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Abstract: 

In order to diminution the time cost in physical work, 

text classification practices are pragmatic to conduct 

automatic bug triage. Presently, software companies 

spend over 45 percent of cost in dealing with software 

bugs. A foreseeable step of fixing bugs is bug triage, 

which ambitions to decorously consign a developer to 

a new bug. In this scheme, it is addressed the problem 

of data reduction for bug triage, to reduce the scale and 

progress the reputation of bug data. It is here combined 

with instance selection with feature selection to 

simultaneously reduce data scale on the bug dimension 

and the word dimension. To define the order of 

applying instance selection and feature selection, it is 

extract attributes from historical bug data sets and 

build a predictive model for a new bug data set. It is 

practically scrutinized the enactment of data reduction 

on totally 600,000 bug reports of two large open 

source projects, namely Eclipse and Mozilla. The work 

provides an approach to leveraging techniques on data 

processing to form reduced and high-quality bug data 

in software development and maintenance. 

 

Keywords: 

Mining software repositories, ata preprocessing, data 

management in bug repositories, bug data reduction, 

feature selection, instance selection, bug triage. 

I. INTRODUCTION: 

In current software development, software depositories 

are large-scale databases for stowing the output of 

software development, like source code, bugs, emails, 

and specifications.  

 

Traditional software analysis is not completely suitable 

for the large-scale and complex data in software 

repositories [5].Data mining has emerged as a 

promising means to handle software data. By 

leveraging data mining techniques, mining software 

repositories can uncover interesting information in 

software repositories and solve real world software 

problems. A bug repository (a typical software 

repository, for storing details of bugs), plays an 

important role in managing software bugs. Software 

bugs are inevitable and fixing bugs is expensive in 

software development. Software companies spend over 

45 percent of cost in fixing bugs [9].  

Large software projects deploy bug repositories (also 

called bug tracking systems) to support information 

collection and to assist developers to handle bugs[3]. 

In a bug repository, a bug is maintained as a bug 

report, which records the textual description of 

reproducing the bug and updates according to the 

status of bug fixing [4]. A bug repository provides a 

data platform to support many types of tasks on bugs, 

e.g., fault prediction [7] bug localization [2], and 

reopened bug analysis [3]. In this scheme, bug reports 

in a bug repository are called bug data.  

There are two challenges related to bug data that may 

affect the effective use of bug repositories in software 

development tasks, namely the large scale and the low 

quality. On one hand, due to the daily-reported bugs, a 

large number of new bugs are stored in bug 

repositories. It is a task to physically examine such 

large-scale bug data in software development.  
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On the other side, software techniques suffer from the 

low quality of bug data. Two typical characteristics of 

low-quality bugs are noise and redundancy. Noisy 

bugs may mislead related developers [4] while 

redundant bugs waste the limited time of bug handling. 

A time-consuming step of handling software bugs is 

bug triage, which aims to assign a correct developer to 

fixa new bug [1]. In outmoded software development, 

new bugs are manually triaged by an expert developer, 

i.e., a human triager. Due to the large number of daily 

bugs and the lack of expertise of all the bugs, manual 

bug triage is expensive in time cost and low in 

accuracy. To avoid the expensive cost of manual 

bugtriage, existing work [1] has proposed an automatic 

bug triage approach, which applies text classification 

techniquesto predict developers for bug reports.  

In this method, a bug report is mapped to a document 

and a related developer is mapped to the label of the 

document. Then, bug triage is converted into a 

problem of text classification and is automatically 

solved with mature text classification techniques, e.g., 

Naive Bays [12]. Based on the results of text 

classification, a human triage assigns new bugs by 

incorporating his/her expertise. To expand the 

accuracy of text classification techniques for bug 

triage, some further techniques are investigated, e.g., a 

tossing graph approach [2] and a collaborative filtering 

approach[40]. However, large-scale and low-quality 

bug data in bug repositories block the techniques of 

automatic bug triage. Since software bug data are a 

kind of free-form text data (generated by developers), 

it is necessary to generate. It is address the problem of 

data reduction for bug triage, i.e., how to reduce the 

bug data to save the labor cost of developers and 

improve the quality to facilitate the process of bug 

triage[5].  

Data reduction for bug triage aims to build a small-

scale and high-qualityset of bug data by removing bug 

reports and words,which are redundant or non-

informative. In the work, It iscombine existing 

techniques of instance selection and feature selection 

to simultaneously reduce the bug dimensionand the 

word dimension[9]. The reduced bug data contain bug 

reports and words than the original bug data and 

provide similar information over the original bug data. 

It is evaluate the reduced bug data according to two 

criteria: the scale of a data set and the accuracy of bug 

triage. To avoid the bias of a single algorithm, It is 

empirically examine the results of the instance 

selection algorithms and the feature selection 

algorithms. Given an instance selection algorithm and 

a feature selection algorithm, the order of applying 

these two algorithms may affect the results of bug 

triage. In this scheme, It is propose predictive model to 

determine the order of applying instance selection and 

feature selection. It is refer to such determination[7] as 

prediction for reduction orders. Drawn on the 

experiences in software metrics,1 It is extract the 

attributes from historical bug data sets. Then, it is train 

a binary classifier on bug data sets with extracted 

attributes and predicts the order of applying instance 

selection and feature selection for a new bug data 

set[10].The primary contributions of this scheme are as 

follows: 

1) It is present the problem of data reduction for bug 

triage. This problem aims to augment the data set of 

bug triage in two aspects, namely a) to simultaneously 

reduce the scales of the bug dimension and the word 

dimension and b) to improve the accuracy of bug 

triage.2) It is propose a combination approach to 

addressing the problem of data reduction. This can be 

viewed as an application of instance selection and 

feature selection in bug repositories [12].3) It is build a 

binary classifier to predict the order of applying 

instance selection and feature selection. To the 

knowledge, the order of applying instance selection 

and feature selection has not been investigated in 

related domains [12]. 

 

II. LITERATURE SURVEY: 

Bug repositories are widely used for maintaining 

software bugs, e.g., a popular and open bug repository, 

Bugzilla[5]. Once a software bug is found, a reporter 

(typically a developer, a tester, or an end user) records 

this bug to the bug repository.  
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A recorded bug is called a bug report, which has 

multiple items for detailing the information of 

reproducing the bug. In Fig. 1, it is show a part of bug 

report for bug 284541 in Eclipse.2 In a bug report, the 

summary and the description are two key items about 

the information of the bug, which are recorded in 

natural languages. As their names suggest, the 

summary denotes a general statement for identifying a 

bug while the description gives the details for 

reproducing the bug. Some other items are recorded in 

a bug report for facilitating the identification of the 

bug, such as the product, the platform, and the 

importance. Once a bug report is formed, a human 

triager assigns this bug to a developer, who will try to 

fix this bug. This developer is recorded in an item 

assigned-to. The assigned-to will change to another 

developer if the previously assigned developer cannot 

fix this bug.  

The process of assigning a correct developer for fixing 

the bug is called bug triage. For example, in Fig. 1, the 

developer DimitarGiormov is the final assigned-to 

developer of bug 284541.A developer, who is assigned 

to a new bug report, starts to fix the bug based on the 

knowledge of historical bug fixing[6], [14]. Typically, 

the developer pays efforts to understand the new bug 

report and to examine historically fixed bugs as a 

reference .An item status of a bug report is changed 

according tithe current result of handling this bug until 

the bug incompletely fixed. Changes of a bug report 

are stored in an item history. Table 1 presents a part of 

history of bug 284541.This bug has been assigned to 

three developers and only the last developer can 

handle this bug correctly. Changing developers lasts 

for over seven months while fixing this bug only costs 

three days. Manual bug triage by a human triage is 

time consuming and error-prone since the number of 

daily bugs is large to correctly assign and a human 

triage is hard toaster the knowledge about all the bugs 

[12]. Existing work employs the approaches based on 

text classification to assist bug triage, e.g., [1], [5]. In 

such approaches, the summary and the description of a 

bug report are extracted as the textual content while 

the developer who can fix this bug is marked as the 

label for classification. Then techniques on text 

classification can be used to predict the developer for a 

new bug. In details, existing bug reports with their 

developers are formed as a training set-to train a 

classifier new bug reports are treated as attest set to 

examine the results of the classification. Into avoid the 

low accuracy of bug triage, a recommendation list with 

the size k is used to provide list of k developers, who 

have the top-k possibility to fix the new bug. 

III. SYSTEM DESIGN 

A. Data reduction for bug triage 

The bug data reduction in the work, which is applied 

as a phase in data preparation of bug triage. It is 

combine existing techniques of instance selection and 

feature selection to remove certain bug reports and 

words[12]. A problem for reducing the bug data is to 

determine the order of applying instance selection and 

feature selection, which is denoted as the prediction of 

reduction orders. In this section, it is first present how 

to apply instance selection and feature selection to bug 

data, i.e., data reduction for bug triage. Then, it is list 

the benefit of the data reduction.  

Algorithm 1. Data reduction based on FSS 

Input: training set T with n words and m bug reports, 

reduction order FSS 

final number no of words, 

Final number mI of bug reports, 

Output: reduced data set T FI for bug triage 

1) apply FS to n words of T and calculate objective 

values 

for all the words; 

2) select the top no words of T and generate a training 

set T F ; 

3) apply IS to mI bug reports of T F ; 
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4) terminate IS when the number of bug reports is 

equal toor less than mind generate the final training set 

T FI . 

B. Techniques used in data processing: Instance 

Selection and Feature Selection 

In bug triage, a bug data set is converted into a text 

matrix with two dimensions, namely the bug 

dimension and the word dimension. In the current 

work, it is leverage the combination of instance 

selection and feature selection to generate reduced bug 

data set. It is replaced the original data set with the 

reduced data set for bug triage. Instance selection and 

feature selection are widely used techniques in data 

processing. For a given data set in a certain 

application, instance selection is to obtain a subset of 

relevant instances (i.e., bug reports in bug data) [18] 

while feature selection aims to obtain a subset of 

relevant features(i.e., words in bug data) [19]. In the 

work, It is employ the combination of instance 

selection and feature selection. In the work, FS ! IS 

and IS ! FS are viewed It is as two orders of bug data 

reduction. To avoid the bias from a single algorithm, it 

is examine results of the typical algorithms of instance 

selection and feature selection, respectively.  

It is briefly introduce these algorithms as follows. 

Instance selection is a technique to reduce the number 

of instances by removing noisy and redundant 

instances [11],[8]. An instance selection algorithm can 

provide a reduced data set by removing non-

representative instances [18]According to an existing 

comparison study and an existing review [37], It is 

choose the instance selection algorithms, namely 

Iterative Case Filter (ICF) [8], Learning Vectors 

Quantization (LVQ) [27], Detrimental Reduction 

Optimization Procedure (DROP), and Patterns by 

Ordered Projections (POP)[14].Feature selection is a 

preprocessing technique for selecting reduced set of 

features for large-scale data sets [15],[9]. The reduced 

set is considered as the representative features of the 

original feature set [20]. Since bug triage is converted 

into text classification, It is focus on the feature 

selection algorithms in text data. In this scheme, it is 

choosing the It sill-performed algorithms in text data 

[23] and software data [21], namely Information Gain 

(IG) ,x
2
 statistic(CH), Symmetrical Uncertainty 

attribute evaluation(SU) and Relief-F Attribute 

selection (RF). Based on feature selection, words in 

bug reports are sorted according to their feature values 

and a given number of words with large values are 

selected as representative features. Accuracy: is an 

important evaluation criterion for bug triage. In the 

work, data reduction explores and removes noisy or 

duplicate information in data sets. Bug dimension: 

Instance selection can remove uninformative bug 

reports; meanwhile, It is can observe that the accuracy 

may be decreased by removing bug reports Word 

dimension: By removing uninformative words, feature 

selection improves the accuracy of bug triage This can 

recover the accuracy loss by instance selection. 

IV. PROPOSED ARCHITECTURE 

A. Prediction for reduction orders 

To avoid the time cost of manually checking both 

reduction orders, It is consider predicting the reduction 

order for a new bug data set based unhistorical data 

sets[21].It is converting the problem of prediction for 

reduction orders into a binary classification problem. 

A bug data set is mapped to an instance and the 

associated reduction order (either FS ! IS or IS ! FS) is 

mapped to the label of a class of instances. Fig. 3 

summarizes the steps of predicting reduction orders for 

bug triage. Note that a classifier can be trained only 

once when facing many new bug data sets[23]. That is, 

training such a classifier once can predict the reduction 

orders for all the new datasets without checking both 

reduction orders. To date, the problem of predicting 

reduction orders of applying feature selection and 

instance selection has not been investigated another 

application scenarios.[24]From the perception of 

software engineering, predicting the reduction order 

for bug data sets can be visited as a kind of software 

metrics, which involves activities for measuring some 

property for a piece of software [16]. HoItisver,the 

features in the work are extracted from the bug data set 

while the features in current work on software metrics 

are for individual software artifacts,3 e.g., an 
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individual bug report or an individual piece of code. In 

this scheme, to avoid ambiguous denotations, an 

attribute refers to an extracted feature of a bug data set 

while a feature refers to a word of a bug report. 

B. Experimental evaluation: Data sets and 

evaluation 

It is examine the results of bug data reduction on bug 

repositories of two projects, Eclipse and Mozilla [16]. 

For each project, it is evaluate results on five data sets 

and each data set is over 10,000 bug reports, which are 

fixed or duplicate bug reports. It is check bug reports 

in the two projects and find out that 45.44 percent of 

bug reports in Eclipse and28.23 percent of bug reports 

in Mozilla are fixed or duplicate. Thus, to obtain over 

10,000 fixed or duplicate bug reports, each data set in 

Eclipse is collected from continuous 20,000 bug 

reports while each bug set in Mozilla is collected from 

continuous 40,000 bug reports. Table 3 lists the details 

of ten data sets after data preparation. [17] 

 

Fig1. Algorithms for instance selection, feature 

selection, and bug triage. 

Among these algorithms, ICF, CH, and Naive Bays are 

It sill-performed based on the experiments of the bug 

data reduction. The results of data reduction for bug 

triage can be measured in two aspects, namely the 

scales of data sets and the quality of bug triage. Based 

on Algorithm 1, the scales of data sets (including the 

number of bug reports and the number of words) are 

configured as input parameters. The quality of bug 

triage can be measured with the accuracy of bug triage, 

which is defined as Accuracy = # correctly assigned 

bug reports in k candidate # all bug reports in the test 

set. 

 

 
 

C. Experiments on Prediction for Reduction 

Orders: Data Sets and Evaluation 

It is present the experiments on prediction for 

reduction orders in this part. It is map a bug data set to 

an instance, and map the reduction order (i.e., FS! IS 

or IS !FS.)to its label. Given a new bug data set, it is 

train a classifier to predict its appropriate reduction 

order based on historical bug data sets. To train the 

classifier, it is labeled each bug data set with its 

reduction order. In the work, one bug unit denotes 

5,000 continuous bug reports. In Section5.1, It is 

having collected 298,785 bug reports in Eclipse and 

281,180 bug reports in Mozilla. Then, 60 bug units 

(298,785/5,000=59:78) for Eclipse and 57 bug units 

(281,180/5,000=56:24) for Mozilla are obtained. Next, 
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it is form bug data sets by combining bug units to 

training classifiers. It is considered continuous one to 

seven bug units as one dataset on Mozilla and finally 

collects 399 (57 X 7) bug datasets. 

V. Conclusion and Future Enhancement: 

In this pattern, it is collective feature selection with 

instance selection to reduce the scale of bug data sets 

as it progress the data quality. Bug triage is an affluent 

step of software maintenance in both labor cost and 

time cost. To regulate the order of applying instance 

selection and feature selection for a new bug data set, 

it is extracted the attributes of each bug data set and 

train a extrapolative model based on historical data 

sets. It is practically pondered the data reduction for 

bug triage in bug repositories of two large open source 

projects, namely Eclipse and Mozilla. The work 

provides an methodology to leveraging techniques on 

data processing to form condensed and high-quality 

bug data in software development and maintenance. In 

future work, it is planned on taming the results of data 

reduction in bug triage to explore how to prepare a 

high quality bug data set and tackle a domain-specific 

software task. For expecting reduction orders, it is 

planned to pay efforts to find out the potential 

relationship between the attributes of bug data sets and 

the reduction orders. 
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