
 

  
                                                                                                                                                                                                                    Page 174 

 

Efficient Public Integrity Auditing Scheme with Secure Group  

User Revocation Based on Vector Commitment and  

Verifier-Local Revocation Group Signature 

 
Dr.Shaik Abdul Nabi 

Professor, 

Dept of CSE, 

AVN Institute of Engineering and 

Technology. 

 
V.Sridhar Reddy 

Assistant Professor, 

Dept of CSE, 

AVN Institute of Engineering and 

Technology. 

 
P.Rakesh 

PG Scholar, 

Dept of CSE, 

AVN Institute of Engineering and 

Technology. 

 

ABSTRACT: 

The arrival of cloud computing technology makes the 

storage outsourcing become a growing trend, which 

encourages the secure remote data auditing. Data 

auditing is the process of conducting a data review to 

measure how company's data is fit for agreed function. 

This engages profiling of data and assesses the 

collision of pitiable quality data on the organization's 

performance and profits. In recent times, some 

research believes the problem of secure with efficient 

public data integrity auditing for unified dynamic data. 

On the other hand, these systems are still not secure 

beside the collusion of cloud storage server as well as 

revoked group users during user revocation in practical 

cloud storage system. In this paper, we found out that 

the collusion attack in the exiting scheme .An efficient 

public integrity auditing scheme with secure group 

user revocation based on vector commitment plus 

verifier-local revocation group signature. We invented 

a concrete scheme.  

 

We propose a new structure called Decrypt key, which 

provides efficiency and reliability assurance for 

convergent key management on mutually user along 

with cloud storage sides. The design is to apply de-

duplication to the convergent keys to influence secret 

sharing techniques. In particular, we build secret 

shares for the convergent keys and share out them 

across multiple independent key servers.  

 

Our proposed system rigging the public checking and 

efficient user revocation, as well as also some fine  

assets, such as confidently, efficiency, count ability 

and traceability. 

 

Key words: Data storage, cloud storage auditing, 

cloud computation, key exposure resistance 

 

1. INTRODUCTION: 

Cloud computing can help enterprises improve the 

creation and delivery of IT solutions by providing 

them with access to services in a cost-effective and 

flexible manner [2]. Clouds can be classified into three 

categories, depending on their accessibility restrictions 

and the deployment model.  

 

They are: 

• Public Cloud, 

• Private Cloud, and 

• Hybrid Cloud. 

 

A public Cloud is made available in a pay-as-you-go 

manner to the general public users irrespective of their 

origin or affiliation. A private Cloud’s usage is 

restricted to members, employees, and trusted partners 

of the organization. A hybrid Cloud enables the use of 

private and public Cloud in a seamless manner. Cloud 

computing applications span many domains, including 

business, technology, government, health care, smart 



 

  
                                                                                                                                                                                                                    Page 175 

 

grids, intelligent transportation networks, life sciences, 

disaster management, automation, data analytics, and 

consumer and social networks. Various models for the 

creation, deployment, and delivery of these 

applications as Cloud services have emerged. Cloud 

storage auditing is used to verify the integrity of the 

data stored in public cloud, which is one of the 

important security techniques in cloud storage. In 

recent years, auditing protocols for cloud storage have 

attracted much attention and have been researched 

intensively[16]. These protocols focus on numerous 

different characteristics of auditing, achieving high 

bandwidth and computation efficiency is one of the 

essential concerns. For that perseverance, the 

Homomorphic Linear Authenticator (HLA) technique 

that maintains block less verification is explored to 

diminish the overheads of computation and 

communication in auditing protocols, which allows the 

auditor to verify the integrity of the data in cloud 

without retrieving the whole data.Many cloud storage 

auditing protocols have been proposed based on this 

technique. In order to reduce the computational burden 

of the client, a third-party auditor (TPA) is introduced 

to help the client to periodically check the integrity of 

the data in cloud.  

 

However, it is possible for the TPA to get the client’s 

data after it executes the auditing protocol multiple 

times. Auditing protocols in [9] and [10] are designed 

to ensure the privacy of the client’s data in cloud. 

While all existing protocols focus on the faults or 

dishonesty of the cloud, they have overlooked the 

possible weak sense of security and/or low security 

settings at the client. The procedure to deal with the 

client’s secret key exposure for cloud storage auditing 

is a very important problem. It is focused here on how 

to reduce the damage of the clients key exposure in 

cloud storage auditing. The process involves the 

downloading of whole data from the cloud, producing 

new authenticators, and re-uploading everything back 

to the cloud, all of which can be tedious and 

cumbersome in designing a cloud storage auditing 

protocol with built-in key-exposure resilience. Besides, 

it cannot always guarantee that the cloud provides real 

data when the client regenerates new authenticators.  

Unswervingly espousing Standard key-evolving 

technique is also not suitable for the new problem 

setting. It can lead to repossessing all of the actual files 

blocks when the verification is proceeded. This is 

partly because the technique is incompatible with 

block less verification. The resulting authenticators 

cannot be accrued, leading to unacceptably high 

computation and communication cost for the storage 

auditing [6]. 

 

2. RELATED WORK: 

In order to check the integrity of the data stored in the 

remote server, many protocols were proposed [14] 

These protocols focused on various requirements such 

as high efficiency, stateless verification, data dynamic 

operation, privacy protection, etc. According to the 

role of the auditor, these auditing protocols can be 

divided into two categories: private verification and 

public verification. In an auditing protocol with private 

verifiability, the auditor is provided with a secret that 

is not known to the proven or other parties. Only the 

auditor can verify the integrity of the data. In contrast, 

the verification algorithm does not need a secret key 

from the auditor in an auditing protocol with public 

verifiability. Therefore, any third party can play the 

role of the auditor in this kind of auditing protocols. 

Ateniese et al. [1] firstly considered the public 

verification and proposed the notion of ―provable data 

possession‖ (PDP) for ensuring data possession at 

untrusted storages. They used the technique of HLA 

and random sample to audit outsourced data. Juels and 

Kaliski Jr. explored a ―proof of retrievability‖ (PoR) 

model. They used the tools of spot-checking and error-

correcting codes to ensure both possession and 

retrievability of files on remote storage systems. 

Shacham and Waters [5] gave two short and efficient 

homomorphic authenticators: one has private 

verifiability which is based on pseudorandom 

functions; the other has public verifiability which is 

based on the BLS signature. Dodis et al. [31] focused 

on the study on different variants of existing POR 

work. Shah et al. introduced a TPA to keep online 



 

  
                                                                                                                                                                                                                    Page 176 

 

storage honest. The protocol requires the auditor to 

maintain the state, and suffers from bounded usage. 

Wang et al. [10] provided a public auditing protocol 

that has privacy-preserving property. In order to make 

the protocol achieve privacy-preserving property, they 

integrate the HLA with random masking technique. 

Wang proposed a proxy provable data possession 

protocol. In this protocol, the client delegates its data 

integrity checking task to a proxy. Dynamic data 

operations for audit services are also attended in order 

to make auditing more flexible. Ateniese et al. [2] 

firstly proposed a partially dynamic PDP protocol. 

Wang et al. [11] proposed another auditing protocol 

supporting data dynamics. In this protocol, they 

utilized the BLS-based HLA and Merkle Hash Tree to 

support fully data dynamics. Erway et al. [13] 

extended the PDP model and proposed a skip list-

based protocol with dynamics support. Zhu et al. 

proposed a cooperative provable data possession 

protocol which can be extended to support the 

dynamic auditing. Yang and Jia [9] proposed a 

dynamic auditing protocol with privacy-preserving 

property. The problem of user revocation in cloud 

storage auditing was considered in [15].  Most of 

above auditing protocols are all built on the 

assumption that the secret key of the client is 

absolutely secure and would not be exposed. But as we 

have shown previously, this assumption may not 

always be true. The current work advances the field by 

exploring how to achieve key-exposure resistance in 

cloud storage auditing, under the new problem 

settings. 

 

3. SYSTEM DESIGN: 

The first study has been done on how to achieve the 

key-exposure resilience in the storage auditing 

protocol and propose a new concept called auditing 

protocol with key-exposure resilience [4]. In such a 

protocol, any dishonest behaviors, such as deleting or 

modifying some client’s data stored in cloud in 

previous time periods, can all be detected, even if the 

cloud gets the client’s current secret key for cloud 

storage auditing [9]. This very important issue is not 

addressed before by previous auditing protocol 

designs. We further formalize the definition and the 

security model of auditing protocol with key-exposure 

resilience for secure cloud storage. We design and 

realize the first practical auditing protocol with built-in 

key-exposure resilience for cloud storage. In order to 

achieve current goal, we employ the binary tree 

structure, seen in a few previous works [4] on different 

cryptographic designs, to update the secret keys of the 

client. Such a binary tree structure can be considered 

as a variant of the tree structure used in the HIBE 

scheme [9]. In addition, the pre-order traversal 

technique is used to associate each node of a binary 

tree with each time period. In current detailed protocol, 

the stack structure is used to realize the pre-order 

traversal of the binary tree. We also design a novel 

authenticator supporting the forward security and the 

property of block less verifiability. We prove the 

security of current protocol in the formalized security 

model, and justify its performance via concrete 

asymptotic analysis. Indeed, the proposed protocol 

only adds reasonable overhead to achieve the key-

exposure resilience.  

 

We also show that current proposed design can be 

extended to support the TPA, lazy update and multiple 

sectors. An auditing system for secure cloud storage in 

Fig. 1. The system involves two parties: the client 

(files owner) and the cloud. The client produces files 

and uploads these files along with corresponding 

authenticators to the cloud. The cloud stores these files 

for the client and provides download service if the 

client requires. Each file is furthermore divided into 

multiple blocks [2]. For the simplicity of description, 

The client can periodically audit whether his files in 

cloud are correct. The lifetime of files stored in the 

cloud is divided into T + 1 time periods . In current 

model, the client will update his secret keys for cloud 

storage auditing in the end of each time period, but the 

public key is always unchanged. The cloud is allowed 

to get the client’s secret key for cloud storage auditing 

in one certain time period. It means the secret key 

exposure can happen in this system model. An auditing 

protocol with key-exposure resilience is composed by 

five algorithms (Sys Setup, Key Update, Auth Gen, 



 

  
                                                                                                                                                                                                                    Page 177 

 

Proof Gen, Proof Verify), Current security model 

considers the notion of the forward security [11] and 

data possession property [1]. In Table I, we indicate a 

game to describe an adversary A against the security of 

an auditing protocol with key-exposure resilience. 

 
 

Fig. 1.1. System model of current cloud storage 

auditing 

 

An auditing system for secure cloud storage in Fig. 1. 

The system involves two parties: the client (files 

owner) and the cloud. The client produces files and 

uploads these files along with corresponding 

authenticators to the cloud. The cloud stores these files 

for the client and provides download service if the 

client requires. Each file is furthermore divided into 

multiple blocks [2]. For the simplicity of description, 

The client can periodically audit whether his files in 

cloud are correct. The lifetime of files stored in the 

cloud is divided into T + 1 time periods . In current 

model, the client will update his secret keys for cloud 

storage auditing in the end of each time period, but the 

public key is always unchanged. The cloud is allowed 

to get the client’s secret key for cloud storage auditing 

in one certain time period. It means the secret key 

exposure can happen in this system model. An auditing 

protocol with key-exposure resilience is composed by 

five algorithms (SysSetup, KeyUpdate, AuthGen, 

ProofGen, ProofVerify), Current security model 

considers the notion of the forward security [11] and 

data possession property [1]. In Table I, we indicate a 

game to describe an adversary A against the security of 

an auditing protocol with key-exposure resilience.  

 

Table 1: A game to describe an adversary against 

the security of the protocol 

 
The above security model captures that an adversary 

cannot forge a valid proof for a time period prior to 

key exposure without owning all the blocks 

corresponding to a given challenge, if it cannot guess 

all the missing blocks. In each time period prior to key 

exposure, the adversary is allowed to query the 

authenticators of all the blocks. The adversary can be 

given a secret key for auditing in the key-exposure 

(break-in) time period. 

 

4. PROPOSED SYSTEM: 

We firstly show two basic solutions for the key-

exposure problem of cloud storage auditing before we 

give current core protocol. The first is a ingenuous 

solution, which in fact cannot fundamentally solve this 

problem. In this solution, the client still uses the 

traditional key revocation method. Once the client 

knows his secret key for cloud storage auditing is 

exposed, he will revoke this secret key and the 

corresponding public key. Meanwhile, he generates 

one new pair of secret key and public key, and 

publishes the new public key by the certificate 

update[8]. The authenticators of the data previously 

stored in cloud, however, all need to be updated 

because the old secret key is no longer secure. Thus, 

the client needs to download all his previously stored 

data from the cloud, produce new authenticators for 

them using the new secret key, and then upload these 

new authenticators to the cloud[7]. The second is a 

slightly better solution, which can solve this problem 

but has a large overhead.  



 

  
                                                                                                                                                                                                                    Page 178 

 

They are both impractical when applied in realistic 

settings. And then we give current core protocol that is 

much more efficient than both of the basic solutions. 

Current goal is to design a practical auditing protocol 

with key-exposure resilience, in which the operational 

complexities of key size, computation overhead and 

communication overhead should be at most sub linear 

to T. In order to achieve current goal, we use a binary 

tree structure to appoint time periods and associate 

periods with tree nodes by the pre-order traversal 

technique [14]. The secret key in each time period is 

organized as a stack. In each time period, the secret 

key is updated by a forward-secure technique [18]. It 

guarantees that any authenticator generated in one time 

period cannot be computed from the secret keys for 

any other time period later than this one. Besides, it 

helps to ensure that the complexities of keys size, 

computation overhead and communication overhead 

are only logarithmic in total number of time periods T. 

 

As a result, the auditing protocol achieves key-

exposure resilience while satisfying current efficiency 

requirements. As it will be shown later, in current 

protocol, the client can audit the integrity of the cloud 

data still in aggregated manner, i.e., without retrieving 

the entire data from the cloud. As same as the key-

evolving mechanisms [11]–[13], current protocol does 

not consider the key exposure resistance during one 

time period. The public key in current protocol is 

denoted by PK which is fixed during the whole 

lifetime. In current protocol, each node of the binary 

tree corresponding to j has one key pair (Swj , Rwj), 

where Swj is called as the node secret key which is 

used to generate authenticators and Rwj is called as 

verification value which is used to verify the validity 

of authenticators. The key pair of the root node is 

denoted by (S, R). The client’s secret key SK j in 

period j is composed by two parts X j and _j . The first 

part X j is a set composed by the key pair (Swj , Rwj ) 

and the key pairs of the right siblings of the nodes on 

the path from the root to wj. That is, if w_0 is a prefix 

of wj, then X j contains the secret key (Sw_1, Rw_1). 

In current protocol, the first part X j is organized as a 

stack satisfying first-in first out principle with (Swj , 

Rwj ) on top. The stack is initially set (S, R) in time 

period 0. The second part _j is composed by the 

verification values from the root to node wj except the 

root. So Ω j = (Rwj|1, . . . , Rwj|t ) when wj = w1 · · 

·wt . 

 

Description of Current Protocol: 

1) SysSetup: Input a security parameter k and the total 

time period T. Then 

a) Run IG(1k) to generate two multiplicative groups 

G1, G2 of some prime order q and an admissible 

pairing ˆe : G1 × G1 → G2. 

b) Choose cryptographic hash functions H1 : G1 → 

G1, H2 : {0, 1}∗ × G1 → Z∗ 

q and H3 : {0, 1}∗ × 

G1 → G1. Select two independent generators 

g, u ∈ G1. 

c) The client selects ρ ∈ Z∗q at random, and computes 

R = gρ and S = H1(R)ρ . 

 

 
Fig 1.2. An example to show the stack changes from 

time period 0 to time period 9 when l = 4. 

 

Table 1.2: Efficiency comparison 

 

 
 



 

  
                                                                                                                                                                                                                    Page 179 

 

Current proposed protocol can easily be modified to 

support the TPA because we have considered the 

public verification during current design. In the 

modified auditing protocol supporting the TPA, the 

SysSetup algorithm, the Key Update algorithm and the 

AuthGen algorithm are the same as the description in 

Section 3. In the Proof Gen algorithm, we only modify 

current original protocol as follows: The TPA 

generates a challenge Chal = {(i, vi )}i∈I , and sends it 

to the cloud. After the cloud completes the same 

operations as those in original protocol in Section 3, it 

sends the proof P to the TPA instead of the client. In 

the Proof Veri f y algorithm, we only need to make the 

TPA instead of the client verify the validity of the tag 

and the proof P[19]. The block less verifiability means 

that the cloud can construct a proof that allows the 

auditor to check the integrity of certain file blocks in 

cloud, even when the auditor does not have access to 

the actual file blocks. 

 

5. CONCLUSION: 

In the proposed paradigm, it is deliberated on how to 

deal with the client’s key exposure in cloud storage 

auditing. A new standard called auditing protocol with 

key-exposure resilience. The integrity of the data 

formerly stored in cloud can still be substantiated even 

if the client’s current secret key for cloud storage 

auditing is bare in these kinds of protocols. It is 

enacted in the definition and the security model of 

auditing protocol with key-exposure resilience, and has 

given the practical solution. The security proof and the 

asymptotic presentation assessment depicted that the 

protocol is secure and efficient. The efficient 

comparison between current protocol and earlier 

protocol based on BLS signature also has been 

provided. 

 

6. REFERENCES: 

[1]G. Ateniese et al., ―Provable data possession at   

untrusted stores,‖in Proc. 14th ACM Conf. Comput. 

Commun. Secur., 2007,pp. 598–609. 

 

[2]G. Ateniese, R. Di Pietro, L. V. Mancini, and G. 

Tsudik, ―Scalable and efficient provable data 

possession,‖ in Proc. 4th Int. Conf. Secur. Privacy 

Commun. Netw., 2008, Art. ID 9. 

 

[3]F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, 

Y.   Deswarte, and J.-J. Quisquater, ―Efficient remote 

data possession checking in critical information 

infrastructures,‖ IEEE Trans. Knowl. Data Eng., vol. 

20, no. 8, pp. 1034–1038, Aug. 2008. 

 

[4]R. Curtmola, O. Khan, R. Burns, and G. Ateniese, 

―MR-PDP: Multiplereplica provable data possession,‖ 

in Proc. 28th IEEE Int. Conf. Distrib. Comput. Syst., 

Jun. 2008, pp. 411–420. 

 

[5]H. Shacham and B. Waters, ―Compact proofs of   

retrievability,‖in Advances in Cryptology—

ASIACRYPT. Berlin, Germany:Springer-Verlag, 

2008, pp. 90–107. 

 

[6]C. Wang, K. Ren, W. Lou, and J. Li, ―Toward 

publicly auditable secure cloud data storage services,‖ 

IEEE Netw., vol. 24, no. 4, pp. 19–24, Jul./Aug. 2010. 

 

[7]Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. 

S. Yau, ―Efficient provable data possession for hybrid 

clouds,‖ in Proc. 17th ACM Conf. Comput. Commun. 

Secur., 2010, pp. 756–758. 

 

[8]K. Yang and X. Jia, ―Data storage auditing service 

in cloud computing: Challenges, methods and 

opportunities,‖ World Wide Web, vol. 15, no. 4, pp. 

409–428, 2012. 

 

[9]K. Yang and X. Jia, ―An efficient and secure 

dynamic auditing protocol for data storage in cloud 

computing,‖ IEEE Trans. Parallel Distrib. Syst., vol. 

24, no. 9, pp. 1717–1726, Sep. 2013. 

[10]C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and 

W. Lou, ―Privacy preserving public auditing for secure 

cloud storage,‖ IEEE Trans. Comput., vol. 62, no. 2, 

pp. 362–375, Feb. 2013. 

 



 

  
                                                                                                                                                                                                                    Page 180 

 

[11]B. G. Kang, J. H. Park, and S. G. Hahn, ―A new 

forward secure signature scheme,‖ Cryptology ePrint 

Archive, Tech. Rep. 2004/183, 2004. [Online]. 

Available: http://eprint.iacr.org/2004/183. 

 

[12]J. Yu, F. Kong, X. Cheng, R. Hao, and G. Li, ―One 

forward-secure signature scheme using bilinear maps 

and its applications,‖ Inf. Sci., vol. 279, pp. 60–76, 

Sep. 2014. 

 

[13]J. Yu, R. Hao, F. Kong, X. Cheng, J. Fan, and Y. 

Chen, ―Forward secure identity-based signature: 

Security notions and construction,‖ Inf. Sci., vol. 181, 

no. 3, pp. 648–660, 2011. 

 

[14]C. Gentry and A. Silverberg, ―Hierarchical ID-

based cryptography,‖ in Advances in Cryptology—

ASIACRYPT. Berlin, Germany: Springer-Verlag, 

2002, pp. 548–566. 

 

[15]A. Juels and B. S. Kaliski, Jr., ―PORs: Proofs of 

retrievability for large files,‖ in Proc. 14th ACM Conf. 

Comput. Commun. Secur., 2007, pp. 584–597. 

 

[16]Y. Dodis, S. Vadhan, and D. Wichs, ―Proofs of 

retrievability via hardness amplification,‖ in Proc. 6th 

Theory Cryptogr. Conf., 2009, pp. 109–127. 

 

[17]M. A. Shah, M. Baker, J. C. Mogul, and R. 

Swaminathan, ―Auditing to keep online storage 

services honest,‖ in Proc. 11th USENIX Workshop 

Hot Topics Oper. Syst., 2007, pp. 1–6. 

 

[18]Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, 

―Cooperative provable data possession for integrity 

verification in multicloud storage,‖ IEEE Trans. 

Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231–

2244,Dec. 2012. 

 

Autor’s Details: 

Dr. Shaik Abdul Nabi is working as professor & 

Head of the Dept. of CSE, AVN   Inst.Of Engg.& 

Tech, Hyderabad, T.S, India. He completed his B.E 

(Computer Science) from Osmania University, 

Hyderabad. He has completed his M.Tech. from JNTU  

Hyderabad campus and he received Doctor of 

Philosophy (Ph.D) in the area of Web Mining from 

AcharyaNagarjuna University, Guntur, AP,  India. He 

is a certified professional by Microsoft.He is having 17 

years of Teaching Experience in various Engineering 

Colleges. He has published 15 publications in 

International / National Journals and presented 08 

papers in National / International conferences. His 

expertise areas are Data warehousing and Data 

Mining, Data Structures & UNIX Networking 

Programming, Cloud Computing and Mobile 

Computing 

 

V.Sridhar Reddy, B.Tech (CS&IT) M.Tech (SE) is 

having 11+ years of relevant work experience in 

Academics and Teaching. At present, he is working as 

Associate Professor, AVN Institute of Engineering & 

Technology, Ibrahimpatnam, Hyderabad, TS, India. 

He has attended workshops and International 

conferences. His areas of interest are Big data, 

Computer Graphics, Software Engineering and Cloud 

computing. 

 

P.Rakesh Kumar PG Scholar in Dept of CSE .AVN 

Institute of Engineering And Technology. 

http://eprint.iacr.org/2004/183

