

performance. This paper investigates four types of 

PPA’s (Kogge Stone Adder (KSA), Spanning Tree 

Adder (STA), Brent Kung Adder (BKA) and Sparse 

Kogge Stone Adder (SKA)). Additionally Ripple 

Carry Adder (RCA), Carry Lookahead Adder (CLA) 

and Carry Skip Adder (CSA) are also investigated. 

These adders are implemented in verilog Hardware 

Description Language (HDL) using Xilinx Integrated 

Software Environment (ISE) 14.2 Design Suite. 

These designs are implemented in Xilinx Spartan 3 

Field Programmable Gate Arrays (FPGA) and delays 

are measured,all these adder’s delay, power and area 

are investigated and compared finally. 

 

Key Words —parallel prefix adders; carry tree 

adders; FPGA; logic analyzer; delay; power. 

 

I. INTRODUCTION 

The binary addition is the basic arithmetic operation in 

digital circuits and it became essential in most of the 

digital systems including Arithmetic and Logic Unit 

(ALU), microprocessors and Digital Signal Processing 

(DSP). At present, the research continues on increasing 

the adder’s delay performance. In many practical 

applications like mobile and telecommunications, the 

Speed and power performance improved in FPGAs is 

better than microprocessor and DSP’s based solutions. 

Additionally, power is also an important aspect in 

growing trend of mobile electronics, which makes 

large-scale use of DSP functions. Because of the 

Programmability, structure of configurable logic 

blocks (CLB) and programming interconnects in 

FPGAs, Parallel prefix adders have better 

performance. The delays of the adders are discussed 

[1]. In this paper, above mentioned PPA’s and RCA 

and CSA are implemented and characterized on a 

Xilinx virtex 5 FPGA. Finally, delay, power and area 

for the designed adders are presented and compared. 

II. DRAWBACKS OF RIPPLE CARRY AND 

CARRY LOOKAHEAD ADDER In figure1, the first 

sum bit should wait until input carry is given, the 

second sum bit should wait until previous carry is 

propagated and so on. Finally the output sum should 

wait until all previous carries are generated. So it 

results in delay. 

 
Fig. 1. 4 bit ripple carry adder 

 

In order to reduce the delay in RCA (or) to propagate 

the carry in advance, we go for carry look ahead adder. 

Basically this adder works on two operations called 

propagate and generate The propagate and generate 

equations are given by. 

 
For 4 bit CLA, the propagated carry equations are 

given as 
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Equations (3),(4),(5) and (6) are observed that, the 

carry complexity increases by increasing the adder bit 

width. So designing higher bit CLA becomes 

complexity. In this way, for the higher bit of CLA’s, 

the carry complexity increases by increasing the width 

of the adder. So results in bounded fan-in rather than 

unbounded fan-in, when designing wide width adders. 

In order to compute the carries in advance without 

delay and complexity, there is a concept called Parallel 

prefix approach. 

 

III. DIFFERENCE BETWEEN PARALLEL-

PREFIX ADDERS AND OTHERS 

The PPA’s pre-computes generate and propagate 

signals are presented in [2]. Using the fundamental 

carry operator (fco), these computed signals are 

combined in [3].The fundamental carry operator is 

denoted by the symbol “ο”, 

 
For example, 4 bit CLA carry equation is given by 

 
For example, 4 bit PPA carry equation is given by 

 
Equations (8) and (9) are observed that, the carry look 

ahead adder takes 3 steps to generate the carry, but the 

bit PPA takes 2 steps to generate the carry. 

 

IV. PARALLEL-PREFIX ADDER STRUCTURE 

Parallel-prefix structures are found to be common in 

high performance adders because of the delay is 

logarithmically proportional to the adder width [2]. 

PPA’s basically consists of 3 stages 

• Pre computation 

• Prefix stage 

• Final computation 

 

The Parallel-Prefix Structure is shown in figure 2. 

 
 

A. Pre computation 

In pre computation stage, propagates and generates are 

computed for the given inputs using the given 

equations (1) and (2). 

 

B. Prefix stage 

In the prefix stage, group generate/propagate signals 

are computed at each bit using the given equations. 

The black cell (BC) generates the ordered pair in 

equation (7), the gray cell (GC) generates only left 

signal, following [2]. 

 

(BC) generates the ordered pair in equation (7), the 

gray cell (GC) generates only left signal, following [2]. 

 
More practically, the equations (10) and (11) can be 

expressed using a symbol “o “denoted by Brent and 

Kung. Its function is exactly the same as that of a 

black cell i.e. 
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The "o" operation will help make the rules of building 

prefix structures. 

 

C. Final computation 

In the final computation, the sum and carryout are the 

final output. 

 
Where “-1” is the position of carry-input. The 

generate/propagate signals can be grouped in different 

fashion to get the same correct carries. Based on 

different ways of grouping the generate/propagate 

signals, different prefix architectures can be created. 

Figure 3 shows the definitions of cells that are used in 

prefix structures, including BC and GC. For analysis 

of various parallel prefix structures, see [2], [3] &[4]. 

The 16 bit SKA uses black cells and gray cells as well 

as full adder blocks too. This adder computes the 

carries using the BC’s and GC’s and terminates with 4 

bit RCA’s. Totally it uses 16 full adders. The 16 bit 

SKA is shown in figure 4. In this adder, first the input 

bits (a, b) are converted as propagate and generate (p, 

g). Then propagate and generate terms are given to 

BC’s and GC’s. The carries are propagated in advance 

using these cells. Later these are given to full adder 

blocks. Another PPA is known as STA is also tested 

[6]. Like the SKA, this adder also terminates with a 

RCA. It also uses the BC’s and GC’s and full adder 

blocks like SKA’s but the difference is the 

interconnection between them [7].The 16 bit STA is 

shown in the below figure 5. 

 
Fig. 4. 16 bit sparse kogge-Stone adder 

 

 
Fig. 5. 16 bit spanning tree adder 
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KSA is another of prefix trees that use the fewest logic 

levels. A 16-bit KSA is shown in Figure 6. The 16 bit 

kogge stone adder uses BC’s and GC’s and it won’t 

use full adders. The 16 bit KSA uses 36 BC’s and 15 

GC’s. And this adder totally operates on generate and 

propagate blocks. So the delay is less when compared 

to the previous SKA and STA. The 16 bit KSA is 

shown in figure 6.In this KSA, there are no full adder 

blocks like SKA and STA [5] & [6]. Another carry tree 

known as BKA which also uses BC’s and GC’s but 

less than the KSA. So it takes less area to implement 

than KSA. The 16 bit BKA uses 14 BC’s and 11 GC’s 

but kogge stone uses 36 BC’s and 15 GC’s. So BKA 

has less architecture and occupies less area than KSA. 

The 16 bit BKA is shown in the below figure 7. 

 
Fig. 6. 16 bit kogge stone adder 

 

BKA occupies less area than the other 3 adders called 

SKA, KSA, STA. This adder uses limited number of 

propagate and generate cells than the other 3 adders. It 

takes less area to implement than the KSA and has less 

wiring congestion. 

 

The operation of the 16 bit brent kung adder is given 

below [3]. This adder uses less BC’s and GC’s than 

kogge stone adder and has the better delay 

performance which is observed in agilent 1692A logic 

analyzer. These adders are implemented in verilog 

HDL in Xilinx 13.2 ISE design suite and then verified 

using Xilinx virtex 5 FPGA through chip scope 

analyzer [7], [8] and [9]. And these were tested using 

Agilent 1692A logic analyzer. This allows to measure 

the adder delays directly. The Agilent 1692A logic 

analyzer is integrated to PC(Personal Computer) 

through Xilinx virtex 5 FPGA [10]. The test setup is 

depicted in the figure 10. 

 

V. DISCUSSION OF RESULTS 

The delays observed for adder designs from synthesis 

reports in Xilinx ISE 14.2 synthesis reports are shown 

in Figure11. 

Sparse Tree Adder wave form,area & delay 
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Brent Kung Adder wave form,area & delay. 

 

Spanning Tree Adder wave form, area & delay. 

Kogge Stone Adder wave form, area & delay. 

 

Sparse-Kogge Stone Adder wave form, area & delay. 

 

The area of the adder designs is measured in terms of 

look up tables (LUT) and input output blocks (IOB) 

taken for Xilinx Spartan 6 FPGA is plotted in the 

figure 13. As per reference [1], ISE software doesn’t 

give exact delay of the adders because it is not able to 

analyze the critical path over the adder [1]. From the 

figure 11, the CSA has more delay when compared to 

other adders. Out of all adders, RCA has less delay. 

SKA adder and BKA has about the same delay, where 

as KSA and STA has same delay. According to the 

synthesis reports, out of four parallel prefix adders, 

Sparse - KOGGE STONE adder  has better delay. 

 

VI. CONCLUSION 

From the study of analysis done on area and power, we 

have concluded that the efficiency is improved by 5.77 

% in ours delay for RCA, when compared to [1] and 

for KSA it is improved by 19.28 % when compared 

with [1]. 
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