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ABSTRACT: 

Duplicate detection is the process of identifying 

multiple representations of same real world entities. 

Today, duplicate detection methods need to process 

ever larger datasets in ever shorter time: maintaining 

the quality of a dataset becomes increasingly 

difficult. We present two novel, progressive duplicate 

detection algorithms that significantly increase the 

efficiency of finding duplicates if the execution time 

is limited: They maximize the gain of the overall 

process within the time available by reporting most 

results much earlier than traditional approaches. 

Comprehensive experiments show that our 

progressive algorithms can double the efficiency over 

time of traditional duplicate detection and 

significantly improve upon related work. 
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INTRODUCTION 

Data are among the most important assets of a 

company. But due to data changes and sloppy data 

entry, errors such as duplicate entries might occur, 

making data cleansing and in particular duplicate 

detection indispensable. However, the pure size of 

today’s datasets renders duplicate detection processes 

expensive. Online retailers, for example, offer huge 

catalogs comprising a constantly growing set of items 

from many different suppliers. As independent persons 

change the product portfolio, duplicates arise. 

Although there is an obvious need for deduplication, 

online shops without downtime cannot afford 

traditional deduplication. Progressive duplicate 

detection identifies most duplicate pairs early in the 

detection process. Instead of reducing the overall time 

needed to finish the entire process, progressive 

approaches try to reduce the average time after which a 

duplicate is found. 

 

METHODS AND MATERIAL 

Detection of Duplicate Record 

The problem of identifying approximately duplicate 

record in database is an essential step for data cleaning 

& data integration process. A dynamic web page is 

displayed to show the results as well as other relevant 

advertisements that seem relevant to the query. The 

real world entities have two or more representation in 

databases. When dealing with large amount of data it 

is important that there be a well defined and tested 

mechanism to filter out duplicate result. This keeps the 

result relevant to the queries. Duplicate record exists in 

the query result of many web databases especially 

when the duplicates are defined based on only some 

21of the fields in a record. Using exact matching 

technique Records that are exactly same can be 

detected. The system that helps user to integrate and 

compares the query results returned from multiple web 

databases matches the different sources records that 

referred to the same real world entity. In this project, 

we analyze the literature on duplicate record detection. 

We cover similarity metrics which are commonly used 
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to detect similar field entries, and present an extensive 

set of duplicate detection algorithms that can detect 

approximately duplicate records in a database also the 

techniques for improving the efficiency and scalability 

of approximate duplicate detection algorithms are 

covered. We conclude with coverage of existing tools 

and with a brief discussion of the big open problems in 

the area. 

 

A Generalization of Blocking and Windowing 

Algorithms for Duplicate Detection 

Duplicate detection is the process of finding multiple 

records in a dataset that represent the same real-world 

entity. Due to the enormous costs of an exhaustive 

comparison, typical algorithms select only promising 

record pairs for comparison. Two competing 

approaches are blocking and windowing. Blocking 

methods partition records into disjoint subsets, while 

windowing methods, in particular the Sorted 

Neighborhood Method, slide a window over the sorted 

records and compare records only within the window. 

We present a new algorithm called Sorted Blocks in 

several variants,  which generalizes both approaches. 

To evaluate Sorted Blocks, we have conducted 

extensive experiments with different datasets. These 

show that our new algorithm needs fewer comparisons 

to find the same number of duplicates. 

 

Creating Probabilistic Databases from Duplicated 

Data 

A major source of uncertainty in databases is the 

presence of duplicate items, i.e., records that refer to 

the same real world entity. However, accurate 

deduplication is a difficult task and imperfect data 

cleaning may result in loss of valuable information. A 

reasonable alternative approach is to keep duplicates 

when the correct cleaning strategy is not certain, and 

utilize an efficient probabilistic query answering 

technique to return query results along with 

probabilities of each answer being correct. In this 

project, we present a flexible modular framework for 

scalably creating a probabilistic database out of a dirty 

relation of duplicated data and overview the  

challenges  raised  in  utilizing  this  framework   for 

large relations of string data. We study the problem of 

associating probabilities with duplicates that are 

detected using state-of-the-art scalable approximate 

join methods. We argue that standard thresholding 

techniques are not sufficiently robust for this task, and 

propose new clustering algorithms suitable for 

inferring duplicates and their associated probabilities. 

We show that the inferred probabilities accurately 

reflect the error in duplicate records. 

 

Real-world Data is Dirty: Data Cleansing and The 

Merge/Purge Problem 

The problem of merging multiple databases of 

information about common entities is frequently 

encountered in KDD and decision support applications 

in large commercial and government organizations. 

The problem we study is often called the Merge/Purge 

problem and is difficult to solve both in scale and 

accuracy. Large repositories of data typically have 

numerous duplicate information entries about the same 

entities that are difficult to cull together without an 

intelligent “equational theory” that identifies 

equivalent items by a complex, domain-dependent 

matching process. We have developed a system for 

accomplishing this data cleansing task and 

demonstrate its use for cleansing lists of names of 

potential customers in a direct marketing-type 

application. Our results for statistically generated data 

are shown to be accurate and effective when 

processing the data multiple times using different keys 

for sorting on each successive pass. Combing results of 

individual passes using transitive closure over the 

independent results, produces far more accurate results 

at lower cost. 

 

The system provides a rule programming module that 

is easy to program and quite good at finding duplicates 

especially in an environment with massive amounts of 

data. This project details improvements in our system, 

and reports on the successful implementation for a 

real-world database that conclusively validates our 

results previously achieved for statistically generated 

data. 
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A survey of indexing techniques for scalable record 

Linkage and Deduplication 

Record linkage is the process of matching records 

from several databases that refer to the same entities. 

When applied on a single database, this process is 

known as deduplication. Increasingly, matched data 

are becoming important in many application areas, 

because they can contain information that is not 

available otherwise, or that is too costly to acquire. 

Removing duplicate records in a single database is a 

crucial step in the data cleaning process, because 

duplicates can severely influence the outcomes of any 

subsequent data processing or data mining. With the 

increasing size of today's databases, the complexity of 

the matching process becomes one of the major 

challenges for record linkage and deduplication. In 

recent years, various indexing techniques have been 

developed for record linkage and deduplication. They 

are aimed at reducing the number of record pairs to be 

compared in the matching process by removing 

obvious nonmatching pairs, while at the same time 

maintaining high matching quality. This project 

presents a survey of 12 variations of 6 indexing 

techniques. Their complexity is analyzed, and their 

performance and scalability is evaluated within an 

experimental framework using both synthetic and real 

data sets. No such detailed survey has so far been 

published. 

 

Architecture Diagram 

 
 

Dataset Collection 

To collect and/or retrieve data about activities, results, 

context and other factors. It is important to consider 

the type of information it want to gather from your 

participants and the ways you will analyze that 

information. The data set corresponds to the contents 

of a single database table, or a single statistical data 

matrix, where every column of the table represents a 

particular variable. After collecting the data to store 

the Database. 

 

Preprocessing Method 

Data preprocessing or Data cleaning, Data is cleansed 

through processes such as filling in missing values, 

smoothing the noisy data, or resolving the 

inconsistencies in the data. And also used to removing 

the unwanted data.  Commonly used as a   preliminary 

data mining practice, data preprocessing transforms the 

data into a format that will be more easily and 

effectively processed for the purpose of the user. 

 

Data Separation 

After completing the pre-processing, the data 

separation to be performed. The blocking algorithms 

assign each record to a fixed group of similar records 

(the blocks) and then compare all pairs of records 

within these groups. Each block within the block 

comparison matrix represents the comparisons of all 

records in    one block with all records in another 

block, the equidistant blocking; all blocks have the 

same size. 

 

Duplicate Detection 

The duplicate detection rules set by the administrator, 

the system alerts the user about potential duplicates 

when the user tries to create new records or update 

existing records. To maintain data quality, you can 

schedule a duplicate detection job to check for 

duplicates for all records that match a certain criteria. 

You can clean the data by deleting, deactivating, or 

merging the duplicates reported by a duplicate 

detection. 

 

Quality Measures 

The quality of these systems is, hence, measured using 

a cost-benefit calculation. Especially for traditional 

duplicate detection processes, it is difficult to meet a 
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budget limitation, because their runtime is hard to 

predict. By delivering as many duplicates as possible 

in a given amount of time, progressive processes 

optimize the cost-benefit ratio. In manufacturing, a 

measure of excellence or a state of being free from 

defects, deficiencies and significant variations. It is 

brought about by strict and consistent commitment to 

certain standards that achieve uniformity of product in 

order to satisfy specific customer or user requirements. 

 

Proposed System 

In this work, however, we focus on progressive 

algorithms, which try to report most matches early on, 

while possibly slightly increasing their overall runtime. 

To achieve this, they need to estimate the similarity of  

all comparison candidates in order to compare most 

promising record pairs first.We propose two novel, 

progressive duplicate detection algorithms namely 

progressive sorted neighborhood method (PSNM),  

which performs best on small and almost clean 

datasets, and progressive blocking (PB), which 

performs best on large and very dirty datasets. Both 

enhance the efficiency of duplicate detection even on 

very large datasets. We propose two dynamic 

progressive duplicate detection algorithms, PSNM and 

PB, which expose different strengths and outperform 

current approaches. 

  

We introduce a concurrent progressive approach for 

the multi-pass method and adapt an incremental 

transitive closure algorithm that together forms the 

first complete progressive duplicate detection 

workflow. We define a novel quality measure for 

progressive duplicate detection to objectively rank the 

performance of different approaches. We exhaustively 

evaluate on several real-world datasets testing our own 

and previous algorithms. 

 

Advantages of Proposed System 

Improved early quality and same eventual quality and 

our algorithms PSNM and PB dynamically adjust their 

behavior by automatically choosing optimal 

parameters, e.g., window sizes, block sizes, and sorting 

keys, rendering their manual specification superfluous. 

In this way, we significantly ease the parameterization 

complexity for duplicate detection in general and 

contribute to the development of more user interactive 

applications. 

 

Proposed Algorithm Progressive SNM 

The algorithm takes five input parameters: D is a 

reference to the data, which has not been loaded from 

disk yet. The sorting key K defines the attribute or 

attributes combination that should be used in the 

sorting step. W specifies the maximum window size, 

which corresponds to the window size of the 

traditional sorted neighborhood method. When using 

early termination, this parameter can be set to an 

optimistically high default value. Parameter I defines 

the enlargement interval for the progressive iterations. 

For now, assume it has the default value 1. The last 

parameter N specifies the number of records in the 

dataset. This number can be gleaned in the sorting 

step, but we list it as a parameter for presentation 

purposes. Progressive Sorted Neighborhood Require: 

dataset reference D, sorting key K, window size W, 

enlargement interval size I, number of records N 

Step 1: procedure PSNM(D, K, W, I, N) 

Step 2: pSize← calcPartitionSize(D) 

Step 3: pNum ←[N/pSize-W + 1)] 

Step 4: array order size N as Integer 

Step 5: array recs size pSize as Record 

Step 6: order ←sortProgressive(D, K, I, pSize, pNum) 

Step 7: for currentI← 2 to[W/I]do 

Step 8: for currentP ←1 to pNum do 

Step 9: recs← loadPartition(D, currentP) 

Step 10: for dist belongs to range(currentI, I, W) do 

Step 11: for i ←0 to |recs|_ dist do 

Step 12: pair←<recs[i], recs[i + dist]> 

Step 13: if compare(pair) then 

Step 14: emit(pair) 

Step 15: lookAhead(pair) 

 

Progressive Blocking 

The algorithm accepts five input parameters: The 

dataset reference D specifies the dataset to be cleaned 

and the key attribute or key attribute combination K 

defines the sorting. The parameter R limits the 
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maximum block range, which is the maximum rank-

distance of two blocks in a block pair, and S specifies 

the size of the blocks. Finally, N is the size of the input 

dataset. 

 

Progressive Blocking Require: dataset reference D, 

key attribute K, maximum block range R, block size S 

and record number N 

Step 1: procedure PB(D, K, R, S, N) 

Step 2: pSize ← calcPartitionSize(D) 

Step 3: bPerP ← [pSize/S] 

Step 4: bNum ← [N/S] 

Step 5: pNum ← [bNum/bPerP] 

Step 6: array order size N as Integer 

Step 7: array blocks size bPerP as <Integer; Record[]> 

Step 8: priority queue bPairs as <Integer; Integer; 

Integer> 

Step 9: bPairs ←{<1,1,->,  .  . .,<bNum, bNum,->} 

Step  10:  order ←sortProgressive(D,  K,  S,  bPerP, 

bPairs)  

Step 11: for i ←0 to pNum - 1 do 

Step 12: pBPs ← get(bPairs, i . bPerP, (i+1) . bPerP) 

Step 13: blocks ← loadBlocks(pBPs, S, order) 

Step 14: compare(blocks, pBPs, order) 

Step 15: while bPairs is not empty do 

Step 16: pBPs← {} 

Step 17: bestBPs← takeBest([bPerP/4], bPairs, R) 

Step 18: for bestBP € bestBPs do 

Step 19: if bestBP[1] − bestBP[0] < R then 

Step 20: pBPs← pBPs U extend(bestBP) 

Step 21: blocks ←loadBlocks(pBPs, S, order) 

Step 22: compare(blocks, pBPs, order) 

Step 23: bPairs ←bPairs U pBPs 

Step 24: procedure compare(blocks, pBPs, order) 

Step 25: for pBP € pBPs do 

Step 26: <dPairs,cNum> comp(pBP, blocks, order) 

Step 27: emit(dPairs) 

Step 28: pBP[2] ←|dPairs|/ cNum 

 

CONCLUSION 

This work introduced the progressive sorted 

neighborhood method and progressive blocking. Both 

algorithms increase the efficiency of duplicate 

detection for situations with limited execution time; 

they dynamically change the ranking of comparison 

candidates based on intermediate results to execute 

promising comparisons first and less promising 

comparisons later. To determine the performance gain 

of our algorithms, we proposed a novel quality 

measure for progressiveness that integrates seamlessly 

with existing measures. Using this measure, 

experiments showed that our approaches outperform 

the traditional SNM by up to 100 percent and related 

work by up to 30 percent. For the construction of a 

fully progressive duplicate detection workflow, we 

proposed a progressive sorting method, Magpie, a 

progressive multi-pass execution model, Attribute 

Concurrency, and an incremental transitive closure 

algorithm. The adaptations AC-PSNM and AC-PB use 

multiple sort keys concurrently to interleave their 

progressive iterations. By analyzing intermediate 

results, both approaches dynamically rank the different 

sort keys at runtime, drastically easing the key 

selection problem. In future work, we want to combine 

our progressive approaches with scalable approaches 

for duplicate detection to deliver results even faster. In 

particular, Kolb et al. introduced a two phase parallel 

SNM [21], which executes a traditional SNM on 

balanced, overlapping partitions. Here, we can instead 

use our PSNM to progressively find duplicates in 

parallel. 
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