

 Page 1135

Implementation of Split Radix Algorithm for 12-Point FFT

B.Harshita

PG Student [ES & VLSI],

Dept. of ECE,

Lords Institute of Engineering &

Technology,Hyderabad,Telangana, India

R.Surender Reddy

Assistant Professor,

Dept. of ECE,

Lords Institute of Engineering &

Technology,Hyderabad,Telangana, India

ABSTRACT:

Discrete Fourier transform (DFT) is widespread used

in many fields of science and engineering. DFT is

implemented with efficient algorithms categorized as

fast Fourier transforms. A fast algorithm is proposed

for computing a length-N=6
m

DFT. The proposed

algorithm is a blend of radix-3 and radix-6 FFT. It is

2
r
x3

m
variant of split radix and can be flexibly

implemented a length DFT. Novel order permutation

of sub-DFTs and reduction of the number of

arithmetic operations enhance the practicability of

the proposed algorithm. It inherently provides a

wider choice of accessible FFT’s lengths.

The proposed algorithm shows that its implement

tation requires less real operations as compared with

the published algorithms. The pending update to

system Verilog contains several new packages and

functions. The new packages include support for both

fixed-point and floating-point binary math. These

fully Non-synthesizable packages will raise the level of

abstraction in System Verilog. DSP applications,

which previously needed an independent processor

core, or required very difficult manual translation,

can now be performed within your system Verilog

source code. In addition, Schematic-based DSP

algorithms can now be translated directly to System

Verilog.

KEY WORDS: Discrete Fourier transform (DFT),

Fast Fourier transform (FFT), Radix-2, general split

radix, radix 3/6, System Verilog language.

I.INTRODUCTION

Discrete Fourier Transform (DFT) is one of the most

important tools used in almost all fields of science and

engineering. DFT can be implemented with efficient

algorithms generally classified as fast Fourier transforms

(FFT). The most widely used approaches are so-called

the algorithms for 2
m
, such as radix-2, radix 4 and split

radix FFT (SRFFT). Considerable researches have

carried out and resulted in the rapid development on this

class of algorithms. Simultaneously, the researches on

the algorithms for computing length-N=k
m

DFT have

resulted in the presentation of the methods for and k=3

and k=6.

Due to the poor efficiency, the algorithms for k
m

are of

trivial practical meanings when k ≠ 2. However, there

exists many applications in which the sequence lengths

are 3
m

or 6
m
. The idea of this letter is to develop a useful

algorithm for length N=6
m
DFT. The available published

algorithms are reported in; it seems that the general split

radix algorithm is more adequate for the length- DFT. In

this letter, we propose an algorithm based radix-6

approach. The algorithm is implemented with more

efficient than the reported ones. Its computational

Complexity is approximately equal to the equation given

as 4.071Nlog2 N-5.61N+33.555log2 N-130.992 which is

close to that of standard SRFFT (The complexity of

SRFFT is 4Nlog2 N-6N+8). The proposed algorithm is a

radix 3/6 algorithm and uses base (1, j). The algorithm

decomposes a DFT of size N=6
m
 into one length- N/3

and four length-N/6 sub DFTs. The flexibility of the

decomposition enables the algorithm is competent at the

implementation of a non-power-of-six DFT, while its

 Page 1136

length can exactly divided by 6. Appropriate

permutations are used for sub DFTs input sequences to

reduce the computational intension.

II.LITERATURE SURVEY

a.Radix 2/8 FFT algorithm for length qx2m

A new radix-2/ 8 fast Fourier transform (FFT) algorithm

have been proposed for computing the discrete Fourier

transform of an arbitrary length N= qx2^m,where m is an

odd integer. It reduces substantially the operations such

as data transfer, address generation, and twiddle factor

evaluation or access to the lookup table, which contribute

significantly to the execution time of FFT algorithms. It

is shown that the arithmetic complexity (multiplications,

additions) of the proposed algorithm is, in most cases, the

same as that of the existing split-radix FFT algorithm.

The basic idea behind the proposed algorithm is the use

of a mixture of radix-2 and radix-8 index maps. The

algorithm is expressed in a simple matrix form, thereby

facilitating an easy implementation of the algorithm, and

allowing for an extension to the multidimensional case.

For structural complexity, the important properties of the

Cooley–Tukey approach such as the use of the butterfly

scheme and in-place computation are preserved by the

proposed algorithm. It is suitable only for DFT of

sequence length N=qx2
m

.

b. Radix 2/16 FFT algorithm for length qx2
m

A radix-2/16 decimation-in-time (DIT) Fast Fourier

transforms (FFT) algorithm and its higher radix version,

namely radix-4/16 DIT FFT algorithm, have been

proposed by suitably mixing the radix-2, radix-4 and

radix-16 index maps, and combing some of the twiddle

factors [3]. It is shown that the proposed algorithms and

the existing radix-2/4 and radix-2/8 FFT algorithms

require exactly the same number of arithmetic operations

(multiplications and additions).

By using this technique, it can be shown that all the

possible split-radix FFT algorithms of the type radix-

2r/2rs for computing a 2
m

DFT require exactly the same

number of arithmetic operations. This algorithm is

suitable only for sequence of length N=2
m
, m is integer.

III.IMPLEMENTATION OF PROPOSED RADIX

3/6 ALGORITHM

A new radix-6 FFT algorithm suitable for multiply-add

instruction have been proposed. The new radix-6 FFT

algorithm requires fewer floating-point instructions than

the conventional radix-6 FFT algorithms on processors

that have a multiply-add instruction. Techniques to

obtain an algorithm for computing radix-6 FFT with

fewer floating-point instructions than conventional radix-

6 FFT algorithms have been proposed. The number of

floating-point instructions for the new radix-6 FFT

algorithm is compared with those of conventional radix-6

FFT algorithms on processors with multiply-add

instruction.

The definition of the Discrete Fourier Transform is given

by

Xk = N−1
n=0 xnWN

nk
 (1)

Where

WN=e
−j2π

N , j= −1, the length of sequence

{xn} is assumed as an integer which is divisibly by six.

For lengths N of DFT, powers-of-six would be best for

the proposed algorithm. Obviously, the DFT can be

divided into three length-N/3 sub-DFTs. In order to

derive a best possible algorithm, we continue to

decompose the three sub-DFTs. Due to no scaling factor

in front of it; the first sub-DFT should be let as-is and

directly go into the recursive decomposition of the next

stage. The other two sub-DFTs are divided into four sub-

DFTs of length-N/6.Actually, if the length of a DFT can

be divided by 6, the DFT can be definitely decomposed

by the algorithm. The generalized length-N can be

assumed as the N= 2
r
x3

m
, whereas r≥m-1. The

decomposition of a DFT of size N= 2
r
x3

m
denoted by

XK =
N/6−1
n=0 𝑥3𝑛𝑤𝑁

3

𝑛𝑘 + 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 𝑥6𝑛 +
𝑁

6
−1

𝑛=0 2𝑟 +

3𝑚𝑤𝑁/6
𝑛𝑘 + 𝑊3𝑚

𝑘 𝑥6𝑛 +
𝑁

6
−1

𝑛=0 2𝑟𝑤𝑁
6

𝑛𝑘 +
𝑊3𝑚

−𝑘

 𝑥6𝑛 −
𝑁

6
−1

𝑛=0

2𝑟𝑤𝑁/6𝑛𝑘+𝑊2𝑟−𝑘𝑊3𝑚−𝑘𝑛=0𝑁6−1𝑥6𝑛−2𝑟−3𝑚𝑤

𝑁/6𝑛𝑘 (2)

Where the four length-N/6 sub DFTs are reordered.

 Page 1137

To simplify the description, (2) can be expressed by

Xk=Ak+𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk +𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k+𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹k

 (3)

Where

𝐴𝑘 = 𝑥3𝑛𝑤𝑁
3

𝑛𝑘
𝑁/3−1

𝑛=0

𝐵𝑘 = 𝑥6𝑛 + 2𝑟 + 3𝑚𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜

𝐶𝑘 = 𝑥6𝑛 + 2𝑟𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜

𝐸𝑘 = 𝑥6𝑛 − 2𝑟𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜

𝐹𝑘 = 𝑥6𝑛 − 2𝑟 − 3𝑚𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜

In (3), 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 Bk and 𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘 Fk can be treated in

pairs, since 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 and 𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘 is a conjugate-pair. In

the similar way, 𝑊3𝑚
𝑘 Ck and 𝑊3𝑚

−𝑘Ek can be handled with

in pairs. The direct implementation of (3) performs many

unnecessary operations, since the computations of Xk,

X2N/6+k, X4N/6+k,XN/6+k, X3N/6+k and XNN/6+kturn out to share

many calculations each other. In particular, if we add

N/6to K, the size- DFT are not changed (because they are

periodic in), while the size-N/3 DFT is unchanged if we

add 2N/6to K. So, the only things that changes are

the𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 ,𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘 , 𝑊3𝑚
𝑘 and 𝑊3𝑚

−𝑘 terms. In order to

reduce the number of the operations, the following six

identities are necessary,

Xk= Ak + (𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk + 𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹k)+(𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k)

(5)

X2N/6+k= Ak + (𝑤3
2𝑟
𝑤2𝑟

𝑘 𝑤3𝑚
𝑘 Bk +𝑤3

−2𝑟
𝑤2𝑟

−𝑘𝑤3𝑚
−𝑘𝐹k)+

(𝑤3
2𝑟
𝑤3𝑚

𝑘 𝐶k+𝑤3
−2𝑟

𝑤3𝑚
−𝑘𝐸k) (6)

X4N/6+k=Ak+(𝑤3
2𝑟+1

𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤3
−2𝑟+1

𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+

(𝑤3
2𝑟+1

𝑤3𝑚
𝑘 𝐶k+𝑤3

−2𝑟+1
𝑤3𝑚

−𝑘𝐸k) (7)

XN/6+k=AN/6+k- 𝑤3
2𝑟−1

𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤3
−2𝑟−1

𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+

(𝑤3
2𝑟−1

𝑤3𝑚
𝑘 𝐶k+𝑤3

−2𝑟−1
𝑤3𝑚

−𝑘𝐸k) (8)

X3N/6+k=AN/6+k- (𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+

(𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k) (9)

X5N/6+k=AN/6+k- (𝑤3
2𝑟
𝑤2𝑟

𝑘 𝑤3𝑚
𝑘 Bk+ 𝑤3

−2𝑟
𝑤2𝑟

−𝑘𝑤3𝑚
−𝑘𝐹 k)+

(𝑤3
2𝑟
𝑤3𝑚

𝑘 𝐶k+𝑤3
−2𝑟

𝑤3𝑚
−𝑘𝐸k) (10)

A complete output X{k} set can be obtained if we let

range from 0 to N/6 -1 in the above six equations.We

now summarize the scheme of the proposed radix-

3/6FFT algorithm. The initial input sequence {xn} of

length-N is decomposed into five sub-sequences. This

process is repeated successively for each of new sub-

sequences, until the sizes of all sub DFTs are indivisible

by 6. Figs. 1–3 illustrate the flow graph of 3,6 and 12-

point radix 3/6 algorithm (2-points and 4-pointsFFT can

be performed with SRFFT).

Fig.1: Flow graph For 3-point FFT

The 3-points DFT requires 4 real multiplications and 12

real additions (some algorithms assume that a 3-points

DFT is calculated with 2 real multiplications and 12 real

additions since one need not multiply ½ and the

multiplication by 1/2 can be evaluated with bit shift).

Fig.2: Flow Chart For 6-point FFT

The initial input sequence { 𝑥𝑛 } of length- N is

decomposed into five sub-sequences. This process is

repeated successively for each of new sub-sequences,

until the sizes of all sub DFTs are indivisible by 6.

 Page 1138

Fig. 3: Flow Chart For 12-Point radix- 3/6 FFT

The Radix-3/6 DIT FFT can be derived as follows

X k = 𝑥𝑛
N−1

n=0
WN

nk

= x 3n WN
3nk

N
3
−1

n=0

+ x 3n + 1 WN
 3n+1 k

N
3
−1

n=o

+ x 3n + 2 WN
 3n+2 k

N
3
−1

n=o

= x 3n WN
3nk

N
3
−1

n=0

+ WN
k x 3n + 1 WN

3nk

N
3
−1

n=o

+ WN
2k x 3n + 2 WN

3nk

N
3
−1

n=o

= x 3n WN/3
nk +WN

k x 3n + 1 WN/3
nk

N
3
−1

n=o

N
3
−1

n=0

+ WN
2k x 3n + 2 WN/3

nk

N
3
−1

n=o

 = P k + WN
kQ k + WN

2kR(k)

Each of the sums, P(k), Q(k), and R(k), in is recognized

as an N/3-point DFT. The transform X(k) can be broken

into three parts as shown in equation (11).

X(k) = P k + WN
kQ k + WN

2kR(k)

X k +
N

3
 = P k + WN

k+
N
3 Q k + WN

2 k+
N
3

 R(k)

 = P k + W
1

3WN
kQ k + W

2

3WN
2k R(k)

X k +
2N

3
 = P k + WN

k+
2N
3 Q k + WN

2 k+
2N
3

 R(k)

 = P k + W
2

3WN
kQ k + W

1

3WN
2k R(k) (11)

k = 0,1,2,… ,
N

3
− 1

W3
1 = exp −

j2π

3
 = −

1

2
−

 3

2
j

 (12)

W3
2 = exp −

j2π×2

3
 = −

1

2
+

 3

2
j (13)

The decomposition in the proposed algorithm is

conducted recursively until the lengths of all sub DFTs

cannot be exactly divided by 6. In general, there are only

1 the first special butterfly (if r≥1and m≥1), 1 the second

special case butterfly (if r≥2and m≥1), 1 the third special

case butterfly and 1 the fourth special case butterfly (if

r≥3and m≥1). The total number of the fifth and sixth type

of butterflies is 2𝑟−1-4.Thus, the arithmetic complexity

of the proposed algorithm can be given in below equation

(14).

 (14)

IV. RESULTS

The 12 point DFT sequence has been implemented in

System Verilog and simulated using Modelsim Version

6.4.

Fig.4: Simulation result of Radix-3/6 12-point DFT input

Sequence

 Page 1139

The,Fig.4 shows the input sequence of radix-3/6

algorithm for 12-point FFT i.e.,

{𝑥𝑛}={1,2,3,4,5,6,7,8,9,10,11} applied to the Modelsim

for simulation.

Fig.5:Simulation output for 12-point input Sequence

Fig.5 shows the output sequence Xk={78,-6+22.3923i,-

6+10.39i,-6+6i,-6+3.464i,-6+1.6i,-6,-6-1.6i,-6-3.4i, -6-

6i,-6-10.39i,-6-22.3923i} for the given input sequence.

Fig.6:RTL Schematic for 12-point FFT radix 3/6

algorithm

The above figure is the RTL(Register Trasfer Level)

Schematic for 12 point input sequence using radix 3/6

algorithm generated in Xilinx 9.1i . The schematic

contains one 4-point SRFFT, four 2-point FFT and three

3-point FFTs butterfly blocks.

V.CONCLUSION

A radix 3/6 FFT algorithm is presented for length-6
m

DFT. The proposed algorithm is a mixture of radix-3 and

radix-6 algorithm. It can evaluate a non-power-of-six

DFT, as long as its length-6
m
 can be divided by 6. In

order to reduce the number of operations, all sub DFTs

are reordered favorably. The proposed algorithm shows

that its implementation requires less real operations as

compared with the published algorithms. Its arithmetic

complexity is about, which is close to that of standard

SRFFT. Due to being an irregular integer for the

sequence lengths, it is difficult to gain a completely

accurate formula of computational complexity.

VI.FUTURE SCOPE

Implementation of 16 Point RADIX 3/6 FFT Design

using Verilog and verification using system Verilog will

be done. These implementations usually employ efficient

fast Fourier transform (FFT) algorithms so much so that

the terms "FFT" and "DFT" are often used

interchangeably. The terminology is further blurred by

the (now rare) synonym finite Fourier transform for the

DFT, which apparently predates the term "fast Fourier

transform" but has the same initialize.

REFERENCES

1. M. Frigo and S. Johnson, ―The design and

implementation of fftw3,‖ Proc. IEEE, vol. 93,

no.2, pp. 216–231, 2005.

2. J. Keiner, S. Kunis, and D. Potts, ―Using nfft 3—

A software library for various nonequispaced fast

Fourier transforms,‖ ACM Trans. Math. Softw.

(TOMS), vol. 36, no. 4, pp.19–19, 2005.

3. D. Sepiashvili, ―Performance Models and Search

Methods for Optimal FFT Implementations,‖

M.Sc. thesis, Carnegie Mellon Univ., Pittsburgh,

PA, 2000.

 Page 1140

4. J. Cooley and J. Tukey, ―An algorithm for the

machine calculation of complex Fourier series,‖

Math. Comput, vol. 19, no. 90, pp. 297–301,

1965.

5. P. Duhamel and H. Hollmann, ―Split-radix FFT

algorithm,‖ Electron. Lett., vol. 20, pp. 14–6,

Jan. 1984. Kamar and Y. Elcherif, ―Conjugate

pair fast Fourier transform,‖ Electron. Lett., vol.

25, no.5, pp. 324–325, Apr. 1989.

6. S. Bouguezel, M. Ahmad, and M. Swamy, ―A

new radix-2/8 FFT algorithm for length-DFTs,‖

IEEE Trans. Circuits Syst. I, vol.51, no. 9, pp.

1723–1732, Sep. 2004.

7. E. Dubois and A. Venetsanopoulos, ―A new

algorithm for the radix-3 FFT,‖ IEEE Trans.

Acoust., Speech, Signal Process,, vol. ASSP-26,

pp.222–225, Jun. 1978.

8. S. Prakash and V. Rao, ―A new radix-6 FFT

algorithm,‖ IEEE Trans. Acoust., Speech, Signal

Process., vol. ASSP-29, no. 4, pp. 939–941,Aug.

1981.

9. Y. Suzuki, T. Sone, and K. Kido, ―A new FFT

algorithm of radix 3, 6, and 12,‖ IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-

34,no. 2, pp. 380–383, Apr. 1986.

