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ABSTRACT:  

Discrete Fourier transform (DFT) is widespread used 

in many fields of science and engineering. DFT is 

implemented with efficient algorithms categorized as 

fast Fourier transforms. A fast algorithm is proposed 

for computing a length-N=6
m 

DFT. The proposed 

algorithm is a blend of radix-3 and radix-6 FFT. It is 

2
r
x3

m 
variant of split radix and can be flexibly 

implemented a length DFT. Novel order permutation 

of sub-DFTs and reduction of the number of 

arithmetic operations enhance the practicability of 

the proposed algorithm. It inherently provides a 

wider choice of accessible FFT’s lengths. 

 

The proposed algorithm shows that its implement 

tation requires less real operations as compared with 

the published algorithms. The pending update to 

system Verilog contains several new packages and 

functions. The new packages include support for both 

fixed-point and floating-point binary math. These 

fully Non-synthesizable packages will raise the level of 

abstraction in System Verilog. DSP applications, 

which previously needed an independent processor 

core, or required very difficult manual translation, 

can now be performed within your system Verilog 

source code. In addition, Schematic-based DSP 

algorithms can now be translated directly to System 

Verilog. 

 

KEY WORDS: Discrete Fourier transform (DFT), 

Fast Fourier transform (FFT), Radix-2, general split 

radix, radix 3/6, System Verilog language. 

I.INTRODUCTION 

Discrete Fourier Transform (DFT) is one of the most 

important tools used in almost all fields of science and 

engineering. DFT can be implemented with efficient 

algorithms generally classified as fast Fourier transforms 

(FFT). The most widely used approaches are so-called 

the algorithms for 2
m
, such as radix-2, radix 4 and split 

radix FFT (SRFFT). Considerable researches have 

carried out and resulted in the rapid development on this 

class of algorithms. Simultaneously, the researches on 

the algorithms for computing length-N=k
m 

DFT have 

resulted in the presentation of the methods for and k=3 

and k=6. 

Due to the poor efficiency, the algorithms for k
m 

are of 

trivial practical meanings when k ≠ 2. However, there 

exists many applications in which the sequence lengths 

are  3
m 

or 6
m
. The idea of this letter is to develop a useful 

algorithm for length N=6
m
DFT. The available published 

algorithms are reported in; it seems that the general split 

radix algorithm is more adequate for the length- DFT. In 

this letter, we propose an algorithm based radix-6 

approach. The algorithm is implemented with more 

efficient than the reported ones. Its computational 

Complexity is approximately equal to the equation given 

as 4.071Nlog2 N-5.61N+33.555log2 N-130.992 which is 

close to that of standard SRFFT (The complexity of 

SRFFT is 4Nlog2 N-6N+8). The proposed algorithm is a 

radix 3/6 algorithm and uses base (1, j). The algorithm 

decomposes a DFT of size N=6
m
 into one length- N/3 

and four length-N/6 sub DFTs. The flexibility of the 

decomposition enables the algorithm is competent at the 

implementation of a non-power-of-six DFT, while its 
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length can exactly divided by 6. Appropriate 

permutations are used for sub DFTs input sequences to 

reduce the computational intension.  

II.LITERATURE SURVEY 

 

a.Radix 2/8 FFT algorithm for length qx2m 

A new radix-2/ 8 fast Fourier transform (FFT) algorithm 

have been proposed for computing the discrete Fourier 

transform of an arbitrary length N= qx2^m,where m is an 

odd integer. It reduces substantially the operations such 

as data transfer, address generation, and twiddle factor 

evaluation or access to the lookup table, which contribute 

significantly to the execution time of FFT algorithms. It 

is shown that the arithmetic complexity (multiplications, 

additions) of the proposed algorithm is, in most cases, the 

same as that of the existing split-radix FFT algorithm. 

The basic idea behind the proposed algorithm is the use 

of a mixture of radix-2 and radix-8 index maps. The 

algorithm is expressed in a simple matrix form, thereby 

facilitating an easy implementation of the algorithm, and 

allowing for an extension to the multidimensional case. 

For structural complexity, the important properties of the 

Cooley–Tukey approach such as the use of the butterfly 

scheme and in-place computation are preserved by the 

proposed algorithm. It is suitable only for DFT of 

sequence length N=qx2
m 

. 

b. Radix 2/16 FFT algorithm for length qx2
m

 

A radix-2/16 decimation-in-time (DIT) Fast Fourier 

transforms (FFT) algorithm and its higher radix version, 

namely radix-4/16 DIT FFT algorithm, have been 

proposed by suitably mixing the radix-2, radix-4 and 

radix-16 index maps, and combing some of the twiddle 

factors [3]. It is shown that the proposed algorithms and 

the existing radix-2/4 and radix-2/8 FFT algorithms 

require exactly the same number of arithmetic operations 

(multiplications and additions).  

 

By using this technique, it can be shown that all the 

possible split-radix FFT algorithms of the type radix- 

2r/2rs for computing a 2
m 

DFT require exactly the same 

number of arithmetic operations. This algorithm is 

suitable only for sequence of length N=2
m
, m is integer. 

 

III.IMPLEMENTATION OF PROPOSED RADIX 

3/6 ALGORITHM 

A new radix-6 FFT algorithm suitable for multiply-add 

instruction have been proposed. The new radix-6 FFT 

algorithm requires fewer floating-point instructions than 

the conventional radix-6 FFT algorithms on processors 

that have a multiply-add instruction. Techniques to 

obtain an algorithm for computing radix-6 FFT with 

fewer floating-point instructions than conventional radix-

6 FFT algorithms have been proposed. The number of 

floating-point instructions for the new radix-6 FFT 

algorithm is compared with those of conventional radix-6 

FFT algorithms on processors with multiply-add 

instruction. 

 

The definition of the Discrete Fourier Transform is given 

by 

 

Xk =  N−1
n=0 xnWN

nk
   (1) 

Where 
 

WN=e
−j2π

N , j= −1, the length of sequence  

{xn} is assumed as an integer which is divisibly by six. 

For lengths N of DFT, powers-of-six would be best for 

the proposed algorithm. Obviously, the DFT can be 

divided into three length-N/3 sub-DFTs. In order to 

derive a best possible algorithm, we continue to 

decompose the three sub-DFTs.  Due to no scaling factor 

in front of it; the first sub-DFT should be let as-is and 

directly go into the recursive decomposition of the next 

stage. The other two sub-DFTs are divided into four sub-

DFTs of length-N/6.Actually, if the length of a DFT can 

be divided by 6, the DFT can be definitely decomposed 

by the algorithm. The generalized length-N can be 

assumed as the N= 2
r
x3

m
, whereas r≥m-1. The 

decomposition of a DFT of size N= 2
r
x3

m 
denoted by 

XK =  
N/6−1
n=0 𝑥3𝑛𝑤𝑁

3

𝑛𝑘  + 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘  𝑥6𝑛 +
𝑁

6
−1

𝑛=0 2𝑟 +

3𝑚𝑤𝑁/6
𝑛𝑘 + 𝑊3𝑚

𝑘  𝑥6𝑛 +
𝑁

6
−1

𝑛=0 2𝑟𝑤𝑁
6

𝑛𝑘 +
𝑊3𝑚

−𝑘

 𝑥6𝑛 −
𝑁

6
−1

𝑛=0

2𝑟𝑤𝑁/6𝑛𝑘+𝑊2𝑟−𝑘𝑊3𝑚−𝑘𝑛=0𝑁6−1𝑥6𝑛−2𝑟−3𝑚𝑤

𝑁/6𝑛𝑘                          (2) 

Where the four length-N/6 sub DFTs are reordered.  

 

 



 
 

 Page 1137 
 

To simplify the description, (2) can be expressed by 

 

Xk=Ak+𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk +𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k+𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹k  

                                                                                                         (3) 

Where  

𝐴𝑘 =  𝑥3𝑛𝑤𝑁
3

𝑛𝑘
𝑁/3−1

𝑛=0
 

𝐵𝑘 =  𝑥6𝑛 + 2𝑟 + 3𝑚𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜
 

𝐶𝑘 =  𝑥6𝑛 + 2𝑟𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜
 

𝐸𝑘 =  𝑥6𝑛 − 2𝑟𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜
 

𝐹𝑘 =  𝑥6𝑛 − 2𝑟 − 3𝑚𝑤𝑁
6

𝑛𝑘
𝑁/6−1

𝑛=𝑜
 

 

In (3), 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 Bk and 𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘 Fk  can be treated in 

pairs, since 𝑊2𝑟
𝑘 𝑊3𝑚

𝑘 and 𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘 is a conjugate-pair. In 

the similar way, 𝑊3𝑚
𝑘 Ck and 𝑊3𝑚

−𝑘Ek can  be handled with 

in pairs. The direct implementation of (3) performs many 

unnecessary operations, since the computations of Xk, 

X2N/6+k, X4N/6+k,XN/6+k, X3N/6+k and XNN/6+kturn out to share 

many calculations each other. In particular, if we add 

N/6to K, the size- DFT are not changed (because they are 

periodic in), while the size-N/3 DFT is unchanged if we 

add 2N/6to K. So, the only things that changes are 

the𝑊2𝑟
𝑘 𝑊3𝑚

𝑘  ,𝑊2𝑟
−𝑘𝑊3𝑚

−𝑘  , 𝑊3𝑚
𝑘 and 𝑊3𝑚

−𝑘 terms. In order to 

reduce the number of the operations, the following six 

identities are necessary, 

 

Xk= Ak + (𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk + 𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹k)+(𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k)                       

(5) 

X2N/6+k= Ak + (𝑤3
2𝑟
𝑤2𝑟

𝑘 𝑤3𝑚
𝑘 Bk +𝑤3

−2𝑟
𝑤2𝑟

−𝑘𝑤3𝑚
−𝑘𝐹k)+ 

(𝑤3
2𝑟
𝑤3𝑚

𝑘 𝐶k+𝑤3
−2𝑟

𝑤3𝑚
−𝑘𝐸k)                        (6) 

X4N/6+k=Ak+( 𝑤3
2𝑟+1

𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤3
−2𝑟+1

𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+ 

(𝑤3
2𝑟+1

𝑤3𝑚
𝑘 𝐶k+𝑤3

−2𝑟+1
𝑤3𝑚

−𝑘𝐸k)                        (7) 

XN/6+k=AN/6+k- 𝑤3
2𝑟−1

𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤3
−2𝑟−1

𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+ 

(𝑤3
2𝑟−1

𝑤3𝑚
𝑘 𝐶k+𝑤3

−2𝑟−1
𝑤3𝑚

−𝑘𝐸k)                        (8) 

X3N/6+k=AN/6+k-  (𝑤2𝑟
𝑘 𝑤3𝑚

𝑘 Bk+ 𝑤2𝑟
−𝑘𝑤3𝑚

−𝑘𝐹 k)+ 

(𝑤3𝑚
𝑘 𝐶k+𝑤3𝑚

−𝑘𝐸k)                                 (9) 

X5N/6+k=AN/6+k-  (𝑤3
2𝑟
𝑤2𝑟

𝑘 𝑤3𝑚
𝑘 Bk+ 𝑤3

−2𝑟
𝑤2𝑟

−𝑘𝑤3𝑚
−𝑘𝐹 k)+ 

(𝑤3
2𝑟
𝑤3𝑚

𝑘 𝐶k+𝑤3
−2𝑟

𝑤3𝑚
−𝑘𝐸k)                             (10) 

 

A complete output X{k} set can be obtained if we let 

range from 0 to N/6 -1 in the above six equations.We 

now summarize the scheme of the proposed radix-

3/6FFT algorithm. The initial input sequence {xn} of 

length-N is decomposed into five sub-sequences. This 

process is repeated successively for each of new sub-

sequences, until the sizes of all sub DFTs are indivisible 

by 6. Figs. 1–3 illustrate the flow graph of 3,6 and 12-

point radix 3/6 algorithm (2-points and 4-pointsFFT can 

be performed with SRFFT). 

 

 
Fig.1:  Flow graph For 3-point FFT 

 

The 3-points DFT requires 4 real multiplications and 12 

real additions (some algorithms assume that a 3-points 

DFT is calculated with 2 real multiplications and 12 real 

additions since one need not multiply ½ and the 

multiplication by 1/2 can be evaluated with bit shift). 

 

 
 

Fig.2: Flow Chart For 6-point FFT 

 

The initial input sequence { 𝑥𝑛 } of length- N is 

decomposed into five sub-sequences. This process is 

repeated successively for each of new sub-sequences, 

until the sizes of all sub DFTs are indivisible by 6. 
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Fig. 3: Flow Chart For 12-Point radix- 3/6 FFT 

The Radix-3/6 DIT FFT can be derived as follows 

  

X k =  𝑥𝑛
N−1 

n=0
WN

nk  

=  x 3n WN
3nk

N
3
−1 

n=0

+  x 3n + 1 WN
 3n+1 k

N
3
−1 

n=o

+ x 3n + 2 WN
 3n+2 k

N
3
−1 

n=o
 

                                    

=  x 3n WN
3nk

N
3
−1 

n=0

+ WN
k  x 3n + 1 WN

3nk

N
3
−1 

n=o

+ WN
2k  x 3n + 2 WN

3nk

N
3
−1 

n=o
 

=  x 3n WN/3
nk +WN

k  x 3n + 1 WN/3
nk

N
3
−1 

n=o

N
3
−1 

n=0

+ WN
2k  x 3n + 2 WN/3

nk

N
3
−1 

n=o
 

  = P k + WN
kQ k + WN

2kR(k) 

 

Each of the sums, P(k), Q(k), and R(k), in is recognized 

as an N/3-point DFT. The transform X(k) can be broken 

into three parts as shown in equation (11). 

 

X(k) = P k + WN
kQ k + WN

2kR(k) 

X  k +
N

3
 = P k + WN

k+
N
3  Q k + WN

2 k+
N
3
 
 R(k) 

  = P k + W
1

3WN
kQ k + W

2

3WN
2k  R(k) 

X  k +
2N

3
  = P k + WN

k+
2N
3  Q k + WN

2 k+
2N
3
 
 R(k) 

 = P k + W
2

3WN
kQ k + W

1

3WN
2k  R(k) (11) 

k = 0,1,2,… ,
N

3
− 1 

W3
1 = exp  −

j2π

3
 = −

1

2
−

 3 

2
j    

                  (12) 

W3
2 = exp  −

j2π×2

3
 = −

1

2
+

 3 

2
j (13) 

 

The decomposition in the proposed algorithm is 

conducted recursively until the lengths of all sub DFTs 

cannot be exactly divided by 6. In general, there are only 

1 the first special butterfly (if r≥1and m≥1), 1 the second 

special case butterfly (if r≥2and m≥1), 1 the third special 

case butterfly and 1 the fourth special case butterfly (if 

r≥3and m≥1). The total number of the fifth and sixth type 

of butterflies is 2𝑟−1-4.Thus, the arithmetic complexity 

of the proposed algorithm can be given in below equation 

(14). 

 

 
      (14) 

IV. RESULTS  

The 12 point DFT sequence has been implemented in 

System Verilog  and simulated using Modelsim Version 

6.4. 

 

Fig.4: Simulation result of Radix-3/6 12-point DFT input 

Sequence 
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The,Fig.4 shows the input sequence of radix-3/6 

algorithm for  12-point FFT i.e., 

{𝑥𝑛}={1,2,3,4,5,6,7,8,9,10,11} applied to the Modelsim 

for simulation. 

 

 
 

Fig.5:Simulation output for 12-point input Sequence 

 

Fig.5 shows the output sequence Xk={78,-6+22.3923i,-

6+10.39i,-6+6i,-6+3.464i,-6+1.6i,-6,-6-1.6i,-6-3.4i, -6-

6i,-6-10.39i,-6-22.3923i} for the given input sequence. 

 

 
Fig.6:RTL Schematic for 12-point FFT radix 3/6 

algorithm 

 

 

The above figure is the RTL(Register Trasfer Level ) 

Schematic for 12 point input sequence using radix 3/6 

algorithm generated in Xilinx 9.1i . The schematic 

contains one 4-point SRFFT, four 2-point FFT and three 

3-point FFTs butterfly blocks. 

 

V.CONCLUSION 

A radix 3/6 FFT algorithm is presented for length-6
m
 

DFT. The proposed algorithm is a mixture of radix-3 and 

radix-6 algorithm. It can evaluate a non-power-of-six 

DFT, as long as its length-6
m
 can be divided by 6. In 

order to reduce the number of operations, all sub DFTs 

are reordered favorably. The proposed algorithm shows 

that its implementation requires less real operations as 

compared with the published algorithms. Its arithmetic 

complexity is about, which is close to that of standard 

SRFFT. Due to being an irregular integer for the 

sequence lengths, it is difficult to gain a completely 

accurate formula of computational complexity. 

 

VI.FUTURE SCOPE 

Implementation of 16 Point RADIX 3/6 FFT Design 

using Verilog and verification using system Verilog will 

be done. These implementations usually employ efficient 

fast Fourier transform (FFT) algorithms so much so that 

the terms "FFT" and "DFT" are often used 

interchangeably. The terminology is further blurred by 

the (now rare) synonym finite Fourier transform for the 

DFT, which apparently predates the term "fast Fourier 

transform" but has the same initialize. 
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