

 Page 1504

Data and Identity Privacy Using Anonymous Privilege Control

Scheme in Cloud

C.Sandeep Kumar

M.Tech (CSE)

Vignana Bharathi Institute of Technology.

N.Srinivas

Associate Professor & HoD,

Vignana Bharathi Institute of Technology.

ABSTRACT:

Cloud computing is a revolutionary computing

paradigm, which enables flexible, on-demand, and

low-cost usage of computing resources, but the data

is outsourced to some cloud servers, and various

privacy concerns emerge from it. Various schemes

based on the attribute-based encryption have been

proposed to secure the cloud storage. However, most

work focuses on the data contents privacy and the

access control, while less attention is paid to the

privilege control and the identity privacy. In this

paper, we present a semi anonymous privilege control

scheme AnonyControl to address not only the data

privacy, but also the user identity privacy in existing

access control schemes.

AnonyControl decentralizes the central authority to

limit the identity leakage and thus achieves semi

anonymity. Besides, it also generalizes the file access

control to the privilege control, by which privileges of

all operations on the cloud data can be managed in a

fine-grained manner. Subsequently, we present the

AnonyControl-F, which fully prevents the identity

leakage and achieve the full anonymity. Our security

analysis shows that both AnonyControl and

AnonyControl-F are secure under the decisional

bilinear Diffie–Hellman assumption, and our

performance evaluation exhibits the feasibility of our

schemes.

INTRODUCTION

What is cloud computing?

Cloud computing is the use of computing resources

(hardware and software) that are delivered as a service

over a network (typically the Internet). The name

comes from the common use of a cloud-shaped symbol

as an abstraction for the complex infrastructure it

contains in system diagrams. Cloud computing entrusts

remote services with a user's data, software and

computation. Cloud computing consists of hardware

and software resources made available on the Internet

as managed third-party services. These services

typically provide access to advanced software

applications and high-end networks of server

computers.

Structure of cloud computing

How Cloud Computing Works?

The goal of cloud computing is to apply

traditional supercomputing, or high-performance

computing power, normally used by military and

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Internet
http://www.webopedia.com/TERM/S/supercomputer.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html
http://www.webopedia.com/TERM/H/High_Performance_Computing.html

 Page 1505

research facilities, to perform tens of trillions of

computations per second, in consumer-oriented

applications such as financial portfolios, to deliver

personalized information, to provide data storage or to

power large, immersive computer games.The cloud

computing uses networks of large groups

of servers typically running low-cost consumer PC

technology with specialized connections to spread

data-processing chores across them. This

shared IT infrastructure contains large pools of

systems that are linked together. Often, virtualization

techniques are used to maximize the power of cloud

computing.

Characteristics and Services Models:

The salient characteristics of cloud computing based

on the definitions provided by the National Institute of

Standards and Terminology (NIST) are outlined

below:

 On-demand self-service: A consumer can

unilaterally provision computing capabilities,

such as server time and network storage, as

needed automatically without requiring human

interaction with each service’s provider.

 Broad network access: Capabilities are

available over the network and accessed

through standard mechanisms that promote use

by heterogeneous thin or thick client platforms

(e.g., mobile phones, laptops, and PDAs).

 Resource pooling: The provider’s computing

resources are pooled to serve multiple

consumers using a multi-tenant model, with

different physical and virtual resources

dynamically assigned and reassigned

according to consumer demand. There is a

sense of location-independence in that the

customer generally has no control or

knowledge over the exact location of the

provided resources but may be able to specify

location at a higher level of abstraction (e.g.,

country, state, or data center). Examples of

resources include storage, processing,

memory, network bandwidth, and virtual

machines.

 Rapid elasticity: Capabilities can be rapidly

and elastically provisioned, in some cases

automatically, to quickly scale out and rapidly

released to quickly scale in. To the consumer,

the capabilities available for provisioning

often appear to be unlimited and can be

purchased in any quantity at any time.

 Measured service: Cloud systems

automatically control and optimize resource

use by leveraging a metering capability at

some level of abstraction appropriate to the

type of service (e.g., storage, processing,

bandwidth, and active user accounts).

Resource usage can be managed, controlled,

and reported providing transparency for both

the provider and consumer of the utilized

service.

Characteristics of cloud computing

Services Models:

Cloud Computing comprises three different service

models, namely Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). The three service models or layer are

completed by an end user layer that encapsulates the

end user perspective on cloud services.

The model is shown in figure below. If a cloud user

accesses services on the infrastructure layer, for

instance, she can run her own applications on the

resources of a cloud infrastructure and remain

responsible for the support, maintenance, and security

http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/S/server.html
http://www.webopedia.com/TERM/I/IT.html
http://www.webopedia.com/TERM/V/virtualization.html

 Page 1506

of these applications herself. If she accesses a service

on the application layer, these tasks are normally taken

care of by the cloud service provider.

Structure of service models

Benefits of cloud computing:

1. Achieve economies of scale – increase

volume output or productivity with fewer

people. Your cost per unit, project or product

plummets.

2. Reduce spending on technology

infrastructure Maintain easy access to your

information with minimal upfront spending.

Pay as you go (weekly, quarterly or yearly),

based on demand.

3. Globalize your workforce on the cheap.

People worldwide can access the cloud,

provided they have an Internet connection.

4. Streamline processes. Get more work done in

less time with less people.

5. Reduce capital costs. There’s no need to

spend big money on hardware, software or

licensing fees.

6. Improve accessibility. You have access

anytime, anywhere, making your life so much

easier!

7. Monitor projects more effectively. Stay

within budget and ahead of completion cycle

times.

8. Less personnel training is needed. It takes

fewer people to do more work on a cloud, with

a minimal learning curve on hardware and

software issues.

9. Minimize licensing new software. Stretch

and grow without the need to buy expensive

software licenses or programs.

10. Improve flexibility. You can change direction

without serious “people” or “financial” issues

at stake.

Advantages:

1. Price: Pay for only the resources used.

2. Security: Cloud instances are isolated in the

network from other instances for improved

security.

3. Performance: Instances can be added

instantly for improved performance. Clients

have access to the total resources of the

Cloud’s core hardware.

4. Scalability: Auto-deploy cloud instances

when needed.

5. Uptime: Uses multiple servers for maximum

redundancies. In case of server failure,

instances can be automatically created on

another server.

6. Control: Able to login from any location.

Server snapshot and a software library lets you

deploy custom instances.

7. Traffic: Deals with spike in traffic with quick

deployment of additional instances to handle

the load.

IMPLEMENTATION

MODULES:

 Achieving full anonymity

 Fully Anonymous Multi-Authority CP-ABE

 Security Model

 Security Analysis

 Page 1507

MODULES DESCRIPTION

Achieving full anonymity

We have assumed semi-honest authorities in

AnonyControl and we assumed that they will not

collude with each other. This is a necessary

assumption in AnonyControl because each authority is

in charge of a subset of the whole attributes set, and

for the attributes that it is in charge of, it knows the

exact information of the key requester. If the

information from all authorities is gathered altogether,

the complete attribute set of the key requester is

recovered and thus his identity is disclosed to the

authorities. In this sense, AnonyControl is

semianonymous since partial identity information

(represented as some attributes) is disclosed to each

authority, but we can achieve a full-anonymity and

also allow the collusion of the authorities.

Fully Anonymous Multi-Authority CP-ABE

The KeyGenerate algorithm is the only part which

leaks identity information to each attribute authority.

Upon receiving the attribute key request with the

attribute value, the attribute authority will generate

H(att (i))ri and sends it to the requester where att (i) is

the attribute value and ri is a random number for that

attribute. The attribute value is disclosed to the

authority in this step. We can introduce the above 1-

out-of-n OT to prevent this leakage. We let each

authority be in charge of all attributes belonging to the

same category. For each attribute category c (e.g.,

University), suppose there are k possible attribute

values (e.g., IIT, NYU, CMU ...), then one requester

has at most one attribute value in one category.

Security Model

Setup→PK,MKk : This algorithm takes nothing as

input except implicit inputs such as security

parameters. Attributes authorities execute this

algorithm to jointly compute a system-wide public

parameter PK as well as an authority-wide public

parameter yk , and to individually compute a master

key MKk .KeyGenerate(PK, MKk, Au) → SKu: This

algorithm enables a user to interact with every attribute

authority, and obtains a private key SKu

corresponding to the input attribute set Au.

Encrypt(PK, M, {Tp}p∈ {0,...,r−1}) → (CT,VR): This

algorithm takes as input the public key PK, a message

M, and a set of privilege trees {Tp}p∈ {0,...,r−1},

where r is determined by the encrypter. It will encrypt

the message M and returns a ciphertext CT and a

verification set VR so that a user canexecute specific

operation on the ciphertext if and only if his attributes

satisfy the corresponding privilege tree Tp. As we

defined, T0 stands for the privilege to read the file.

Decrypt(PK, SKu , CT) → M or verification

parameter: This algorithm will be used at file

controlling (e.g. reading, modification, deletion). It

takes as input the public key PK, a ciphertext CT, and

a private key SKu, which has a set of attributes Au and

corresponds to its holder’s GIDu.

Security Analysis

In the proposed scheme, an authority generates a set

of random secret parameters and shares it with other

authorities via secure channel, and is computed based

on this parameters. It is believed that DDH problem is

intractable in the group G0 of prime order p, therefore

does not leak any statistical information about . This

implies even if an adversary is able to compromise up

to (N − 2) authorities, there are still two parameters

kept unknown to the adversary.

INPUT DESIGN

The input design is the link between the information

system and the user. It comprises the developing

specification and procedures for data preparation and

those steps are necessary to put transaction data in to a

usable form for processing can be achieved by

inspecting the computer to read data from a written or

printed document or it can occur by having people

keying the data directly into the system. The design of

input focuses on controlling the amount of input

required, controlling the errors, avoiding delay,

avoiding extra steps and keeping the process simple.

The input is designed in such a way so that it provides

security and ease of use with retaining the privacy.

Input Design considered the following things:

 Page 1508

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel

in providing input.

 Methods for preparing input validations and

steps to follow when error occur.

OBJECTIVES

1.Input Design is the process of converting a user-

oriented description of the input into a computer-based

system. This design is important to avoid errors in the

data input process and show the correct direction to the

management for getting correct information from the

computerized system.

2. It is achieved by creating user-friendly screens for

the data entry to handle large volume of data. The goal

of designing input is to make data entry easier and to

be free from errors. The data entry screen is designed

in such a way that all the data manipulates can be

performed. It also provides record viewing facilities.

3.When the data is entered it will check for its validity.

Data can be entered with the help of screens.

Appropriate messages are provided as when needed so

that the user will not be in maize of instant. Thus the

objective of input design is to create an input layout

that is easy to follow

OUTPUT DESIGN

A quality output is one, which meets the requirements

of the end user and presents the information clearly. In

any system results of processing are communicated to

the users and to other system through outputs. In

output design it is determined how the information is

to be displaced for immediate need and also the hard

copy output. It is the most important and direct source

information to the user. Efficient and intelligent output

design improves the system’s relationship to help user

decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output

must be developed while ensuring that each output

element is designed so that people will find the system

can use easily and effectively. When analysis design

computer output, they should Identify the specific

output that is needed to meet the requirements.

2.Select methods for presenting information.

3.Create document, report, or other formats that

contain information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities,

current status or projections of the

 Future.

 Signal important events, opportunities,

problems, or warnings.

 Trigger an action.

 Confirm an action.

SYSTEM TESTING

The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable

fault or weakness in a work product. It provides a way

to check the functionality of components, sub

assemblies, assemblies and/or a finished product It is

the process of exercising software with the intent of

ensuring that theSoftware system meets its

requirements and user expectations and does not fail in

an unacceptable manner. There are various types of

test. Each test type addresses a specific testing

requirement.

TYPES OF TESTS

Unit testing

Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program inputs produce valid

outputs. All decision branches and internal code flow

should be validated. It is the testing of individual

software units of the application .it is done after the

completion of an individual unit before integration.

This is a structural testing, that relies on knowledge of

its construction and is invasive. Unit tests perform

basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path

 Page 1509

of a business process performs accurately to the

documented specifications and contains clearly defined

inputs and expected results

Integration testing

Integration tests are designed to test integrated

software components to determine if they actually run

as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields.

Integration tests demonstrate that although the

components were individually satisfaction, as shown

by successfully unit testing, the combination of

components is correct and consistent. Integration

testing is specifically aimed at exposing the problems

that arise from the combination of components.

Functional test

Functional tests provide systematic demonstrations

that functions tested are available as specified by the

business and technical requirements, system

documentation, and user manuals.Functional testing is

centered on the following items:

Valid Input : identified classes of valid input

must be accepted.

Invalid Input : identified classes of invalid

input must be rejected.

Functions : identified functions must be

exercised.

Output : identified classes of application

outputs must be exercised.

Systems/Procedures: interfacing systems or procedures

must be invoked.

Organization and preparation of functional tests is

focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined

processes, and successive processes must be

considered for testing. Before functional testing is

complete, additional tests are identified and the

effective value of current tests is determined.

System Test

System testing ensures that the entire integrated

software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is

based on process descriptions and flows, emphasizing

pre-driven process links and integration points.

White Box Testing

White Box Testing is a testing in which in which the

software tester has knowledge of the inner workings,

structure and language of the software, or at least its

purpose. It is purpose. It is used to test areas that

cannot be reached from a black box level.

Black Box Testing

Black Box Testing is testing the software without any

knowledge of the inner workings, structure or

language of the module being tested. Black box tests,

as most other kinds of tests, must be written from a

definitive source document, such as specification or

requirements document, such as specification or

requirements document. It is a testing in which the

software under test is treated, as a black box .you

cannot “see” into it. The test provides inputs and

responds to outputs without considering how the

software works.

6.1 Unit Testing:

Unit testing is usually conducted as part of a combined

code and unit test phase of the software lifecycle,

although it is not uncommon for coding and unit

testing to be conducted as two distinct phases.

Test strategy and approach

Field testing will be performed manually and

functional tests will be written in detail.

Test objectives

 All field entries must work properly.

 Pages must be activated from the identified

link.

 The entry screen, messages and responses

must not be delayed.

 Page 1510

Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct

page.

6.2 Integration Testing

Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures

caused by interface defects. The task of the integration

test is to check that components or software

applications, e.g. components in a software system or –

one step up – software applications at the company

level – interact without error.

Test Results:

All the test cases mentioned above passed

successfully. No defects encountered.

6.3 Acceptance Testing:

User Acceptance Testing is a critical phase of any

project and requires significant participation by the end

user. It also ensures that the system meets the

functional requirements.

Test Results:

All the test cases mentioned above passed

successfully. No defects encountered.

RESULTS:

REFERENCES:

[1] A. Shamir, “Identity-based cryptosystems and

signature schemes,”in Advances in Cryptology. Berlin,

Germany: Springer-Verlag, 1985,pp. 47–53.

[2] A. Sahai and B. Waters, “Fuzzy identity-based

encryption,” in Advancesin Cryptology. Berlin,

Germany: Springer-Verlag, 2005, pp. 457–473.

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-based encryptionfor fine-grained access

control of encrypted data,” in Proc. 13thCCS, 2006,

pp. 89–98.

4 aters, “Ciphertext-policy attributebased encryption,”

in Proc. IEEE SP, May 2007, pp. 321–334.

[5] M. Chase, “Multi-authority attribute based

encryption,” in Theory ofCryptography. Berlin,

Germany: Springer-Verlag, 2007, pp. 515–534.

[6] M. Chase and S. S. M. Chow, “Improving privacy

and security inmulti-authority attribute-based

encryption,” in Proc. 16th CCS, 2009,pp. 121–130.

[7] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure

threshold multi authorityattribute based encryption

without a central authority,” Inf. Sci., vol. 180,no. 13,

pp. 2618–2632, 2010.

[8] V. Božovi´c, D. Socek, R. Steinwandt, and V. I.

Villányi, “Multi-authorityattribute-based encryption

 Page 1511

with honest-but-curious central authority,” Int. J.

Comput. Math., vol. 89, no. 3, pp. 268–283, 2012.

[9] F. Li, Y. Rahulamathavan, M. Rajarajan, and R. C.-

W. Phan, “Low complexity multi-authority attribute

based encryption scheme for mobile cloud

computing,” in Proc. IEEE 7th SOSE, Mar. 2013, pp.

573–577.

[10] K. Yang, X. Jia, K. Ren, and B. Zhang, “DAC-

MACS: Effective data access control for multi-

authority cloud storage systems,” in Proc. IEEE

INFOCOM, Apr. 2013, pp. 2895–2903.

