

 Page 580

Area Efficient and Fault Tolerant Parallel Fir Filter Based on ECC

B.Umadevi

PG Scholar,

Electronics and Communication Engineering,

Gates Institute of Technology, AP, India.

S.Ramesh Babu

Assistant Professor,

Electronics and Communication Engineering,

Gates Institute of Technology, AP, India.

ABSTRACT:

The complexity of communications and signal

processing circuits increases every year. This is made

possible by the CMOS technology scaling that enables

the integration of more and more transistors on a single

device. This increased complexity makes the circuits

more vulnerable to errors. At the same time, the

scaling means that transistors operate with lower

voltages and are more susceptible to errors caused by

noise and manufacturing variations. As technology

scales, it enables more complex systems that

incorporate many filters. In those complex systems, it

is common that some of the filters operate in parallel.

Soft errors pose a reliability threat to modern

electronic circuits. This makes protection against soft

errors a requirement for many applications.

Communications and signal processing systems are no

exceptions to this trend.

For some applications, an interesting option is to use

algorithmic-based fault tolerance (ABFT) techniques

that try to exploit the algorithmic properties to detect

and correct errors. Signal processing and

communication applications are well suited for ABFT.

A general scheme to protect parallel filters is

presented. Parallel filters with the same response that

process different input signals are considered. The new

approach is based on the application of error correction

codes (ECCs) using each of the filter outputs as the

equivalent of a bit in and ECC codeword. This is a

generalization of the scheme presented and enables

more efficient implementations when the number of

parallel filters is large. The scheme can also be used to

provide more powerful protection using advanced

ECCs that can correct failures in multiples modules.

1 INTRODUCTION:

FIR filters are one of two primary types of digital

filters used in digital signal processing (DSP)

applications, the other type being IIR. High

performance FIR filters have applications in several

video processing and digital communications systems.

In some applications, the FIR filter circuit must be able

to operate at high sample rates, while in other

applications, the FIR filter circuit must be a low-power

circuit operating at moderate sample rates. The low-

power or low-area techniques developed specifically

for digital filters can be found in [1, 2, 3, 4, 5, 6, 7].

Traditional FIR filter uses some parallel processing

technique to either increase the effective throughput or

to reduce the power consumption of the original filter.

Parallel processing involves the replication of

hardware units.

Here the hardware implementation cost is directly

proportional to the block size. At the same time if the

design area is very limited this technique is not

applicable. Therefore, in order to reduce the chip size

and to limit the silicon area required to implement the

FIR filter it is necessary to realize a new parallel FIR

filtering structure that consume less area than

traditional parallel FIR filtering It is common in DSP

to say that a filter input and output signals are in time

domain. This is because signals are usually created by

sampling at regular intervals of time. But this is not the

only way sampling can take place. The second most

common way of sampling is at equal intervals in

space. For example imagine taking simultaneous

readings from an array of strain sensors mounted at

one centimeter increments along the length of an

aircraft wing.

 Page 581

Many other domains are possible; however, time and

space are by far the most common. When you see the

term time domain in DSP, remember that it may

actually refer to samples taken over time, or it may be

a general reference to any domain that the samples are

taken in. Every linear filter has an impulse response, a

step response and a frequency response. Each of these

responses contains complete information about the

filter, but in a different form. If one of three is

specified, the other two are fixed and can be directly

calculated. All three of these representations are

important, because they describe how the filter will

react under different circumstances.

The most straightforward way to implement a digital

filter is by convolving the input signal with the digital

filter’s impulse response. All possible linear filters can

be made in this manner. When the impulse response is

used in this way, filters designers give it a special

name: the filter kernel. There is also another way to

make digital filters, called recursion. When a filter is

implemented by a convolution, each sample in the

output is calculated by weighting the samples in the

input, and adding then together. Recursive filters are

an extension of this, using previously calculated values

from the output, besides points from the input. Instead

of using a filter kernel, recursive filters are defined by

a set of recursion coefficients.

For now the important point is that all linear filters

have an impulse response, even if you don’t use it to

implement the filter. To find the impulse response of a

recursive filter, simply feed in the impulse and see

what comes out. The impulse responses of recursive

filters are composed of sinusoids that exponentially

decay in amplitude. In principle, this makes their

impulse responses infinitely long. However the

amplitude eventually drops below the round off noise

of the system, and the remaining samples can be

ignored. Because of these characteristics, recursive

filters are also called Infinite impulse response or IIR

filters. In comparison, filters carried out by

convolution are called Finite impulse response or FIR

filters.

2. PARALLEL FILTERS WITH THE SAME

RESPONSE

A discrete time filter implements the following

equation:

Where x[n] is the input signal, y[n] is the output, and

h[l] is the impulse response of the filter [12]. When the

response h[l] is nonzero, only for a finite number of

samples, the filter is known as a FIR filter, otherwise

the filter is an infinite impulse response (IIR) filter.

There are several structures to implement both FIR and

IIR filters. In the following, a set of k parallel filters

with the same response and different input signals are

considered. These parallel filters are illustrated in Fig.

1. This kind of filter is found in some communication

systems that use several channels in parallel. In data

acquisition and processing applications is also

common to filter several signals with the same

response.

Figure 1: Parallel filters with the same response.

An interesting property for these parallel filters is that

the sum of any combination of the outputs yi [n] can

also be obtained by adding the corresponding inputs xi

[n] and filtering the resulting signal with the same

filter h[l]. For example

This simple observation will be used in the following

to develop the proposed fault tolerant implementation.

 Page 582

3. PROPOSED SCHEME

The new technique is based on the use of the ECCs. A

simple ECC takes a block of k bits and produces a

block of n bits by adding n−k parity check bits [13].

The parity check bits are XOR combinations of the k

data bits. By properly designing those combinations it

is possible to detect and correct errors. As an example,

let us consider a simple Hamming code [14] with k = 4

and n=7. In this case, the three parity check bits p1, p2,

p3 are computed as a function of the data bits d1, d2,

d3, d4 as follows:

The data and parity check bits are stored and can be

recovered later even if there is an error in one of the

bits. This is done by recomposing the parity check bits

and comparing the results with the values stored. In the

example considered, an error on d1 will cause errors

on the three parity checks; an error on d2 only in p1

and p2; an error on d3 in p1 and p3; and finally an

error on d4 in p2 and p3.

Table 1: Error location in the hamming code

Figure 2: Proposed scheme for four filters and a

Hamming code.

Therefore, the data bit in error can be located and the

error can be corrected. This is commonly formulated in

terms of the generating G and parity check H matrixes.

For the Hamming code considered in the example,

those are Encoding is done by computing y = x • G and

error detection is done by computing s = y • HT ,

where the operator • is based on module two addition

(XOR) and multiplication. Correction is done using the

vector s, known as syndrome, to identify the bit in

error. The correspondence of values of s to error

position is captured in Table I. Once the erroneous bit

is identified, it is corrected by simply inverting the bit.

This ECC scheme can be applied to the parallel filters

considered by defining a set of check filters z j . For

the case of four filters y1, y2, y3, y4 and the Hamming

code, the check filters would be and the checking is

done by testing if

z1[n] = y1[n] + y2[n] + y3[n]

z2[n] = y1[n] + y2[n] + y4[n]

z3[n] = y1[n] + y3[n] + y4[n]. (7)

 Page 583

For example, an error on filter y1 will cause errors on

the checks of z1, z2, and z3. Similarly, errors on the

other filters will cause errors on a different group of zi.

Therefore, as with the traditional ECCs, the error can

be located and corrected. The overall scheme is

illustrated on Fig. 4. It can be observed that correction

is achieved with only three redundant filters. For the

filters, correction is achieved by reconstructing the

erroneous outputs using the rest of the data and check

outputs. For example, when an error on y1 is detected,

it can be corrected by making.

yc1[n] = z1[n] − y2[n] − y3[n].

(8)

Similar equations can be used to correct errors on the

rest of the data outputs.

In our case, we can define the check matrix as and

calculate s = yHT to detect errors. Then, the vector s is

also used to identify the filter in error. In our case, a

nonzero value in vector s is equivalent to 1 in the

traditional Hamming code. A zero value in the check

corresponds to a 0 in the traditional Hamming code. It

is important to note that due to different finite

precision effects in the original and check filter

implementations, the comparisons in (7) can show

small differences. Those differences will depend on

the quantization effects in the filter implementations

that have been widely studied for different filter

structures.

The interested reader is referred to [12] for further

details. Therefore, a threshold must be used in the

comparisons so that values smaller than the threshold

are classified as 0. This means that small errors may

not be corrected. This will not be an issue in most

cases as small errors are acceptable. The detailed study

of the effect of these small errors on the signal to noise

ratio at the output of the filter is left for future work.

The reader can get more details on this type of analysis

in [3].

With this alternative formulation, it is clear that the

scheme can be used for any number of parallel filters

and any linear block code can be used. The approach

is more attractive when the number of filters k is large.

For example, when k = 11, only four redundant filters

are needed to provide single error correction. This is

the same as for traditional ECCs for which the

overhead decreases as the block size increases [13].

The additional operations required for encoding and

decoding are simple additions, subtractions, and

comparisons and should have little effect on the

overall complexity of the circuit. In the discussion, so

far the effect of errors affecting the encoding and

decoding logic has not been considered. The encoder

and decoder include several additions and subtractions

and therefore the possibility of errors affecting them

cannot be neglected. Focusing on the encoders, it can

be seen that some of the calculations of the zi share

adders.

For example, looking at (6), z1 and z2 share the term

y1 + y2. Therefore, an error in that adder could affect

both z1 and z2 causing a miscorrection on y2. To

ensure that single errors in the encoding logic will not

affect the data outputs, one option is to avoid logic

sharing by computing each of the zi independently. In

that case, errors will only affect one of the zi outputs

and according to Table 5, the data outputs y j will not

be affected. Similarly, by avoiding logic sharing,

single errors in the computation of the s vector will

only affect one of its bits. The final correction

elements such as that in (8) need to be tripled to ensure

that they do not propagate errors to the outputs.

However, as their complexity is small compared with

that of the filters, the impact on the overall circuit cost

will be low.

4 RESULTS:

4.1 Implementation

 Page 584

Figure 3: Internal RTL Schematic

4.2. Window shows getting an error:

This window shows, the all check bit values are same

no error occure in the circuit.

Fiure 4 : Getting an NO error output

5. CONCLUSION:

This brief has presented a new scheme to protect

parallel filters that are commonly found in modern

signal processing circuits. The approach is based on

applying ECCs to the parallel filters outputs to detect

and correct errors. The scheme can be used for parallel

filters that have the same response and process

different input signals. A case study has also been

discussed to show the effectiveness of the scheme in

terms of error correction and also of circuit overheads.

The technique provides larger benefits when the

number of parallel filters is large.

6.FUTURE SCOPE:

The proposed scheme can also be applied to the IIR

filters. Future work will consider the evaluation of the

benefits of the proposed technique for IIR filters. The

extension of the scheme to parallel filters that have the

same input and different impulse responses is also a

topic for future work. The proposed scheme can also

be combined with the reduced precision replica

approach presented in [3] to reduce the overhead

required for protection.

This will be of interest when the number of parallel

filters is small as the cost of the proposed scheme is

larger in that case. Another interesting topic to

continue this brief is to explore the use of more

powerful multi bit ECCs, such as Bose–Chaudhuri–

Hocquenghem codes, to correct errors on multiple

filters.

BLIOGRAPHY:

[1] M. Nicolaidis, “Design for soft error mitigation,”

IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 405–

418, Sep. 2005.

[2] A. Reddy and P. Banarjee “Algorithm-based fault

detection for signal processing applications,” IEEE

Trans. Comput., vol. 39, no. 10, pp. 1304–1308, Oct.

1990.

[3] B. Shim and N. Shanbhag, “Energy-efficient soft

error-tolerant digital signal processing,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 4,

pp. 336–348, Apr. 2006.

[4] T. Hitana and A. K. Deb, “Bridging concurrent and

non-concurrent error detection in FIR filters,” in Proc.

Norchip Conf., 2004, pp. 75–78.

[5] Y.-H. Huang, “High-efficiency soft-error-tolerant

digital signal processing using fine-grain subword-

detection processing,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 18, no. 2, pp. 291–304, Feb.

2010.

[6] S. Pontarelli, G. C. Cardarilli, M. Re, and A.

Salsano, “Totally fault tolerant RNS based FIR filters,”

in Proc. IEEE IOLTS, Jul. 2008, pp. 192–194.

[7] Z. Gao, W. Yang, X. Chen, M. Zhao, and J. Wang,

“Fault missing rate analysis of the arithmetic residue

codes based fault-tolerant FIR filter design,” in Proc.

IEEE IOLTS, Jun. 2012, pp. 130–133.

 Page 585

[8] P. Reviriego, C. J. Bleakley, and J. A. Maestro,

“Strutural DMR: A technique for implementation of

soft-error-tolerant FIR filters,” IEEE Trans. Circuits

Syst., Exp. Briefs, vol. 58, no. 8, pp. 512–516, Aug.

2011.

[9] P. P. Vaidyanathan. Multirate Systems and Filter

Banks. Upper Saddle River, NJ, USA: Prentice-Hall,

1993.

[10] A. Sibille, C. Oestges, and A. Zanella, MIMO:

From Theory to Implementation. San Francisco, CA,

USA: Academic Press, 2010.

[11] P. Reviriego, S. Pontarelli, C. Bleakley, and J. A.

Maestro, “Area efficient concurrent error detection and

correction for parallel filters,” IET Electron. Lett., vol.

48, no. 20, pp. 1258–1260, Sep. 2012.

[12] A. V. Oppenheim and R. W. Schafer, Discrete

Time Signal Processing. Upper Saddle River, NJ,

USA: Prentice-Hall 1999.

[13] S. Lin and D. J. Costello, Error Control Coding,

2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall.

2004.

[14] R. W. Hamming, “Error correcting and error

detecting codes,” Bell Syst. Tech. J., vol. 29, pp. 147–

160, Apr. 1950.

