

 Page 63

Towards Operative Bug Triage with Software Records Decrease

Procedures

Farhat Azeema

PG Scholar,

Dept of Computer Science,

Sri Indu Institute of Engineering &

Technology.

K.V Nanda Kishore

Associate Professor,

Dept of CSE,

Sri Indu Institute of Engineering &

Technology.

Dr. I.Satyanarayana

Principal,

Sri Indu Institute of Engineering &

Technology.

Abstract:

In order to diminution the time cost in physical work,

text classification practices are pragmatic to conduct

automatic bug triage. Presently, software companies

spend over 45 percent of cost in dealing with software

bugs. A foreseeable step of fixing bugs is bug triage,

which ambitions to decorously consign a developer to

a new bug. In this scheme, it is addressed the problem

of data reduction for bug triage, to reduce the scale and

progress the reputation of bug data. It is here combined

with instance selection with feature selection to

simultaneously reduce data scale on the bug dimension

and the word dimension. To define the order of

applying instance selection and feature selection, it is

extract attributes from historical bug data sets and

build a predictive model for a new bug data set. It is

practically scrutinized the enactment of data reduction

on totally 600,000 bug reports of two large open

source projects, namely Eclipse and Mozilla. The work

provides an approach to leveraging techniques on data

processing to form reduced and high-quality bug data

in software development and maintenance.

Keywords:

Mining software repositories, ata preprocessing, data

management in bug repositories, bug data reduction,

feature selection, instance selection, bug triage.

I. INTRODUCTION:

In current software development, software depositories

are large-scale databases for stowing the output of

software development, like source code, bugs, emails,

and specifications.

Traditional software analysis is not completely suitable

for the large-scale and complex data in software

repositories [5].Data mining has emerged as a

promising means to handle software data. By

leveraging data mining techniques, mining software

repositories can uncover interesting information in

software repositories and solve real world software

problems. A bug repository (a typical software

repository, for storing details of bugs), plays an

important role in managing software bugs. Software

bugs are inevitable and fixing bugs is expensive in

software development. Software companies spend over

45 percent of cost in fixing bugs [9].

Large software projects deploy bug repositories (also

called bug tracking systems) to support information

collection and to assist developers to handle bugs[3].

In a bug repository, a bug is maintained as a bug

report, which records the textual description of

reproducing the bug and updates according to the

status of bug fixing [4]. A bug repository provides a

data platform to support many types of tasks on bugs,

e.g., fault prediction [7] bug localization [2], and

reopened bug analysis [3]. In this scheme, bug reports

in a bug repository are called bug data.

There are two challenges related to bug data that may

affect the effective use of bug repositories in software

development tasks, namely the large scale and the low

quality. On one hand, due to the daily-reported bugs, a

large number of new bugs are stored in bug

repositories. It is a task to physically examine such

large-scale bug data in software development.

 Page 64

On the other side, software techniques suffer from the

low quality of bug data. Two typical characteristics of

low-quality bugs are noise and redundancy. Noisy

bugs may mislead related developers [4] while

redundant bugs waste the limited time of bug handling.

A time-consuming step of handling software bugs is

bug triage, which aims to assign a correct developer to

fixa new bug [1]. In outmoded software development,

new bugs are manually triaged by an expert developer,

i.e., a human triager. Due to the large number of daily

bugs and the lack of expertise of all the bugs, manual

bug triage is expensive in time cost and low in

accuracy. To avoid the expensive cost of manual

bugtriage, existing work [1] has proposed an automatic

bug triage approach, which applies text classification

techniquesto predict developers for bug reports.

In this method, a bug report is mapped to a document

and a related developer is mapped to the label of the

document. Then, bug triage is converted into a

problem of text classification and is automatically

solved with mature text classification techniques, e.g.,

Naive Bays [12]. Based on the results of text

classification, a human triage assigns new bugs by

incorporating his/her expertise. To expand the

accuracy of text classification techniques for bug

triage, some further techniques are investigated, e.g., a

tossing graph approach [2] and a collaborative filtering

approach[40]. However, large-scale and low-quality

bug data in bug repositories block the techniques of

automatic bug triage. Since software bug data are a

kind of free-form text data (generated by developers),

it is necessary to generate. It is address the problem of

data reduction for bug triage, i.e., how to reduce the

bug data to save the labor cost of developers and

improve the quality to facilitate the process of bug

triage[5].

Data reduction for bug triage aims to build a small-

scale and high-qualityset of bug data by removing bug

reports and words,which are redundant or non-

informative. In the work, It iscombine existing

techniques of instance selection and feature selection

to simultaneously reduce the bug dimensionand the

word dimension[9]. The reduced bug data contain bug

reports and words than the original bug data and

provide similar information over the original bug data.

It is evaluate the reduced bug data according to two

criteria: the scale of a data set and the accuracy of bug

triage. To avoid the bias of a single algorithm, It is

empirically examine the results of the instance

selection algorithms and the feature selection

algorithms. Given an instance selection algorithm and

a feature selection algorithm, the order of applying

these two algorithms may affect the results of bug

triage. In this scheme, It is propose predictive model to

determine the order of applying instance selection and

feature selection. It is refer to such determination[7] as

prediction for reduction orders. Drawn on the

experiences in software metrics,1 It is extract the

attributes from historical bug data sets. Then, it is train

a binary classifier on bug data sets with extracted

attributes and predicts the order of applying instance

selection and feature selection for a new bug data

set[10].The primary contributions of this scheme are as

follows:

1) It is present the problem of data reduction for bug

triage. This problem aims to augment the data set of

bug triage in two aspects, namely a) to simultaneously

reduce the scales of the bug dimension and the word

dimension and b) to improve the accuracy of bug

triage.2) It is propose a combination approach to

addressing the problem of data reduction. This can be

viewed as an application of instance selection and

feature selection in bug repositories [12].3) It is build a

binary classifier to predict the order of applying

instance selection and feature selection. To the

knowledge, the order of applying instance selection

and feature selection has not been investigated in

related domains [12].

II. LITERATURE SURVEY:

Bug repositories are widely used for maintaining

software bugs, e.g., a popular and open bug repository,

Bugzilla[5]. Once a software bug is found, a reporter

(typically a developer, a tester, or an end user) records

this bug to the bug repository.

 Page 65

A recorded bug is called a bug report, which has

multiple items for detailing the information of

reproducing the bug. In Fig. 1, it is show a part of bug

report for bug 284541 in Eclipse.2 In a bug report, the

summary and the description are two key items about

the information of the bug, which are recorded in

natural languages. As their names suggest, the

summary denotes a general statement for identifying a

bug while the description gives the details for

reproducing the bug. Some other items are recorded in

a bug report for facilitating the identification of the

bug, such as the product, the platform, and the

importance. Once a bug report is formed, a human

triager assigns this bug to a developer, who will try to

fix this bug. This developer is recorded in an item

assigned-to. The assigned-to will change to another

developer if the previously assigned developer cannot

fix this bug.

The process of assigning a correct developer for fixing

the bug is called bug triage. For example, in Fig. 1, the

developer DimitarGiormov is the final assigned-to

developer of bug 284541.A developer, who is assigned

to a new bug report, starts to fix the bug based on the

knowledge of historical bug fixing[6], [14]. Typically,

the developer pays efforts to understand the new bug

report and to examine historically fixed bugs as a

reference .An item status of a bug report is changed

according tithe current result of handling this bug until

the bug incompletely fixed. Changes of a bug report

are stored in an item history. Table 1 presents a part of

history of bug 284541.This bug has been assigned to

three developers and only the last developer can

handle this bug correctly. Changing developers lasts

for over seven months while fixing this bug only costs

three days. Manual bug triage by a human triage is

time consuming and error-prone since the number of

daily bugs is large to correctly assign and a human

triage is hard toaster the knowledge about all the bugs

[12]. Existing work employs the approaches based on

text classification to assist bug triage, e.g., [1], [5]. In

such approaches, the summary and the description of a

bug report are extracted as the textual content while

the developer who can fix this bug is marked as the

label for classification. Then techniques on text

classification can be used to predict the developer for a

new bug. In details, existing bug reports with their

developers are formed as a training set-to train a

classifier new bug reports are treated as attest set to

examine the results of the classification. Into avoid the

low accuracy of bug triage, a recommendation list with

the size k is used to provide list of k developers, who

have the top-k possibility to fix the new bug.

III. SYSTEM DESIGN

A. Data reduction for bug triage

The bug data reduction in the work, which is applied

as a phase in data preparation of bug triage. It is

combine existing techniques of instance selection and

feature selection to remove certain bug reports and

words[12]. A problem for reducing the bug data is to

determine the order of applying instance selection and

feature selection, which is denoted as the prediction of

reduction orders. In this section, it is first present how

to apply instance selection and feature selection to bug

data, i.e., data reduction for bug triage. Then, it is list

the benefit of the data reduction.

Algorithm 1. Data reduction based on FSS

Input: training set T with n words and m bug reports,

reduction order FSS

final number no of words,

Final number mI of bug reports,

Output: reduced data set T FI for bug triage

1) apply FS to n words of T and calculate objective

values

for all the words;

2) select the top no words of T and generate a training

set T F ;

3) apply IS to mI bug reports of T F ;

 Page 66

4) terminate IS when the number of bug reports is

equal toor less than mind generate the final training set

T FI .

B. Techniques used in data processing: Instance

Selection and Feature Selection

In bug triage, a bug data set is converted into a text

matrix with two dimensions, namely the bug

dimension and the word dimension. In the current

work, it is leverage the combination of instance

selection and feature selection to generate reduced bug

data set. It is replaced the original data set with the

reduced data set for bug triage. Instance selection and

feature selection are widely used techniques in data

processing. For a given data set in a certain

application, instance selection is to obtain a subset of

relevant instances (i.e., bug reports in bug data) [18]

while feature selection aims to obtain a subset of

relevant features(i.e., words in bug data) [19]. In the

work, It is employ the combination of instance

selection and feature selection. In the work, FS ! IS

and IS ! FS are viewed It is as two orders of bug data

reduction. To avoid the bias from a single algorithm, it

is examine results of the typical algorithms of instance

selection and feature selection, respectively.

It is briefly introduce these algorithms as follows.

Instance selection is a technique to reduce the number

of instances by removing noisy and redundant

instances [11],[8]. An instance selection algorithm can

provide a reduced data set by removing non-

representative instances [18]According to an existing

comparison study and an existing review [37], It is

choose the instance selection algorithms, namely

Iterative Case Filter (ICF) [8], Learning Vectors

Quantization (LVQ) [27], Detrimental Reduction

Optimization Procedure (DROP), and Patterns by

Ordered Projections (POP)[14].Feature selection is a

preprocessing technique for selecting reduced set of

features for large-scale data sets [15],[9]. The reduced

set is considered as the representative features of the

original feature set [20]. Since bug triage is converted

into text classification, It is focus on the feature

selection algorithms in text data. In this scheme, it is

choosing the It sill-performed algorithms in text data

[23] and software data [21], namely Information Gain

(IG) ,x
2
 statistic(CH), Symmetrical Uncertainty

attribute evaluation(SU) and Relief-F Attribute

selection (RF). Based on feature selection, words in

bug reports are sorted according to their feature values

and a given number of words with large values are

selected as representative features. Accuracy: is an

important evaluation criterion for bug triage. In the

work, data reduction explores and removes noisy or

duplicate information in data sets. Bug dimension:

Instance selection can remove uninformative bug

reports; meanwhile, It is can observe that the accuracy

may be decreased by removing bug reports Word

dimension: By removing uninformative words, feature

selection improves the accuracy of bug triage This can

recover the accuracy loss by instance selection.

IV. PROPOSED ARCHITECTURE

A. Prediction for reduction orders

To avoid the time cost of manually checking both

reduction orders, It is consider predicting the reduction

order for a new bug data set based unhistorical data

sets[21].It is converting the problem of prediction for

reduction orders into a binary classification problem.

A bug data set is mapped to an instance and the

associated reduction order (either FS ! IS or IS ! FS) is

mapped to the label of a class of instances. Fig. 3

summarizes the steps of predicting reduction orders for

bug triage. Note that a classifier can be trained only

once when facing many new bug data sets[23]. That is,

training such a classifier once can predict the reduction

orders for all the new datasets without checking both

reduction orders. To date, the problem of predicting

reduction orders of applying feature selection and

instance selection has not been investigated another

application scenarios.[24]From the perception of

software engineering, predicting the reduction order

for bug data sets can be visited as a kind of software

metrics, which involves activities for measuring some

property for a piece of software [16]. HoItisver,the

features in the work are extracted from the bug data set

while the features in current work on software metrics

are for individual software artifacts,3 e.g., an

 Page 67

individual bug report or an individual piece of code. In

this scheme, to avoid ambiguous denotations, an

attribute refers to an extracted feature of a bug data set

while a feature refers to a word of a bug report.

B. Experimental evaluation: Data sets and

evaluation

It is examine the results of bug data reduction on bug

repositories of two projects, Eclipse and Mozilla [16].

For each project, it is evaluate results on five data sets

and each data set is over 10,000 bug reports, which are

fixed or duplicate bug reports. It is check bug reports

in the two projects and find out that 45.44 percent of

bug reports in Eclipse and28.23 percent of bug reports

in Mozilla are fixed or duplicate. Thus, to obtain over

10,000 fixed or duplicate bug reports, each data set in

Eclipse is collected from continuous 20,000 bug

reports while each bug set in Mozilla is collected from

continuous 40,000 bug reports. Table 3 lists the details

of ten data sets after data preparation. [17]

Fig1. Algorithms for instance selection, feature

selection, and bug triage.

Among these algorithms, ICF, CH, and Naive Bays are

It sill-performed based on the experiments of the bug

data reduction. The results of data reduction for bug

triage can be measured in two aspects, namely the

scales of data sets and the quality of bug triage. Based

on Algorithm 1, the scales of data sets (including the

number of bug reports and the number of words) are

configured as input parameters. The quality of bug

triage can be measured with the accuracy of bug triage,

which is defined as Accuracy = # correctly assigned

bug reports in k candidate # all bug reports in the test

set.

C. Experiments on Prediction for Reduction

Orders: Data Sets and Evaluation

It is present the experiments on prediction for

reduction orders in this part. It is map a bug data set to

an instance, and map the reduction order (i.e., FS! IS

or IS !FS.)to its label. Given a new bug data set, it is

train a classifier to predict its appropriate reduction

order based on historical bug data sets. To train the

classifier, it is labeled each bug data set with its

reduction order. In the work, one bug unit denotes

5,000 continuous bug reports. In Section5.1, It is

having collected 298,785 bug reports in Eclipse and

281,180 bug reports in Mozilla. Then, 60 bug units

(298,785/5,000=59:78) for Eclipse and 57 bug units

(281,180/5,000=56:24) for Mozilla are obtained. Next,

 Page 68

it is form bug data sets by combining bug units to

training classifiers. It is considered continuous one to

seven bug units as one dataset on Mozilla and finally

collects 399 (57 X 7) bug datasets.

V. Conclusion and Future Enhancement:

In this pattern, it is collective feature selection with

instance selection to reduce the scale of bug data sets

as it progress the data quality. Bug triage is an affluent

step of software maintenance in both labor cost and

time cost. To regulate the order of applying instance

selection and feature selection for a new bug data set,

it is extracted the attributes of each bug data set and

train a extrapolative model based on historical data

sets. It is practically pondered the data reduction for

bug triage in bug repositories of two large open source

projects, namely Eclipse and Mozilla. The work

provides an methodology to leveraging techniques on

data processing to form condensed and high-quality

bug data in software development and maintenance. In

future work, it is planned on taming the results of data

reduction in bug triage to explore how to prepare a

high quality bug data set and tackle a domain-specific

software task. For expecting reduction orders, it is

planned to pay efforts to find out the potential

relationship between the attributes of bug data sets and

the reduction orders.

References:

[1]J. Anvil, L. Hew, and G. C. Murphy, “Who should

fix this bug?”in Proc. 28th Int. Conf. Softw.

Eng., May 2006, pp. 361–370.

[2]S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D.Ernst, “Finding bugs in It

isb applications using dynamic test

generationand explicit-state model checking,”

IEEE Softw., vol. 36,no. 4, pp. 474–494,

Jul./Aug. 2010.

[3]J. Anvil and G. C. Murphy, “Reducing the effort of

bug report triage:Recommenders for

development-oriented decisions,” ACMTrans.

Soft. Eng. Methodology., vol. 20, no. 3, article

10, Aug. 2011.

[4] C. C. Agawam and P. Zhao, “Towards graphical

models for text processing,” Know. Inform.

Syst., vol. 36, no. 1, pp. 1–21, 2013.

[5]Bugzilla, (2014). [Online].Avaialble:

http://bugzilla.org/

[6]K. Balog, L. Azzopardi, and M. de Rijke, “Formal

models forexpert finding in enterprise corpora,”

in Proc. 29th Annu. Int. ACMSIGIR Conf. Res.

Develop. Inform. Retrieval, Aug. 2006, pp. 43–

50.

[7]P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction usingquad tree-based k-means

clustering algorithm,” IEEE Trans.Knowl. Data

Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

[8] H. Brighton and C. Mellish, “Advances in instance

selection forinstance-based learning algorithms,”

Data Mining Know. Discovery,

vol. 6, no. 2, pp. 153–172, Apr. 2002.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Informationneeds in bug reports: Improving

cooperation betItisen developersand users,” in

Proc. ACM Conf. Comput. Supported

CooperativeWork, Feb. 2010, pp. 301–310.

[10]V. Bol_on-Canedo, N. S_anchez-Maro~no, and A.

Alonso-Betanzos,“A review of feature selection

methods on synthetic data,” Knowl.Inform.

Syst., vol. 34, no. 3, pp. 483–519, 2013.

[11]V. Cerver_on and F. J. Ferri, “Another move

toward the minimumconsistent subset: A tabu

search approach to the condensed

nearestneighbor rule,” IEEE Trans. Syst., Man,

Cybern., Part B, Cybern.,vol. 31, no. 3, pp. 408–

413, Jun. 2001.

[12]D. _Cubrani_c and G. C. Murphy, “Automatic bug

triage using textcategorization,” in Proc. 16th

Int. Conf. Softw. Eng. Knowl. Eng.,Jun. 2004,

pp. 92–97.

 Page 69

[13]Eclipse. (2014). [Online]. Available:

http://eclipse.org/

[14] B. Fitzgerald, “The transformation of open sthece

software,” MISQuart., vol. 30, no. 3,pp. 587–

598, Sep. 2006. [32] D. Lo, J. Li, L. Wong, and

S. C. Khoo, “Mining iterative generatorsand

representative rules for software specification

discovery,”IEEE Trans. Knowl. Data Eng., vol.

23, no. 2, pp. 282–296, Feb. 2011.

[15]Mozilla. (2014). [Online]. Available:

http://mozilla.org/

[16]D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning

bug reportsusing a vocabulary-based expertise

model of developers,” in Proc.6th Int. Working

Conf. Mining Softw. Repositories, May

2009,pp. 131–140.

[17] G. Miao, L. E. Moser, X. Yan, S. Tao, Y. Chen,

and N. Anerousis,“Generative models for ticket

resolution in expert networks,” inProc. 16th

ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining,2010, pp. 733–742.

[18] E. Murphy-Hill, T. Zimmermann, C. Bird, and N.

Nagappan, “Thedesign of bug fixes,” in Proc.

Int. Conf. Softw. Eng., 2013, pp. 332–341.

[19] J. A. Olvera-L_opez, J. A.Carrasco-Ochoa, J. F.

Mart_ınez-Trinidad,and J. Kittler, “A review of

instance selection methods,” Artif.Intell.Rev.,

vol. 34, no. 2, pp. 133–143, 2010.

[20] J. A. Olvera-L_opez, J. F. Mart_ınez-Trinidad,

and J. A. Carrasco-nOchoa, “Restricted

sequential floating search applied to

objectselection,” in Proc. Int. Conf. Mach.

Learn. Data Mining Pattern Recognit.,2007, pp.

694–702.

[21]R. S. Pressman, Software Engineering: A

Practitioner’s Approach, 7
th
ed. New York, NY,

USA: McGraw-Hill, 2010.

[22] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and

S. Kim,“Costriage: A cost-aware triage

algorithm for bug reporting systems,”in Proc.

25th Conf. Artif. Intell., Aug. 2011, pp. 139–

144.

[23] J. C. Riquelme, J. S. Aguilar-Ru_ız, and M. Toro,

“Finding representativepatterns with ordered

projections,” Pattern Recognit., vol. 36,pp.

1009–1018, 2003.

Author’s Details:

Farhat Azeema

PG Scholar, Dept of CS,

Sri Indu Institute of Engineering & Technology.

K.V Nanda Kishore

Associate Professor, Dept of CSE,

Sri Indu Institute of Engineering & Technology.

Dr. I.Satyanarayana

Completed B.E-Mechanical Engg. from Andhra

University, M.Tech Cryogenic Engg. Specilization-IIT

Kharagpur, Ph.D-Mechanical Engg.-JNTUH,

Currently working as an Principal at Sri Indu Institute

of Engg. & Tech, Sheriguda(Vi), IBP(M),RR Dist.

