

 Page 1590

A Novel Approach in Detecting Duplicate Data in Databases

Ms. Amruta Ashok Patil

M.Tech student

Marri Laxman Reddy Institute of Technology &

Management

Hyderabad.

Mrs. M. Pallavi

Assistant Professor

Marri Laxman Reddy Institute of Technology &

Management

Hyderabad.

ABSTRACT:

Duplicate detection is the process of identifying

multiple representations of same real world entities.

Today, duplicate detection methods need to process

ever larger datasets in ever shorter time: maintaining

the quality of a dataset becomes increasingly

difficult. We present two novel, progressive duplicate

detection algorithms that significantly increase the

efficiency of finding duplicates if the execution time

is limited: They maximize the gain of the overall

process within the time available by reporting most

results much earlier than traditional approaches.

Comprehensive experiments show that our

progressive algorithms can double the efficiency over

time of traditional duplicate detection and

significantly improve upon related work.

Keywords: Data cleaning, Duplicate detection, Entity

Resolution, Progressiveness

INTRODUCTION

Data are among the most important assets of a

company. But due to data changes and sloppy data

entry, errors such as duplicate entries might occur,

making data cleansing and in particular duplicate

detection indispensable. However, the pure size of

today’s datasets renders duplicate detection processes

expensive. Online retailers, for example, offer huge

catalogs comprising a constantly growing set of items

from many different suppliers. As independent persons

change the product portfolio, duplicates arise.

Although there is an obvious need for deduplication,

online shops without downtime cannot afford

traditional deduplication. Progressive duplicate

detection identifies most duplicate pairs early in the

detection process. Instead of reducing the overall time

needed to finish the entire process, progressive

approaches try to reduce the average time after which a

duplicate is found.

METHODS AND MATERIAL

Detection of Duplicate Record

The problem of identifying approximately duplicate

record in database is an essential step for data cleaning

& data integration process. A dynamic web page is

displayed to show the results as well as other relevant

advertisements that seem relevant to the query. The

real world entities have two or more representation in

databases. When dealing with large amount of data it

is important that there be a well defined and tested

mechanism to filter out duplicate result. This keeps the

result relevant to the queries. Duplicate record exists in

the query result of many web databases especially

when the duplicates are defined based on only some

21of the fields in a record. Using exact matching

technique Records that are exactly same can be

detected. The system that helps user to integrate and

compares the query results returned from multiple web

databases matches the different sources records that

referred to the same real world entity. In this project,

we analyze the literature on duplicate record detection.

We cover similarity metrics which are commonly used

 Page 1591

to detect similar field entries, and present an extensive

set of duplicate detection algorithms that can detect

approximately duplicate records in a database also the

techniques for improving the efficiency and scalability

of approximate duplicate detection algorithms are

covered. We conclude with coverage of existing tools

and with a brief discussion of the big open problems in

the area.

A Generalization of Blocking and Windowing

Algorithms for Duplicate Detection

Duplicate detection is the process of finding multiple

records in a dataset that represent the same real-world

entity. Due to the enormous costs of an exhaustive

comparison, typical algorithms select only promising

record pairs for comparison. Two competing

approaches are blocking and windowing. Blocking

methods partition records into disjoint subsets, while

windowing methods, in particular the Sorted

Neighborhood Method, slide a window over the sorted

records and compare records only within the window.

We present a new algorithm called Sorted Blocks in

several variants, which generalizes both approaches.

To evaluate Sorted Blocks, we have conducted

extensive experiments with different datasets. These

show that our new algorithm needs fewer comparisons

to find the same number of duplicates.

Creating Probabilistic Databases from Duplicated

Data

A major source of uncertainty in databases is the

presence of duplicate items, i.e., records that refer to

the same real world entity. However, accurate

deduplication is a difficult task and imperfect data

cleaning may result in loss of valuable information. A

reasonable alternative approach is to keep duplicates

when the correct cleaning strategy is not certain, and

utilize an efficient probabilistic query answering

technique to return query results along with

probabilities of each answer being correct. In this

project, we present a flexible modular framework for

scalably creating a probabilistic database out of a dirty

relation of duplicated data and overview the

challenges raised in utilizing this framework for

large relations of string data. We study the problem of

associating probabilities with duplicates that are

detected using state-of-the-art scalable approximate

join methods. We argue that standard thresholding

techniques are not sufficiently robust for this task, and

propose new clustering algorithms suitable for

inferring duplicates and their associated probabilities.

We show that the inferred probabilities accurately

reflect the error in duplicate records.

Real-world Data is Dirty: Data Cleansing and The

Merge/Purge Problem

The problem of merging multiple databases of

information about common entities is frequently

encountered in KDD and decision support applications

in large commercial and government organizations.

The problem we study is often called the Merge/Purge

problem and is difficult to solve both in scale and

accuracy. Large repositories of data typically have

numerous duplicate information entries about the same

entities that are difficult to cull together without an

intelligent “equational theory” that identifies

equivalent items by a complex, domain-dependent

matching process. We have developed a system for

accomplishing this data cleansing task and

demonstrate its use for cleansing lists of names of

potential customers in a direct marketing-type

application. Our results for statistically generated data

are shown to be accurate and effective when

processing the data multiple times using different keys

for sorting on each successive pass. Combing results of

individual passes using transitive closure over the

independent results, produces far more accurate results

at lower cost.

The system provides a rule programming module that

is easy to program and quite good at finding duplicates

especially in an environment with massive amounts of

data. This project details improvements in our system,

and reports on the successful implementation for a

real-world database that conclusively validates our

results previously achieved for statistically generated

data.

 Page 1592

A survey of indexing techniques for scalable record

Linkage and Deduplication

Record linkage is the process of matching records

from several databases that refer to the same entities.

When applied on a single database, this process is

known as deduplication. Increasingly, matched data

are becoming important in many application areas,

because they can contain information that is not

available otherwise, or that is too costly to acquire.

Removing duplicate records in a single database is a

crucial step in the data cleaning process, because

duplicates can severely influence the outcomes of any

subsequent data processing or data mining. With the

increasing size of today's databases, the complexity of

the matching process becomes one of the major

challenges for record linkage and deduplication. In

recent years, various indexing techniques have been

developed for record linkage and deduplication. They

are aimed at reducing the number of record pairs to be

compared in the matching process by removing

obvious nonmatching pairs, while at the same time

maintaining high matching quality. This project

presents a survey of 12 variations of 6 indexing

techniques. Their complexity is analyzed, and their

performance and scalability is evaluated within an

experimental framework using both synthetic and real

data sets. No such detailed survey has so far been

published.

Architecture Diagram

Dataset Collection

To collect and/or retrieve data about activities, results,

context and other factors. It is important to consider

the type of information it want to gather from your

participants and the ways you will analyze that

information. The data set corresponds to the contents

of a single database table, or a single statistical data

matrix, where every column of the table represents a

particular variable. After collecting the data to store

the Database.

Preprocessing Method

Data preprocessing or Data cleaning, Data is cleansed

through processes such as filling in missing values,

smoothing the noisy data, or resolving the

inconsistencies in the data. And also used to removing

the unwanted data. Commonly used as a preliminary

data mining practice, data preprocessing transforms the

data into a format that will be more easily and

effectively processed for the purpose of the user.

Data Separation

After completing the pre-processing, the data

separation to be performed. The blocking algorithms

assign each record to a fixed group of similar records

(the blocks) and then compare all pairs of records

within these groups. Each block within the block

comparison matrix represents the comparisons of all

records in one block with all records in another

block, the equidistant blocking; all blocks have the

same size.

Duplicate Detection

The duplicate detection rules set by the administrator,

the system alerts the user about potential duplicates

when the user tries to create new records or update

existing records. To maintain data quality, you can

schedule a duplicate detection job to check for

duplicates for all records that match a certain criteria.

You can clean the data by deleting, deactivating, or

merging the duplicates reported by a duplicate

detection.

Quality Measures

The quality of these systems is, hence, measured using

a cost-benefit calculation. Especially for traditional

duplicate detection processes, it is difficult to meet a

 Page 1593

budget limitation, because their runtime is hard to

predict. By delivering as many duplicates as possible

in a given amount of time, progressive processes

optimize the cost-benefit ratio. In manufacturing, a

measure of excellence or a state of being free from

defects, deficiencies and significant variations. It is

brought about by strict and consistent commitment to

certain standards that achieve uniformity of product in

order to satisfy specific customer or user requirements.

Proposed System

In this work, however, we focus on progressive

algorithms, which try to report most matches early on,

while possibly slightly increasing their overall runtime.

To achieve this, they need to estimate the similarity of

all comparison candidates in order to compare most

promising record pairs first.We propose two novel,

progressive duplicate detection algorithms namely

progressive sorted neighborhood method (PSNM),

which performs best on small and almost clean

datasets, and progressive blocking (PB), which

performs best on large and very dirty datasets. Both

enhance the efficiency of duplicate detection even on

very large datasets. We propose two dynamic

progressive duplicate detection algorithms, PSNM and

PB, which expose different strengths and outperform

current approaches.

We introduce a concurrent progressive approach for

the multi-pass method and adapt an incremental

transitive closure algorithm that together forms the

first complete progressive duplicate detection

workflow. We define a novel quality measure for

progressive duplicate detection to objectively rank the

performance of different approaches. We exhaustively

evaluate on several real-world datasets testing our own

and previous algorithms.

Advantages of Proposed System

Improved early quality and same eventual quality and

our algorithms PSNM and PB dynamically adjust their

behavior by automatically choosing optimal

parameters, e.g., window sizes, block sizes, and sorting

keys, rendering their manual specification superfluous.

In this way, we significantly ease the parameterization

complexity for duplicate detection in general and

contribute to the development of more user interactive

applications.

Proposed Algorithm Progressive SNM

The algorithm takes five input parameters: D is a

reference to the data, which has not been loaded from

disk yet. The sorting key K defines the attribute or

attributes combination that should be used in the

sorting step. W specifies the maximum window size,

which corresponds to the window size of the

traditional sorted neighborhood method. When using

early termination, this parameter can be set to an

optimistically high default value. Parameter I defines

the enlargement interval for the progressive iterations.

For now, assume it has the default value 1. The last

parameter N specifies the number of records in the

dataset. This number can be gleaned in the sorting

step, but we list it as a parameter for presentation

purposes. Progressive Sorted Neighborhood Require:

dataset reference D, sorting key K, window size W,

enlargement interval size I, number of records N

Step 1: procedure PSNM(D, K, W, I, N)

Step 2: pSize← calcPartitionSize(D)

Step 3: pNum ←[N/pSize-W + 1)]

Step 4: array order size N as Integer

Step 5: array recs size pSize as Record

Step 6: order ←sortProgressive(D, K, I, pSize, pNum)

Step 7: for currentI← 2 to[W/I]do

Step 8: for currentP ←1 to pNum do

Step 9: recs← loadPartition(D, currentP)

Step 10: for dist belongs to range(currentI, I, W) do

Step 11: for i ←0 to |recs|_ dist do

Step 12: pair←<recs[i], recs[i + dist]>

Step 13: if compare(pair) then

Step 14: emit(pair)

Step 15: lookAhead(pair)

Progressive Blocking

The algorithm accepts five input parameters: The

dataset reference D specifies the dataset to be cleaned

and the key attribute or key attribute combination K

defines the sorting. The parameter R limits the

 Page 1594

maximum block range, which is the maximum rank-

distance of two blocks in a block pair, and S specifies

the size of the blocks. Finally, N is the size of the input

dataset.

Progressive Blocking Require: dataset reference D,

key attribute K, maximum block range R, block size S

and record number N

Step 1: procedure PB(D, K, R, S, N)

Step 2: pSize ← calcPartitionSize(D)

Step 3: bPerP ← [pSize/S]

Step 4: bNum ← [N/S]

Step 5: pNum ← [bNum/bPerP]

Step 6: array order size N as Integer

Step 7: array blocks size bPerP as <Integer; Record[]>

Step 8: priority queue bPairs as <Integer; Integer;

Integer>

Step 9: bPairs ←{<1,1,->, . . .,<bNum, bNum,->}

Step 10: order ←sortProgressive(D, K, S, bPerP,

bPairs)

Step 11: for i ←0 to pNum - 1 do

Step 12: pBPs ← get(bPairs, i . bPerP, (i+1) . bPerP)

Step 13: blocks ← loadBlocks(pBPs, S, order)

Step 14: compare(blocks, pBPs, order)

Step 15: while bPairs is not empty do

Step 16: pBPs← {}

Step 17: bestBPs← takeBest([bPerP/4], bPairs, R)

Step 18: for bestBP € bestBPs do

Step 19: if bestBP[1] − bestBP[0] < R then

Step 20: pBPs← pBPs U extend(bestBP)

Step 21: blocks ←loadBlocks(pBPs, S, order)

Step 22: compare(blocks, pBPs, order)

Step 23: bPairs ←bPairs U pBPs

Step 24: procedure compare(blocks, pBPs, order)

Step 25: for pBP € pBPs do

Step 26: <dPairs,cNum> comp(pBP, blocks, order)

Step 27: emit(dPairs)

Step 28: pBP[2] ←|dPairs|/ cNum

CONCLUSION

This work introduced the progressive sorted

neighborhood method and progressive blocking. Both

algorithms increase the efficiency of duplicate

detection for situations with limited execution time;

they dynamically change the ranking of comparison

candidates based on intermediate results to execute

promising comparisons first and less promising

comparisons later. To determine the performance gain

of our algorithms, we proposed a novel quality

measure for progressiveness that integrates seamlessly

with existing measures. Using this measure,

experiments showed that our approaches outperform

the traditional SNM by up to 100 percent and related

work by up to 30 percent. For the construction of a

fully progressive duplicate detection workflow, we

proposed a progressive sorting method, Magpie, a

progressive multi-pass execution model, Attribute

Concurrency, and an incremental transitive closure

algorithm. The adaptations AC-PSNM and AC-PB use

multiple sort keys concurrently to interleave their

progressive iterations. By analyzing intermediate

results, both approaches dynamically rank the different

sort keys at runtime, drastically easing the key

selection problem. In future work, we want to combine

our progressive approaches with scalable approaches

for duplicate detection to deliver results even faster. In

particular, Kolb et al. introduced a two phase parallel

SNM [21], which executes a traditional SNM on

balanced, overlapping partitions. Here, we can instead

use our PSNM to progressively find duplicates in

parallel.

REFERENCES

[1] S. E. Whang, D. Marmaros, and H. Garcia-

Molina, “Pay-as-you-go entity resolution,” IEEE

Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1111–

1124, May 2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S.

Verykios, “Duplicate record detection: A survey,”

IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp. 1–

16, Jan. 2007.

[3] F. Naumann and M. Herschel, An Introduction to

Duplicate Detection. San Rafael, CA, USA: Morgan &

Claypool, 2010.

 Page 1595

[4] H. B. Newcombe and J. M. Kennedy, “Record

linkage: Making maximum use of the discriminating

power of identifying information,” Commun. ACM,

vol. 5, no. 11, pp. 563–566,1962.

[5] M. A. Hernandez and S. J. Stolfo, “Real-world

data is dirty: Data cleansing and the merge/purge

problem,” Data Mining Knowl. Discovery, vol. 2, no.

1, pp. 9–37, 1998.

[6] X. Dong, A. Halevy, and J. Madhavan, “Reference

reconciliation in complex information spaces,” in Proc.

Int. Conf. Manage. Data, 2005, pp. 85–96.

[7] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J.

Miller, “Framework for evaluating clustering

algorithms in duplicate detection,” Proc. Very Large

Databases Endowment, vol. 2, pp. 1282– 1293, 2009.

[8] O. Hassanzadeh and R. J. Miller, “Creating

probabilistic databases from duplicated data,” VLDB

J., vol. 18, no. 5, pp. 1141–1166, 2009.

[9] U. Draisbach, F. Naumann, S. Szott, and O.

Wonneberg, “Adaptive windows for duplicate

detection,” in Proc. IEEE 28th Int. Conf. Data Eng.,

2012, pp. 1073–1083.

[10] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles,

“Adaptive sorted neighborhood methods for efficient

record linkage,” in Proc. 7th ACM/ IEEE Joint Int.

Conf. Digit. Libraries, 2007, pp. 185– 194.

[11] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D.

Ko, C. Yu, and A. Halevy, “Web-scale data

integration: You can only afford to pay as you go,” in

Proc. Conf. Innovative Data Syst. Res., 2007.

[12] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy,

“Pay-as-you-go user feedback for dataspace systems,”

in Proc. Int. Conf. Manage. Data, 2008, pp. 847–860.

[13] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k

set similarity joins,” in Proc. IEEE Int. Conf. Data

Eng., 2009, pp. 916–927.

[14] P. Indyk, “A small approximately min-wise

independent family of hash functions,” in Proc. 10th

Annu. ACM-SIAM Symp. Discrete Algorithms, 1999,

pp. 454–456.

[15] U. Draisbach and F. Naumann, “A generalization

of blocking and windowing algorithms for duplicate

detection,” in Proc. Int. Conf. Data Knowl. Eng., 2011,

pp. 18–24.

[16] H. S. Warren, Jr., “A modification of Warshall’s

algorithm for the transitive closure of binary

relations,” Commun. ACM, vol. 18, no. 4, pp. 218–

220, 1975.

[17] M. Wallace and S. Kollias, “Computationally

efficient incremental transitive closure of sparse fuzzy

binary relations,” in Proc. IEEE Int. Conf. Fuzzy Syst.,

2004, pp. 1561–1565.

[18] F. J. Damerau, “A technique for computer

detection and correction of spelling errors,” Commun.

ACM, vol. 7, no. 3, pp. 171–176, 1964.

[19] P. Christen, “A survey of indexing techniques for

scalable record linkage and deduplication,” IEEE

Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1537–

1555, Sep. 2012.

[20] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz,

“The Plista dataset,” in Proc. Int. Workshop Challenge

News Recommender Syst., 2013, pp. 16–23.

[21] L. Kolb, A. Thor, and E. Rahm, “Parallel sorted

neighborhood blocking with MapReduce,” in Proc.

Conf. Datenbanksysteme in B€uro, Technik und

Wissenschaft, 2011.

