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ABSTRACT: 

The complexity of communications and signal 

processing circuits increases every year. This is made 

possible by the CMOS technology scaling that enables 

the integration of more and more transistors on a single 

device. This increased complexity makes the circuits 

more vulnerable to errors. At the same time, the 

scaling means that transistors operate with lower 

voltages and are more susceptible to errors caused by 

noise and manufacturing variations. As technology 

scales, it enables more complex systems that 

incorporate many filters. In those complex systems, it 

is common that some of the filters operate in parallel. 

Soft errors pose a reliability threat to modern 

electronic circuits. This makes protection against soft 

errors a requirement for many applications. 

Communications and signal processing systems are no 

exceptions to this trend.  

 

For some applications, an interesting option is to use 

algorithmic-based fault tolerance (ABFT) techniques 

that try to exploit the algorithmic properties to detect 

and correct errors. Signal processing and 

communication applications are well suited for ABFT. 

A general scheme to protect parallel filters is 

presented. Parallel filters with the same response that 

process different input signals are considered. The new 

approach is based on the application of error correction 

codes (ECCs) using each of the filter outputs as the 

equivalent of a bit in and ECC codeword. This is a 

generalization of the scheme presented and enables 

more efficient implementations when the number of 

parallel filters is large. The scheme can also be used to 

provide more powerful protection using advanced 

ECCs that can correct failures in multiples modules. 

 

 

 

1 INTRODUCTION: 

FIR filters are one of two primary types of digital 

filters used in digital signal processing (DSP) 

applications, the other type being IIR. High 

performance FIR filters have applications in several 

video processing and digital communications systems. 

In some applications, the FIR filter circuit must be able 

to operate at high sample rates, while in other 

applications, the FIR filter circuit must be a low-power 

circuit operating at moderate sample rates. The low-

power or low-area techniques developed specifically 

for digital filters can be found in [1, 2, 3, 4, 5, 6, 7].  

Traditional FIR filter uses some parallel processing 

technique to either increase the effective throughput or 

to reduce the power consumption of the original filter. 

Parallel processing involves the replication of 

hardware units.  

 

Here the hardware implementation cost is directly 

proportional to the block size. At the same time if the 

design area is very limited this technique is not 

applicable. Therefore, in order to reduce the chip size 

and to limit the silicon area  required to implement the 

FIR filter it is necessary to realize a new parallel FIR 

filtering structure that consume less area  than 

traditional parallel FIR filtering It is common in DSP 

to say that a filter input and output signals are in time 

domain. This is because signals are usually created by 

sampling at regular intervals of time. But this is not the 

only way sampling can take place. The second most 

common way of sampling is at equal intervals in 

space. For example imagine taking simultaneous 

readings from an array of strain sensors mounted at 

one centimeter increments along the length of an 

aircraft wing.  
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Many other domains are possible; however, time and 

space are by far the most common. When you see the 

term time domain in DSP, remember that it may 

actually refer to samples taken over time, or it may be 

a general reference to any domain that the samples are 

taken in. Every linear filter has an impulse response, a 

step response and a frequency response.  Each of these 

responses contains complete information about the 

filter, but in a different form. If one of three is 

specified, the other two are fixed and can be directly 

calculated. All three of these representations are 

important, because they describe how the filter will 

react under different circumstances.  

 

The most straightforward way to implement a digital 

filter is by convolving the input signal with the digital 

filter’s impulse response. All possible linear filters can 

be made in this manner. When the impulse response is 

used in this way, filters designers give it a special 

name: the filter kernel. There is also another way to 

make digital filters, called recursion. When a filter is 

implemented by a convolution, each sample in the 

output is calculated by weighting the samples in the 

input, and adding then together. Recursive filters are 

an extension of this, using previously calculated values 

from the output, besides points from the input. Instead 

of using a filter kernel, recursive filters are defined by 

a set of recursion coefficients.  

 

For now the important point is that all linear filters 

have an impulse response, even if you don’t use it to 

implement the filter. To find the impulse response of a 

recursive filter, simply feed in the impulse and see 

what comes out. The impulse responses of recursive 

filters are composed of sinusoids that exponentially 

decay in amplitude. In principle, this makes their 

impulse responses infinitely long. However the 

amplitude eventually drops below the round off noise 

of the system, and the remaining samples can be 

ignored. Because of these characteristics, recursive 

filters are also called Infinite impulse response or IIR 

filters. In comparison, filters carried out by 

convolution are called Finite impulse response or FIR 

filters.  

2. PARALLEL FILTERS WITH THE SAME 

RESPONSE 

A discrete time filter implements the following 

equation: 

 
Where x[n] is the input signal, y[n] is the output, and 

h[l] is the impulse response of the filter [12]. When the 

response h[l] is nonzero, only for a finite number of 

samples, the filter is known as a FIR filter, otherwise 

the filter is an infinite impulse response (IIR) filter. 

There are several structures to implement both FIR and 

IIR filters. In the following, a set of k parallel filters 

with the same response and different input signals are 

considered. These parallel filters are illustrated in Fig. 

1. This kind of filter is found in some communication 

systems that use several channels in parallel. In data 

acquisition and processing applications is also 

common to filter several signals with the same 

response. 

Figure 1: Parallel filters with the same response. 

 

An interesting property for these parallel filters is that 

the sum of any combination of the outputs yi [n] can 

also be obtained by adding the corresponding inputs xi 

[n] and filtering the resulting signal with the same 

filter h[l]. For example 

 
This simple observation will be used in the following 

to develop the proposed fault tolerant implementation. 
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3. PROPOSED SCHEME 

The new technique is based on the use of the ECCs. A 

simple ECC takes a block of k bits and produces a 

block of n bits by adding n−k parity check bits [13]. 

The parity check bits are XOR combinations of the k 

data bits. By properly designing those combinations it 

is possible to detect and correct errors. As an example, 

let us consider a simple Hamming code [14] with k = 4 

and n=7. In this case, the three parity check bits p1, p2, 

p3 are computed as a function of the data bits d1, d2, 

d3, d4 as follows: 

 
The data and parity check bits are stored and can be 

recovered later even if there is an error in one of the 

bits. This is done by recomposing the parity check bits 

and comparing the results with the values stored. In the 

example considered, an error on d1 will cause errors 

on the three parity checks; an error on d2 only in p1 

and p2; an error on d3 in p1 and p3; and finally an 

error on d4 in p2 and p3. 

Table 1: Error location in the hamming code 

 

 

Figure 2: Proposed scheme for four filters and a 

Hamming code. 

 

Therefore, the data bit in error can be located and the 

error can be corrected. This is commonly formulated in 

terms of the generating G and parity check H matrixes. 

For the Hamming code considered in the example, 

those are Encoding is done by computing y = x • G and 

error detection is done by computing s = y • HT , 

where the operator • is based on module two addition 

(XOR) and multiplication. Correction is done using the 

vector s, known as syndrome, to identify the bit in 

error. The correspondence of values of s to error 

position is captured in Table I. Once the erroneous bit 

is identified, it is corrected by simply inverting the bit. 

 

 
 

This ECC scheme can be applied to the parallel filters 

considered by defining a set of check filters z j . For 

the case of four filters y1, y2, y3, y4 and the Hamming 

code, the check filters would be and the checking is 

done by testing if 

z1[n] = y1[n] + y2[n] + y3[n] 

z2[n] = y1[n] + y2[n] + y4[n] 

z3[n] = y1[n] + y3[n] + y4[n].                                  (7) 
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For example, an error on filter y1 will cause errors on 

the checks of z1, z2, and z3. Similarly, errors on the 

other filters will cause errors on a different group of zi. 

Therefore, as with the traditional ECCs, the error can 

be located and corrected. The overall scheme is 

illustrated on Fig. 4. It can be observed that correction 

is achieved with only three redundant filters. For the 

filters, correction is achieved by reconstructing the 

erroneous outputs using the rest of the data and check 

outputs. For example, when an error on y1 is detected, 

it can be corrected by making. 

 

yc1[n] = z1[n] − y2[n] − y3[n].                                     

(8) 

 

Similar equations can be used to correct errors on the 

rest of the data outputs. 

 
In our case, we can define the check matrix as  and 

calculate s = yHT to detect errors. Then, the vector s is 

also used to identify the filter in error. In our case, a 

nonzero value in vector s is equivalent to 1 in the 

traditional Hamming code. A zero value in the check 

corresponds to a 0 in the traditional Hamming code. It 

is important to note that due to different finite 

precision effects in the original and check filter 

implementations, the comparisons in (7) can show 

small differences. Those differences will depend on 

the quantization effects in the filter implementations 

that have been widely studied for different filter 

structures.  

The interested reader is referred to [12] for further 

details. Therefore, a threshold must be used in the 

comparisons so that values smaller than the threshold 

are classified as 0. This means that small errors may 

not be corrected. This will not be an issue in most 

cases as small errors are acceptable. The detailed study 

of the effect of these small errors on the signal to noise 

ratio at the output of the filter is left for future work. 

The reader can get more details on this type of analysis 

in [3].  

With this alternative formulation, it is clear that the 

scheme can be used for any number of parallel filters 

and any linear block code can be used.  The approach 

is more attractive when the number of filters k is large. 

For example, when k = 11, only four redundant filters 

are needed to provide single error correction. This is 

the same as for traditional ECCs for which the 

overhead decreases as the block size increases [13]. 

The additional operations required for encoding and 

decoding are simple additions, subtractions, and 

comparisons and should have little effect on the 

overall complexity of the circuit. In the discussion, so 

far the effect of errors affecting the encoding and 

decoding logic has not been considered. The encoder 

and decoder include several additions and subtractions 

and therefore the possibility of errors affecting them 

cannot be neglected. Focusing on the encoders, it can 

be seen that some of the calculations of the zi share 

adders.  

 

For example, looking at (6), z1 and z2 share the term 

y1 + y2. Therefore, an error in that adder could affect 

both z1 and z2 causing a miscorrection on y2. To 

ensure that single errors in the encoding logic will not 

affect the data outputs, one option is to avoid logic 

sharing by computing each of the zi independently. In 

that case, errors will only affect one of the zi outputs 

and according to Table 5, the data outputs y j will not 

be affected. Similarly, by avoiding logic sharing, 

single errors in the computation of the s vector will 

only affect one of its bits. The final correction 

elements such as that in (8) need to be tripled to ensure 

that they do not propagate errors to the outputs. 

However, as their complexity is small compared with 

that of the filters, the impact on the overall circuit cost 

will be low. 

 

4 RESULTS: 

4.1 Implementation 
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Figure 3: Internal RTL Schematic 

 

4.2. Window shows getting an error: 

This window shows, the all check bit values are same 

no error occure in the circuit. 

 
Fiure 4 : Getting an NO error output 

 

5. CONCLUSION: 

This brief has presented a new scheme to protect 

parallel filters that are commonly found in modern 

signal processing circuits. The approach is based on 

applying ECCs to the parallel filters outputs to detect 

and correct errors. The scheme can be used for parallel 

filters that have the same response and process 

different input signals. A case study has also been 

discussed to show the effectiveness of the scheme in 

terms of error correction and also of circuit overheads. 

The technique provides larger benefits when the 

number of parallel filters is large. 

 

6.FUTURE SCOPE: 

The proposed scheme can also be applied to the IIR 

filters. Future work will consider the evaluation of the 

benefits of the proposed technique for IIR filters. The 

extension of the scheme to parallel filters that have the 

same input and different impulse responses is also a 

topic for future work. The proposed scheme can also 

be combined with the reduced precision replica 

approach presented in [3] to reduce the overhead 

required for protection.  

This will be of interest when the number of parallel 

filters is small as the cost of the proposed scheme is 

larger in that case. Another interesting topic to 

continue this brief is to explore the use of more 

powerful multi bit ECCs, such as Bose–Chaudhuri–

Hocquenghem codes, to correct errors on multiple 

filters. 
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