

 Page 1869

A Noval Approach for ATPG Router Configuration

CH.Sireesha

M.Tech,

Center for Electronic Research &

Development, Dept of Electronics

& Communication Engineering,

Mallareddy Institute of

Engineering and Technology,

Secunderabad, India.

R.Raja Kishore

Assistant Professor,

Center for Electronic Research &

Development, Dept of Electronics

& Communication Engineering,

Mallareddy Institute of

Engineering and Technology,

Secunderabad, India.

Dr.M Narsing Yadav

Professor & HOD,

Center for Electronic Research &

Development, Dept of Electronics

& Communication Engineering,

Mallareddy Institute of

Engineering and Technology,

Secunderabad, India.

ABSTRACT:

Networks are getting larger and more complex, yet

administrators rely on rudimentary tools such as and to

debug problems. We propose an automated and

systematic approach for testing and debugging

networks called “Automatic Test Packet Generation”

(ATPG). ATPG reads router configurations and

generates a device-independent model. The model is

used to generate a minimum set of test packets to

(minimally) exercise every link in the network or

(maximally) exercise every rule in the network. Test

packets are sent periodically, and detected failures

trigger a separate mechanism to localize the fault.

ATPG can detect both functional (e.g., incorrect

firewall rule) and performance problems (e.g.,

congested queue). ATPG complements but goes

beyond earlier work in static checking (which cannot

detect liveness or performance faults) or fault

localization (which only localize faults given liveness

results). We find that a small number of test packets

suffice to test all rules in these networks: For example,

4000 packets can cover all rules in Stanford backbone

network, while 54 are enough to cover all links.

Sending 4000 test packets 10 times per second

consume less than 1% of link capacity. ATPG code

and the datasets are publicly available.

Index Terms:

Data plane analysis, network troubleshooting, test

packet generation.

INTRODUCTION:

IT IS notoriously hard to debug networks. Every day,

network engineers wrestle with router

misconfigurations, fiber cuts, faulty interfaces,

mislabeled cables, software bugs, intermittent links,

and a myriad other reasons that cause networks to

misbehave or fail completely. Network engineers hunt

down bugs using the most rudimentary tools (e.g.,

SNMP) and track down root causes using a

combination of accrued wisdom and intuition.

Debugging networks is only becoming harder as

networks are getting bigger (modern data centers may

contain 10 000 switches, a campus network may serve

50 000 users, a 100-Gb/s long-haul link may carry 100

000 flows) and are getting more complicated (with

over 6000 RFCs, router software is based on millions

of lines of source code, and network chips often

contain billions of gates). The main contribution of this

paper is what we call an Automatic Test Packet

Generation (ATPG) framework that automatically

generates a minimal set of packets to test the liveness

of the underlying topology and the congruence

between data plane state and configuration

specifications. The tool can also automatically

generate packets to test performance assertions such as

packet latency. ATPG detects and diagnoses errors by

independently and exhaustively testing all forwarding

entries, firewall rules, and any packet processing rules

in the network. In ATPG, test packets are generated

algorithmically from the device configuration files and

FIBs, with the minimum number of packets required

for complete coverage.

 Page 1870

Test packets are fed into the network so that every rule

is exercised directly from the data plane. Since ATPG

treats links just like normal forwarding rules, its full

coverage guarantees testing of every link in the

network. It can also be specialized to generate a

minimal set of packets that merely test every link for

network liveness. At least in this basic form, we feel

that ATPG or some similar technique is fundamental

to networks: Instead of reacting to failures, many

network operators such as Internet2 [14] proactively

check the health of their network using pings between

all pairs of sources.

EXISTING SYSTEM

1. Testing liveness of a network is a fundamental

problem for ISPs and large data centre operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable. It suffices to find a

minimal set of end-to-end packets that traverse each

link. However, doing this requires a way of abstracting

across device specific configuration files, generating

headers and the links they reach, and finally

determining a minimum set of test packets (Min-Set-

Cover).

2. To check enforcing consistency between policy and

the configuration.

DISADVANTAGES OF EXISTING SYSTEM:

1. Not designed to identify liveness failures, bugs

router hardware or software, or performance problems.

2. The two most common causes of network failure are

hardware failures and software bugs, and that

problems manifest themselves both as reachability

failures and throughput/latency degradation.

Definitions:

Below Fig. summarizes the definitions in our model.

Packets:

A packet is defined by a (port, header) tuple, where the

(port) denotes a packet’s position in the network at any

time instant; each physical port in the network is

assigned a unique number.

Switches:

A switch transfer function, , models a network device,

such as a switch or router. Each network device

contains a set of forwarding rules (e.g., the forwarding

table) that determine how packets are processed. An

arriving packet is associated with exactly one rule by

matching it against each rule in descending order of

priority, and is dropped if no rule matches.

Rules:

A rule generates a list of one or more output packets,

corresponding to the output port(s) to which the packet

is sent, and defines how packet fields are modified.

The rule abstraction models all real-world rules we

know including IP forwarding (modifies port,

checksum, and TTL, but not IP address); VLAN

tagging (adds VLAN IDs to the header); and ACLs

(block a header, or map to a queue). Essentially, a rule

defines how a region of header space at the ingress

(the set of packets matching the rule) is transformed

into regions of header space at the egress [16].

Rule History:

At any point, each packet has a rule history: an ordered

list of rules the packet matched so far as it traversed

the network.

 Page 1871

Rule histories are fundamental to ATPG, as they

provide the basic raw material from which ATPG

constructs tests.

Topology:

The topology transfer function, T, models the network

topology by specifying which pairs of ports are

connected by links. Links are rules that forward

packets from Psrc to Pdst without modification. If no

topology rules match an input port, the port is an edge

port, and the packet has reached its destination.

Life of a Packet:

The life of a packet can be viewed as applying the

switchand topology transfer functions repeatedly.

When a packet arrives at a network port, the switch

function that contains the input port is applied to,

producing a list of new packets. If the packet reaches

its destination, it is recorded. Otherwise, the topology

function is used to invoke the switch function

containing the new port. The process repeats until

packets reach their destinations (or are dropped).

ATPG SYSTEM:

Based on the network model, ATPG generates the

minimal number of test packets so that every

forwarding rule in the network is exercised and

covered by at least one test packet. When an error is

detected, ATPG uses a fault localization algorithm to

determine the failing rules or links.

 Above is a block diagram of the ATPG system. The

system first collects all the forwarding state from the

network (step 1).

This usually involves reading the FIBs, ACLs, and

configuration files, as well as obtaining the topology.

ATPG uses Header Space Analysis [16] to compute

reachability between all the test terminals (step 2). The

result is then used by the test packet selection

algorithm to compute a minimal set of test packets that

can test all rules (step 3). These packets will be sent

periodically by the test terminals (step 4). If an error is

detected, the fault localization algorithm is invoked to

narrow down the cause of the error (step 5). While

steps 1 and 2 are described in [16], steps 3–5 are new.

Test Packet Generation

1) Algorithm:

We assume a set of test terminals in the network can

send and receive test packets. Our goal is to generate a

set of test packets to exercise every rule in every

switch function, so that any fault will be observed by

at least one test packet. This is analogous to software

test suites that try to test every possible branch in a

program. The broader goal can be limited to testing

every link or every queue. When generating test

packets, ATPG must respect two key constraints: 1)

Port: ATPG must only use test terminals that are

available;

2) Header:

ATPG must only use headers that each test terminal is

permitted to send. For example, the network

administrator may only allow using a specific set of

VLANs. Formally, we have the following problem.

Problem 1 (Test Packet Selection):

For a network with the switch functions, , and

topology function, , determine the minimum set of test

packets to exercise all reachable rules, subject to the

port and header constraints. ATPG chooses test

packets using an algorithm we call TestPacket

Selection (TPS). TPS first finds all equivalent classes

between each pair of available ports. An equivalent

class is a set of packets that exercises the same

combination of rules.

 Page 1872

It then samples each class to choose test packets, and

finally compresses the resulting set of test packets to

find the minimum coveringset.

2) Properties:

The TPS algorithm has the following useful properties.

Property 1 (Coverage):

The set of test packets exercise all reachable rules and

respect all port and header constraints.

Proof Sketch:

Define a rule to be reachable if it can be exercised by

at least one packet satisfying the header constraint, and

can be received by at least one test terminal. A

reachable rule must be in the all-pairs reachability

table; thus, set cover will pick at least one packet that

exercises this rule. Some rules are not reachable: For

example, an IP prefix may be made unreachable by a

set of more specific prefixes either deliberately (to

provide backup) or accidentally (due to

misconfiguration).

Property 2 (Near-Optimality):

The set of test packets selected by TPS is optimal

within logarithmic factors among all tests giving

complete coverage.

Proof Sketch:

This follows from the logarithmic (in the size of the

set) approximation factor inherent in Greedy Set

Cover.

Property 3 (Polynomial Runtime):

The complexity of finding test packets is where the

number of test terminals is, is the network diameter,

and is the average number of rules in each switch.

Proof Sketch: The complexity of computing

reachability from one input port is, and this

computation is repeated for each test terminal.

B. Fault Localization

ATPG periodically sends a set of test packets. If test

packets fail, ATPG pinpoints the fault(s) that caused

the problem.

1) Fault Model:

A rule fails if its observed behavior differs from its

expected behavior. ATPG keeps track of where rules

fail using a result function. For a rule, the result

function is defined as

“Success” and “failure” depend on the nature of the

rule: Aforwarding rule fails if a test packet is not

delivered to the intendedoutput port, whereas a drop

rule behaves correctly when packets are dropped.

Similarly, a link failure is a failure of a forwarding rule

in the topology function. On the other hand, if an

output link is congested, failure is captured by the

latency of a test packet going above a threshold.

2. Algorithm:

Our algorithm for pinpointing faulty rules assumesthat

a test packet will succeed only if it succeeds at every

hop. For intuition, a ping succeeds only when all the

forwarding rules along the path behave correctly.

Similarly, if a queue is congested, any packets that

travel through it will incur higher latency and may fail

an end-to-end test.

We solve this problem opportunistically and in steps.

Step 1:Consider the results from sending the regular

testpackets. For every passing test, place all rules they

exercise into a set of passing rules. Similarly, for every

failing test, placeall rules they exercise into a set of

potentially failing rules .By our assumption, one or

more of the rules in F are in error. Therefore, F-P is a

set of suspect rules.

 Page 1873

Step 2:ATPG next trims the set of suspect rules by

weedingout correctly working rules. ATPG does this

using the reservedpackets (the packets eliminated by

Min-Set-Cover). ATPG selects reserved packets whose

rule histories contain exactly onerule from the suspect

set and sends these packets. Suppose a reserved packet

exercises only rule in the suspect set. If the sending of

fails, ATPG infers that rule is in error;

Step 3:In most cases, the suspect set is small enough

afterStep 2, that ATPG can terminate and report the

suspect set.If needed, ATPG can narrow down the

suspect set further by sending test packets that exercise

two or more of the rules in the suspect set using the

same technique underlying Step 2. If these test packets

pass, ATPG infers that none of the exercised rules are

in error and removes these rules from the suspect set.

If our Fault Propagation assumption holds, the method

will not miss any faults, and therefore will have no

false negatives. False Positives: Note that the

localization method may introduce

False positives, rules left in the suspect set at the end

of Step 3. Specifically, one or more rules in the suspect

set may in fact behave correctly. False positives are

unavoidable in some cases. When two rules are in

series and there is no path to exercise only one of

them, we say the rules are indistinguishable; any

packet that exercises one rule will also exercise the

other. Hence, if only one rule fails, we cannot tell

which one. For example, if an ACL rule is followed

immediately by a forwarding rule that matches the

same header, the two rules are indistinguishable.

Observe that if we have test terminals before and after

each rule (impractical in many cases), with sufficient

test packets, we can distinguish every rule. Thus, the

deployment of test terminals not only affects test

coverage, but also localization accuracy.

Proposed System:

 Contender framework generates minimum no of

packets automatically to debug the false occurring in

the network model This tool could automatically

generate packets for checking performance assertions

such as like packet loss finds and determines errors by

independently testing all forwarding entries any packet

processing rules and security models in network test

packets are generated algorithmically from device

configuration files and from FIBs which requires

minimum number of packets for complete coverage

Test packets are fed into the network in which that

every rule is covered directly from the data plane Since

treats links like normal forwarding conditions its full

coverage provides testing of every link in the network

model It can also best specialized to form a minimal

set of packets that obviously test every link for

network likeness At least in this basic form, we would

feel that some different technique is fundamental to

networks Instead of reacting to failures many network

operators such as proactivelycheck the health of their

network using pings between all pairs of sources all-

pairs does not provide testing of all links and has been

found to be unsalable for large networks such as Planet

Lab.

IV. Methodology The proposed system can be

divided into following modules:

 1. Failures and root causes of network operators

2. Data plane analysis

3. Network troubleshooting

4. ATPG system

5. Network Monitor

1. Failure and Root Causes of Network Operators:

Network traffic is represented to a specific queue in

router but these packets are drizzled because the rate of

token bucket low It is difficult to troubleshoot a

network for three different models First the forwarding

state is shared to multiple routers and security and is

determined by the forwarding data filter conditions and

configuration parameters Second the forwarding state

is difficult to watch because it requires manually

logging into every box in the network model Third the

forwarding state is edited simultaneously by different

programs protocols and humans.

2. Data Plane Analysis:

Automatic Test Packet Generation framework which

automatically generates a minimum set of packets to

check the likeness of underlying network models and

 Page 1874

congruence different data plane state and configuration

specifications These model can automatically generate

packets to test performance assertions like packet

latency ATPG find faults by independently and

exhaustively checking all security rules forwarding

entries and packet processing conditions in network.

The test packets are generated algorithmically from the

device configuration different files and FIBs, with less

number of packets needed for whole coverage Test

packets are fed in the network so that every rule is

covered directly from the data plane. This tool can be

customized to check only for reach ability or for its

performance.

3. Network Troubleshooting:

The cost of network debugging is captured by two

metrics. One is the number of network-related tickets

per month and another is the average time taken to

resolve a ticket. There are 35% of networks which

generate more than 100 tickets per month. Of the

respondents, 40.4% estimate takes under 30 minutes to

resolve a ticket. If asked what is the ideal tool for

network debugging it would be, 70.7% reports

automatic test generation to check performance and

correctness. Some of them added a desire for long

running tests to find jitter or intermittent real-time link

capacity monitoring and monitoring tools for network

state. In short, while our survey is small, it helps the

hypothesis that network administrators face

complicated symptoms and causes.

4. ATPG Systems:

Depending on network model ATPG generates less

number of test packets so that every forwarding rule is

exercised and covered by at least one test packet.

When an error is found, ATPG use different

localization algorithm to ascertain the failing rules in

network model.

5. Network Monitor:

To send and receive test data packet network monitor

assumes special test agents in the network. The

network monitor gets thedatabase and builds test

packets and instructs each different to send the proper

packets Recently test agents partition test packets by

IP Proto field and TCP/UDP port number but other

fields like IP option can be used If any tests fail the

monitor chooses extra test packets from booked

packets to find the faults The process gets repeated till

the fault has been identified To communicate with test

agents monitor uses and SQL it string matching to

lookup test packets efficiently.

Performance:

The principal component overhead for ATPG are

polling the network periodically for forwarding state

and performing two reachable While one can reduce

overhead by running the offline ATPG calculation less

frequently this runs the risk of using out-ofdate

forwarding information we reduce overhead in two

ways First we have recently fast up the all-pairs reach

ability calculation using a fast multithreaded. Second,

instead of extracting the complete network state every

time ATPG is triggered an incremental state updater

can significantly reduce both the retrieval time and the

time to calculate reach ability We are working on a

real life version of ATPG that incorporates both

techniques Test agents within terminals incur

negligible overhead because they merely de multiplex

test packets addressed to their IP address at a modest

rate compared to the link speeds gb most modern

CPUs are capable taken.

Conclusion:

In current System it uses a method that is neither

exhaustive nor scalable different it reaches all pairs of

edge nodes it could take detect faults in likeness

properties ATPG goes much further than likeness

testing with different framework ATPG could test for

reach ability model and performance methods Our

implementation also enlarges testing with simple

errors localization scheme also build using header

space framework

Future Enhancement:

Even one of the requirements gathered through the

voice of customers and feedback different users are

implemented there are always opportunities to enhance

 Page 1875

model this tool and take it to the onelevel by

automating different steps involved upon any level of

code changes Explore automatically generating the

unit tests results specific to the project without

different the platform and save them to the output PDF

Explore automatically generating the code coverage

report and integrate in to the code review packet

generation process Provide users used to upload the

file directly to the given network location.

Results

Maximum no of packets delivered in proposed

system

Performance of latency in proposed system

Performance analysis in proposed system

References:

[1] HongyiZeng, PeymanKazemian, George Varghese,

ACM, and Nick McKeown, ACM,“Automatic Test

Packet Generation”.

[2] M. Jain, C. Dovrolis,“End-to-end available

bandwidth: Measurement methodology, dynamics, and

relation with TCP throughput”, IEEE/ACM Trans.

Netw., Vol. 11, No. 4, pp. 537–549, Aug. 2003.

[3] Kompella, R. R., Greenberg, A., Rexford, J.,

Snoeren, A. C., Yates, J. Cross-layer Visibility as a

Service", In Proc. of fourth workshop on Hot Topics in

Networks (HotNet-IV) (2005)

[4] D. Maltz, G. Xie, J. Zhan, H. Zhang, G.

Hjalmtysson, A. Greenberg,"Routing design in

operational networks: A look from the inside", In Proc.

ACM SIGCOMM, 2004.

[5] Mark Stemm, Randy Katz, SrinivasanSeshan,“A

network measurement architecture for adaptive

applications”, In Proceedings of the nineteenth Annual

Joint Conference of the IEEE Computer and

Communications Societies, pp. 285 - 294, 2000.

[6] Verma, D.,"Simplifying Network Administration

using Policy based Management".

[7] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu,

S.-J. Lee, “S3: A scalable sensing service for

monitoring large networked systems".

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald

L. Rivest,"Introduction To Algorithms", Eastern

Economy Edition.New Delhi: Prentice-Hall of India

Private Limited 1998.

[9] E Balagurusamy,"Programming in ANSI C",

Second edition. New Delhi: Tata McGraw-Hill, 1997.

[10] Deitel&Deitel, C++ How To Program, Second

Edition, New Jersey, NJ Prentice Hall, 1997

[11] Tom Christiansen, NathnTorkington,"Perl

Cookbook: Solutions and Examples For Perl

Programmers", 1st Edition, Sebastopol, CA: O’Reilly

& Associates, Inc., 1999.

 Page 1876

[12] Nathan Patwardhan, Ellen Siever and Stephen

Spainhour, PERL In A Nutshell, 2nd Edition,

Sebastopol, CA: O’Reilly & Associates, Inc., 2002.

[13] Tom Milligan, “Using Perl With Rational

ClearCase Automation Library”, 2004Retrieved

Nov10, 2010 fromWorld Wide Web

[14] E. Dustin, J. Raska, J. Paul,"Automated Software

Testing: Introduction Management and Performance",

New York, NY: Addison-Wesley, 1999.

[15] R. S. Pressman,"Software Engineering: A

Practitioner’s Approach", 4th edition. Berkeley, CA:

Osborne/McGrawHill, 1997.

