
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 116

Abstract:

Cloud database environments are very attractive for the
deployment of large scale applications due totheir highly
scalable and available infrastructure. The main reason for
the users deploying different types of applications in the
cloud is its pay-for-use cost model. This survey contains
the most prominent concurrency control protocols that
can be used in the encrypted cloud database. The degree
of data consistency and cost requirements varies accord-
ing to the concurrency control protocols.

Index Terms:

Cloud; database; data consistency; concurrency control.

1. INTRODUCTION:

Cloud based services are becoming popular as they fo-
cus on high availability and scalability at low cost. While
providing high availability and scalability, placing critical
data to cloud poses many security issues. For avoiding
these security issues the data are stored in the cloud da-
tabase in an encrypted format. The encrypted cloud data-
base allows the execution of SQL operations by selecting
the encryption schemes that support SQL operators. En-
crypted cloud database permits different types of accesses
such as distributed, concurrent, and independent. One of
the architecture that supports these three kinds of access is
SecureDBaaS, which was proposed by Luca Ferretti et al
[1]. The SecureDBaaS architecture supports multiple and
independent clients to execute concurrent SQL operations
on encrypted data. Data consistency should be maintained
by leveraging concurrency control mechanisms used in
DBMS engines.This survey explains the various concur-
rency control protocols that can be used in the encrypted
cloud database. The applications need 1SR if data is rep-
licated.

Hence, to guarantee the merits of cloud, it is essential to
provide high scalability, availability, low cost and data
with strong consistency, which is able to dynamically
adapt to system conditions. Self-optimizing one copy se-
rializability (SO-1SR) is the concurrency control proto-
col that dynamically optimizes all stages of transaction
execution on replicated data in the cloud database [2].
Current DBMSs supported by cloud providers allows re-
laxed consistency guarantees which in turn increase the
design complexity of applications [3].The second con-
currency control protocol is the snapshot isolation (SI)
which provides increased concurrency in cloud environ-
ment when compared to 1SR [4]. Transactions are read
from the snapshot, reads are never blocked because of
write locks which in turn increases concurrency. SI does
not allow many of the inconsistencies, but allows write
skew anomalies. SI allows transaction inversions. To
avoid transaction inversions strong consistency guaran-
tee is required, i.e. strong SI (SSI).The third concurrency
control protocol is the session consistency (SC) [5]. Ses-
sion consistency is a different variety of eventual consis-
tency. The system provides read your writes consistency
inside each session. Session consistency is at a low cost
while considering response time and transaction cost.The
cost based concurrency control in the cloud is the C3 i.e.
cost-based adaptive concurrency control in cloud [6]. C3
dynamically switch between strong consistency level and
weak consistency level of transactions in a cloud database
according to the cost at runtime. It is built on the top of
1SR and SSI.

2. SECUREDBAAS:

SecureDBaaS (Secure database as a service) architec-
ture proposed by Luca Ferretti et al supports multiple
clients and clients which are geographically distributed
to execute the independent and concurrent operation on
encrypted data in the remote database [1]. SecureDBaaS
also guarantees data confidentiality and cloud level con-
sistency.

Parallel and Distributed Mechanisms for Data Access in
Enciphered Clouds

T.Supraja Pavithra
M.Tech Student,

Department of CSE,
B V Raju Institute of Technology,

Narsapur, India.

Mrs.J.Manjula
Assistant Professor,
Department of CSE,

B V Raju Institute of Technology,
Narsapur, India.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 117

This architecture eliminates the intermediate server be-
tween the cloud database and client in order to provide
availability and scalability [7].SecureDBaaS is the archi-
tecture that supports the concurrent execution of opera-
tions in the encrypted cloud database. The existing proxy
based architecture constraints the multiple and distributed
clients to access data concurrently from the same data-
base. The data consistency during the concurrent access
of data and metadata can be assured by using some iso-
lation mechanisms or the concurrency control protocols
in the cloud database. SecureDBaaS allows the execution
of concurrent SQL operations (INSERT, DELETE, SE-
LECT, UPDATE) from multiple and distributed clients.
In order to provide data confidentiality the tenant data and
metadata should be in an encrypted format. For this rea-
son, clients convert plaintext SQL statements into SQL
statements that support transactions and isolation mecha-
nisms allowed in cloud databases [8]. The solutions for
the consistency issues lies in the five contexts: (1) data
manipulation (2) modification of structures (3) altering
table (4) modification of secure type (5) unrestricted op-
erations.

2.1. Architecture design:

The architecture design of SecureDBaaS consists of one
or more client machines with SecureDBaaS installed and
cloud database. This client is responsible for the connec-
tion of a user to the cloud DBaaS to perform SQL opera-
tions. The SecureDBaaS manages plaintext data, metada-
ta, encrypted data and encrypted metadata. The plaintext
data includes the data user wants to save in cloud DBaaS
[9]. In order to avoid the confidentiality issues, multiple
cryptographic approaches are used to convert plaintext
data to encrypted form for storing in cloud database. The
metadata includes information needed to encrypt or de-
crypt data. Moreover, metadata is also stored in an en-
crypted format [10].

Encryption Schemes:

The encryption schemes supported by SecureDBaaS [11]
are:(1) Plain: it supports the storage of unencrypted data
in the cloud and allows all types of SQL operations. (2)
OPE: order preserving encryption permits the execution
of inequality and range queries on encrypted data. (3)Det:
it permits the execution of equality and aggregation op-
erators on encrypted data.

(4)Random: it assures highest confidentiality level. But it
restricts all SQL operators.

2.2. Implementation:
SecureDBaaS client consists of five compo-
nents:

Operation parser software:
Is responsible for the conversion of receiving plain text
SQL command into intermediate form which is processed
later by other modules.

Encryption engine:
Is responsible for all kinds of encryption and decryption
operations specified in the metadata of SecureDBaaS.

Metadata manager:
it manages metadata local copies and assures its consis-
tency.

Query writer:
it translates the query in intermediate form from the op-
eration parser into SQL statements that can be executed
by the cloud database over encrypted data.

Database connector:
it acts as an interface between client and remote DBMS.

3.CONCURRENCY CONTROL PROTO-
COLS:

In what follows, we briefly present the most prominent
concurrency control protocols that can be used in cloud
database.

3.1. Self-optimizing One Copy Serializability
(SO-1SR):

1SR is the strongest and well known correctness criterion
for applications that are newly deployed in the cloud. It
assures the serializable execution of concurrent transac-
tions and a one copy view of the data. The most common-
ly used approaches to implement 1SR is to use lock based
protocols such as strict two-phase locking (S2PL) for pro-
viding serializable transaction execution and two-phase
commit (2PC) for synchronous updating all replicas.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 118

3.1.1. Transaction model:

In a system providing 1SR, each transaction which writes
to a data object must update all copies of the data ob-
ject. In case of update transactions the replicated data in-
creases the response time and thus decreases the overall
scalability of the system. In order to exploit the merits of
the cloud, it is essential to provide scalability, availability,
low cost and strongly consistent data management. Under
distributed systems, it is not possible to provide consis-
tency and availability. The stronger consistency level de-
creases the availability and scalability.

In cloud environments, the cost of guaranteeing a certain
consistency level on top of replicated data is to be con-
sidered. Strong consistency is costly; on the other hand,
weak consistency is cheaper, but may lead to high opera-
tional costs of compensating the effects of anomalies and
access to stale data. The first generation cloud DBMS’s
provide on the weak consistency in order to provide maxi-
mum scalability and availability. It is sufficient for satis-
fying requirements related to consistency of simple cloud
applications.

However, more sophisticated like web shops, online stores
and credit card services requires strong consistency lev-
els. The advantages of cloud such as availability and scal-
ability are not yet exploited by existing commercial and
open source DBMS’s which provide strong consistency
[12].SO-1SR (self-optimizing 1SR) is a novel protocol
for replicated data in a cloud that dynamically optimize
all phases of transaction executions. System model of SO-
1SR assumes that applications are built on the top of a
cloud data environment.

3.1.2. Implementation:

The SO-1SR middleware should be present at each rep-
lica node. The transactions that are submitted by the client
to the application servers are forwarded to the SO-1SR
middleware for optimal execution. The SO-1SR is based
on a fully replicated system and flat transaction model.
Protocols like 2PC or Paxos are needed to provide strong
consistency guarantees. The main goal of SO-1SR is to
decrease latency by using dynamic optimization tech-
nique at different phases of transaction life cycle, not to
replace protocols like 2PC or Paxos. .

3.2. Snapshot Isolation:

The transactional guarantees of SI are weaker than 1SR,
such that the database system can achieve increased con-
currency by relaxing isolation requirements on trans-
action. In SI, the transaction attempting read is never
blocked. The tradeoff between transaction isolation and
performance is that higher degrees of transaction isolation
assure fewer anomalies. Anomalies avoided by 1SR are
also avoided in SI. Under SI, write skew anomaly is pos-
sible if two transactions concurrently update one or more
common data item. For example, consider two transac-
tions Tm and Tn. Transaction Tm reads data items p and
q and then updates concurrently with other transaction
Tn that reads data item p and q and then updates q. Here
transaction Tm and Tn do not have a write-write conflict
because none of the transaction updates a common data
item.

Different variations of SI exist for replicated systems like
cloud which provide different consistency guarantees. In
a lazily synchronized replicated database system; if two
transactions Ts and Tv do not have a write–write conflict
under SI, then their updates may be committed in the or-
der Ts followed by Tv at a site S1 but in reverse order at
another site S2 in which each site individually guarantees
SI. In this case, consider a transaction Tk that reads x and
y at site S1 and view database state from the commit of
Ts will not view this same database state if it were to be
executed on the database replica at site S2.But this kind
of replica in consistency will not occur in a centralized
database system that guarantees SI.

SI was introduced by Berenson et al [13]. SI is defined
as; it does not allow dirty reads, dirty writes, non-repeat-
able reads, phantoms or lost updates. Write skew anoma-
lies are possible in SI. By the definition of SI, when the
transaction starts the system assigns a transaction Ta start
timestamp called start (T). The database state seen by T
is determined by start (T). The system can choose any
time less than or equal to the actual start time of T to start
(T). The update transactions made by Tl that commit after
start (T) will not be visible to T. Only update transaction
that commits before start (T) will be visible to T. Each
transaction T is able to see its own updates are also a re-
quirement in SI. Thus, if T updates a database item and
reads that item, then T will see the updating even though
the update occurred after the start (T).

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 119

3.2.1. Transaction model:

Commit timestamp, commit (T) is assigned to a transac-
tion when a transaction is to commit. The time commit
(T) is more recent than any other start or commit time-
stamp assigned to any transaction. If no other commit-
ted transaction Tk with lifespan [start (Tk), commit (Tk)]
that overlaps with a T’s lifespan of [start (T), commit (T)]
write data that T has also written then only T commits.
Otherwise, to prevent lost updates T is getting aborted.
This technique of preventing lost updates is called the
first-committer-wins (FCW) rule.Transaction inversions
are possible in SI, i.e. for every pair of transactions T1
and T2, if T2 executes after T1 then T1 will view T1’s
updates. This is because the actual start time of T2 can be
larger than that of a start (T2). In particular, if T2 starts
after T1 has finished, then T2 will see a database state that
does not contain the effects of T1. In order to prevent these
kinds of transaction inversions, strong SI is introduced.In
the definition of strong SI (SSI), if for every pair of com-
mitted transactions Tp and Tq in transaction history TH
such that Tp’s commit precedes the first operation of Tq,
start (Tq) > commit (Tp) and it is SI then we can say that
the transaction execution history TH is strong SI.

3.2.2. Implementation:

The decentralized model of SI based transactions consists
of some mechanisms such as: (a) Keeping a consistent,
committed snapshot for reading (b) a global sequencer
is used for arranging the transactions by allocating com-
mit timestamps (c) detection of write-write anomalies in
concurrent transactions and(d) atomically commit the up-
dates and make them durable. In the model, each transac-
tion goes through a sequence of phases during execution.
The main phase is the active phase in which all read/write
on data item is performed in this phase. The remaining
phases are part of the commit of the transaction. Valida-
tion phase is required for detecting the conflicts among
transactions that are executed concurrently.

3.3. Session Consistency:

Session Consistency is considered to be the minimum
consistency level in a distributed environment that does
not result in complexities for application developers. Un-
der Session Consistency, the application will not see its
own updates and may get inconsistent data from succes-
sive accesses. The key

idea is that, all data does not need the same level of con-
sistency. There is a term called consistency rationing i.e.
the data is divided into three categories A, B, C and each
type of data is treated differently depending on the con-
sistency level provided.The category A contains data in
which consistency violations may result in large penalty
costs. The category B includes data where the consistency
requirements change over time.

Category C comprises data in which inconsistency is ac-
ceptable. Session consistency considers data under cat-
egory C. C category is always a preferred category for
placing data in the cloud database [14]. By considering a
transaction cost and response time the session consisten-
cy is very cheap; because only few messages are needed
as compared to strong consistency guarantees. The per-
formance level can be increased by providing extensive
caching mechanisms which in turn lowers the cost.

3.3.1. Transaction model:

By sessions, the client connects to the system. The system
assures read your own writes monotonicity as the session
ends. A new session cannot view the writes of the last
executed session, immediately. The updates in sessions
of different clients are not always visible to each other.
As the time passes, the system converges and acquires
consistency called eventual consistency. The conflicts for
concurrent updates in the C category data depends upon
the type of update. In case of commutative and non-com-
mutative updates, the former is solved by the last update
wins and the latter is solved by performing the updates
one after the other. But the inconsistencies are possible in
both cases.

3.3.2. Implementation:

The implementation is done on top of the Amazon’s
simple storage service (S3). The key idea is, each page’s
highest commit timestamp is recorded that is cached by
the server in the past. The server can check if a server
receives an outdated copy of the page from S3 and can
update the page from S3. The session consistency can be
guaranteed by forwarding all requests from the same cli-
ent to the same server under a session. The session ID is
used for the routing mechanism and the request is redi-
rected accordingly.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 118

3.1.1. Transaction model:

In a system providing 1SR, each transaction which writes
to a data object must update all copies of the data ob-
ject. In case of update transactions the replicated data in-
creases the response time and thus decreases the overall
scalability of the system. In order to exploit the merits of
the cloud, it is essential to provide scalability, availability,
low cost and strongly consistent data management. Under
distributed systems, it is not possible to provide consis-
tency and availability. The stronger consistency level de-
creases the availability and scalability.

In cloud environments, the cost of guaranteeing a certain
consistency level on top of replicated data is to be con-
sidered. Strong consistency is costly; on the other hand,
weak consistency is cheaper, but may lead to high opera-
tional costs of compensating the effects of anomalies and
access to stale data. The first generation cloud DBMS’s
provide on the weak consistency in order to provide maxi-
mum scalability and availability. It is sufficient for satis-
fying requirements related to consistency of simple cloud
applications.

However, more sophisticated like web shops, online stores
and credit card services requires strong consistency lev-
els. The advantages of cloud such as availability and scal-
ability are not yet exploited by existing commercial and
open source DBMS’s which provide strong consistency
[12].SO-1SR (self-optimizing 1SR) is a novel protocol
for replicated data in a cloud that dynamically optimize
all phases of transaction executions. System model of SO-
1SR assumes that applications are built on the top of a
cloud data environment.

3.1.2. Implementation:

The SO-1SR middleware should be present at each rep-
lica node. The transactions that are submitted by the client
to the application servers are forwarded to the SO-1SR
middleware for optimal execution. The SO-1SR is based
on a fully replicated system and flat transaction model.
Protocols like 2PC or Paxos are needed to provide strong
consistency guarantees. The main goal of SO-1SR is to
decrease latency by using dynamic optimization tech-
nique at different phases of transaction life cycle, not to
replace protocols like 2PC or Paxos. .

3.2. Snapshot Isolation:

The transactional guarantees of SI are weaker than 1SR,
such that the database system can achieve increased con-
currency by relaxing isolation requirements on trans-
action. In SI, the transaction attempting read is never
blocked. The tradeoff between transaction isolation and
performance is that higher degrees of transaction isolation
assure fewer anomalies. Anomalies avoided by 1SR are
also avoided in SI. Under SI, write skew anomaly is pos-
sible if two transactions concurrently update one or more
common data item. For example, consider two transac-
tions Tm and Tn. Transaction Tm reads data items p and
q and then updates concurrently with other transaction
Tn that reads data item p and q and then updates q. Here
transaction Tm and Tn do not have a write-write conflict
because none of the transaction updates a common data
item.

Different variations of SI exist for replicated systems like
cloud which provide different consistency guarantees. In
a lazily synchronized replicated database system; if two
transactions Ts and Tv do not have a write–write conflict
under SI, then their updates may be committed in the or-
der Ts followed by Tv at a site S1 but in reverse order at
another site S2 in which each site individually guarantees
SI. In this case, consider a transaction Tk that reads x and
y at site S1 and view database state from the commit of
Ts will not view this same database state if it were to be
executed on the database replica at site S2.But this kind
of replica in consistency will not occur in a centralized
database system that guarantees SI.

SI was introduced by Berenson et al [13]. SI is defined
as; it does not allow dirty reads, dirty writes, non-repeat-
able reads, phantoms or lost updates. Write skew anoma-
lies are possible in SI. By the definition of SI, when the
transaction starts the system assigns a transaction Ta start
timestamp called start (T). The database state seen by T
is determined by start (T). The system can choose any
time less than or equal to the actual start time of T to start
(T). The update transactions made by Tl that commit after
start (T) will not be visible to T. Only update transaction
that commits before start (T) will be visible to T. Each
transaction T is able to see its own updates are also a re-
quirement in SI. Thus, if T updates a database item and
reads that item, then T will see the updating even though
the update occurred after the start (T).

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 119

3.2.1. Transaction model:

Commit timestamp, commit (T) is assigned to a transac-
tion when a transaction is to commit. The time commit
(T) is more recent than any other start or commit time-
stamp assigned to any transaction. If no other commit-
ted transaction Tk with lifespan [start (Tk), commit (Tk)]
that overlaps with a T’s lifespan of [start (T), commit (T)]
write data that T has also written then only T commits.
Otherwise, to prevent lost updates T is getting aborted.
This technique of preventing lost updates is called the
first-committer-wins (FCW) rule.Transaction inversions
are possible in SI, i.e. for every pair of transactions T1
and T2, if T2 executes after T1 then T1 will view T1’s
updates. This is because the actual start time of T2 can be
larger than that of a start (T2). In particular, if T2 starts
after T1 has finished, then T2 will see a database state that
does not contain the effects of T1. In order to prevent these
kinds of transaction inversions, strong SI is introduced.In
the definition of strong SI (SSI), if for every pair of com-
mitted transactions Tp and Tq in transaction history TH
such that Tp’s commit precedes the first operation of Tq,
start (Tq) > commit (Tp) and it is SI then we can say that
the transaction execution history TH is strong SI.

3.2.2. Implementation:

The decentralized model of SI based transactions consists
of some mechanisms such as: (a) Keeping a consistent,
committed snapshot for reading (b) a global sequencer
is used for arranging the transactions by allocating com-
mit timestamps (c) detection of write-write anomalies in
concurrent transactions and(d) atomically commit the up-
dates and make them durable. In the model, each transac-
tion goes through a sequence of phases during execution.
The main phase is the active phase in which all read/write
on data item is performed in this phase. The remaining
phases are part of the commit of the transaction. Valida-
tion phase is required for detecting the conflicts among
transactions that are executed concurrently.

3.3. Session Consistency:

Session Consistency is considered to be the minimum
consistency level in a distributed environment that does
not result in complexities for application developers. Un-
der Session Consistency, the application will not see its
own updates and may get inconsistent data from succes-
sive accesses. The key

idea is that, all data does not need the same level of con-
sistency. There is a term called consistency rationing i.e.
the data is divided into three categories A, B, C and each
type of data is treated differently depending on the con-
sistency level provided.The category A contains data in
which consistency violations may result in large penalty
costs. The category B includes data where the consistency
requirements change over time.

Category C comprises data in which inconsistency is ac-
ceptable. Session consistency considers data under cat-
egory C. C category is always a preferred category for
placing data in the cloud database [14]. By considering a
transaction cost and response time the session consisten-
cy is very cheap; because only few messages are needed
as compared to strong consistency guarantees. The per-
formance level can be increased by providing extensive
caching mechanisms which in turn lowers the cost.

3.3.1. Transaction model:

By sessions, the client connects to the system. The system
assures read your own writes monotonicity as the session
ends. A new session cannot view the writes of the last
executed session, immediately. The updates in sessions
of different clients are not always visible to each other.
As the time passes, the system converges and acquires
consistency called eventual consistency. The conflicts for
concurrent updates in the C category data depends upon
the type of update. In case of commutative and non-com-
mutative updates, the former is solved by the last update
wins and the latter is solved by performing the updates
one after the other. But the inconsistencies are possible in
both cases.

3.3.2. Implementation:

The implementation is done on top of the Amazon’s
simple storage service (S3). The key idea is, each page’s
highest commit timestamp is recorded that is cached by
the server in the past. The server can check if a server
receives an outdated copy of the page from S3 and can
update the page from S3. The session consistency can be
guaranteed by forwarding all requests from the same cli-
ent to the same server under a session. The session ID is
used for the routing mechanism and the request is redi-
rected accordingly.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 120

3.3. Cost-Based Adaptive Concurrency Con-
trol (C3):

Cost plays an important role in the cloud environment
along with the performance [15]. The strongconsistency
leads to high cost, whereas weak consistency leads to
high operational costs [16]. In C3 approach, a consistency
rationing model is used which categorized the data into
three: the first category contains data which require ISR,
the second category data require SC and the third cate-
gory data handled with adaptive consistency. At the data
level, specific policy will be defined based on that policy
consistency level is selected between 1SR and SC at the
time of running. Moreover, C3 is implemented on the top
of 1SR, SC and SSI concurrency protocols by utilizing
the resources provided by the cloud providers.The update
anywhere and full replication procedure are the basis for
the C3 system model. The updating of all replicas will be
carried out in ISR and SSI transactions using 2PC, while
SC transactions only commits at the remote local replicas.
The C3 model does not introduce any hindrance for the
replication strategy. Each and every replica in the system
is known to all other replicas. The C3 procedure uses an
adaptive layer, which allows the dynamic switching be-
tween the different CCPs at runtime. Thus the reduction
of operational costs and transaction response time is pos-
sible [17].

3.4.1. Transaction model:

An object-id is used for identifying an object uniquely for
performing operations under transactions. Only read op-
erations are included in the read-only transaction, where
update transactions should contain minimum one update
operation. In the transaction model of C3, provides a
unique timestamp for transactions at the start and commit
time based on their arrival order. The highest start time-
stamp is assigned to the transaction which started more
recently and the highest timestamp for commit is the most
recently committed transaction.

3.4.2. Implementation:

All the middleware components are implemented as web
services and allow deployment in possible configurations.
The components of C3 middleware are: (1)Transaction
Manager: Manages every transactions and responsible
for the implementation of C3 protocol. (2)Site Manager:
provision of an abstract layer for the management of local
data access.

(3)Timestamp Manager: provides timestamps for transac-
tions based on the arrival order and the management of
timestamps.
(4)Lock Manager: Is responsible for management of
locks.
(5)Replica Manager: provides replica management.
(6)Freshness Manager: manages the freshness data.

Under logical architecture of C3, each replica includes a
Transaction Manager and Site Manager. Moreover, each
replica also includes a local datastore where the Site
Manager utilizes the datastore for managing real data and
Transaction Manager stores data regarding its functional-
ity.Avoidance of Anomalies:

The transactions with read and write sets are required for
avoiding anomalies under consistency mixes. The imple-
mentation of C3 consists of different types of CCPs, when
the different concurrent transactions, access the same data
item with different consistency levels for the reasons such
as:

 First, the design of the application supports the access
of the same data item by transactions with different con-
sistency levels. Second, consistency requirements will be
different for different applications that use the same data
[18]. Third, based on the cost model different replicas ex-
ecute transactions adaptively that accesses the same data
object [19]. The possible inconsistencies are:

(1)Inconsistencies arise because of the isolation level be-
tween transactions that run on same CCP.

(2)Inconsistencies arise because of the isolation level be-
tween transactions that run on different CCP.

(3)Data staleness is also a reason for the inconsistency.

We analyze these concurrency control protocols in Table
1.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 121

4. CONCLUSION:

In this paper, the different concurrency controls in the en-
crypted cloud database such as SO-ISR, SI, SC and C3 is
discussed. These protocols provide different data consis-
tency levels at different costs. The concurrency and perfor-
mance varies according to the concurrency protocols used
in the cloud environment. The architecture which supports
the distributed, concurrent and independent access to the
encrypted cloud database is SecureDBaaS. SecureDBaaS
uses the isolation mechanisms for providing concurrent
access to its geographically distributed clients.

Acknowledgments:

I am thankful to my guide Dr. M. NewlinRajkumar& Co-
guide Dr. V. Venkatesakumar for their guidance and en-
couragement for the paper work.

REFERENCES:

[1]L. Ferretti, M. Colajanni, and M. Marchetti, “Distrib-
uted, Concurrent, and Independent Access to Encrypted
Cloud Databases,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 2, pp. 437–446, Feb. 2014.

[2]I. Fetai and H. Schuldt, “SO-1SR: towards a self-opti-
mizing one-copy serializability protocol for data manage-
ment in the cloud,” in Proceedings of the fifth interna-
tional workshop on Cloud data management, 2013, pp.
11–18.

[3]C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich, “Relation-
al cloud: A database-as-a-service for the cloud,” 2011.

[4]K. Daudjee and K. Salem, “Lazy database replica-
tion with snapshot isolation,”inProceedings of the 32nd
international conference on Very large data bases, 2006,
pp. 715–726.

[5]T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann,
“Consistency Rationing in the Cloud: Pay only when it
matters,” Proc. VLDB Endow., vol. 2, no. 1, pp. 253–264,
2009.

[6]I. Fetai and H. Schuldt, “Cost-based data consistency
in a data-as-a-service cloud environment,” in Cloud Com-
puting (CLOUD), 2012 IEEE 5th International Confer-
ence on, 2012, pp. 526–533.

[7]Y. Lu and G. Tsudik, “Enhancing data privacy in the
cloud,” in Trust Management V, Springer, 2011, pp. 117–
132.

[8]L. Ferretti, M. Colajanni, and M. Marchetti, “Sup-
porting security and consistency for cloud database,”
in Cyberspace Safety and Security, Springer, 2012, pp.
179–193.

[9]H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing
database as a service,” in Data Engineering, 2002.
Proceedings. 18th International Conference on, 2002, pp.
29–38.

Table 1: Comparison of different concurrency control protocols

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 122

[10]K. P. Puttaswamy, C. Kruegel, and B. Y. Zhao, “Sil-
verline: toward data confidentiality in storage-intensive
cloud applications,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing, 2011, p. 10.

[11]L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchet-
ti, “Security and confidentiality solutions for public cloud
database services,” in SECURWARE 2013, The Seventh
International Conference on Emerging Security Informa-
tion, Systems and Technologies, 2013, pp. 36–42.

[12]L. Ferretti, M. Colajanni, M. Marchetti, and A. E.
Scaruffi, “Transparent Access on Encrypted Data Dis-
tributed over Multiple Cloud Infrastructures,” in CLOUD
COMPUTING 2013, The Fourth International Confer-
ence on Cloud Computing, GRIDs, and Virtualization,
2013, pp. 201–207.

[13]J. G. U. Berkeley and others, “A Critique of ANSI
SQL Isolation Levels,” Online Verfügbar Http131107,
vol. 65.

[14]A. J. Feldman, W. P. Zeller, M. J. Freedman, and E.W.
Felten, “SPORC: Group Collaboration using Untrusted
Cloud Resources.,” in OSDI, 2010, vol. 10, pp. 337–350.

[15]M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.
Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and others, “A view of cloud computing,” Com-
mun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[16]W. Jansen, T. Grance, and others, “Guidelines on
security and privacy in public cloud computing,” NIST
Spec. Publ., vol. 800, p. 144, 2011.

[17]C. Almond, “A practical guide to cloud computing se-
curity,” White Pap. Accent. Microsoft, 2009.

[18]S. Hildenbrand, D. Kossmann, T. Sanamrad, C. Bin-
nig, F. Faerber, J. Woehler, D. Kossmann, and D. Koss-
mann, Query Processing on Encrypted Data in the Cloud
by. ETH, Department of Computer Science, 2011.

[19]Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data Se-
curity and Privacy in Cloud Computing,” Int. J. Distrib.
Sens. Netw., vol. 2014, pp. 1–9, 2014.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 9 (September) September 2015
 www.ijmetmr.com Page 123

