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Abstract—Propagation delay across long on-chip buses is significant
when adjacent wires are transitioning in opposite direction (i.e., crosstalk
transitions) as compared to transitioning in the same direction. By ex-
ploiting Fibonacci number system, we propose a family of Fibonacci coding
techniques for crosstalk avoidance, relate them to some of the existing
crosstalk avoidance techniques, and show how the encoding logic of one
technique can be modified to generate codewords of the other technique.

Index Terms—On-chip bus, crosstalk, Fibonacci coding.

[. INTRODUCTION

In the deep submicrometer CMOS process technology, the intercon-
nect resistance, length, and inter-wire capacitance are increasing sig-
nificantly, which contribute to large on-chip interconnect propagation
delay [1], [2]. Data transmitted over interconnect determine the propa-
gation delay and the delay is very significant when adjacent wires are
transitioning in opposite directions (i.e., crosstalk transitions) as com-
pared to transitioning in the same direction.

Several techniques have been proposed in literature to eliminate
crosstalk transitions. A simple technique to eliminate crosstalk transi-
tions is to insert a shield wire between every pair of adjacent wires [3].
As there is no activity on shield wires, the shielding (SHD) technique
completely eliminates crosstalk transitions.

Abstracted from the concept of shielding, forbidden transition
coding (FTC) technique with/without memory is proposed in [4]. For
32-bit data, both memory-based and memory-less FTC techniques
require 40 and 46 wires, respectively, as compared to 63 wires required
by the SHD technique. Note that the memory-based FTC technique is
very complex as compared to the memory-less FTC technique.

Forbidden pattern coding (FPC) technique [5] prohibits 010 and 101
patterns from codewords, which in turn eliminates crosstalk transitions.
It requires 52 wires for a 32-bit bus.

No adjacent transition (NAT) coding is proposed in [6].
{n.h.t)-NAT codes, where © is the dataword width, » is the
codeword width, and 7 is the maximum number of 1s allowed in
codewords, are designed in such a way that no two adjacent 1s are
present in codewords. NAT codes are transmitted using the transition
signaling technique [7]. For n-bit codewords, the maximum number
of (n.h.#)-NAT codes is ©!_ C{n+ 1 —i.i}. 0 <t < [{n/2)] [6].
, the cardinality of the {n, . {)-NAT codeword set
is f,,. where [, is the nth Fibonacci number.

By relating Fibonacci number system to crosstalk-free codes, we
proposed a crosstalk-free bus encoding technique [8] and provided a
recursive procedure to generate such codes. Crosstalk-free codes gen-
erated in [8] are same as that of the memory-less FTC technique [4].

By combining the ideas of [4], [5], [8], efficient codec designs for
crosstalk avoidance are proposed in [9], [10]. In forbidden transition
free crosstalk avoidance coding (FTE-CAC) [9], data are encoded using
Fibonacci number system in such a way that 01 or 10 on two adjacent
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bits are prohibited. In forbidden pattern free crosstalk avoidance coding
[10], data are encoded using Fibonacci number system in such a way
that 010 and 101 patterns are prohibited.

An iterative implementation strategy for generating crosstalk-free
codes is proposed in [11], wherein a set of n-bit crosstalk-free codes
can be used to derive (1 - 1 )-bit crosstalk-free codes. As a case study,
the authors have implemented (1. i [ {12/2)] )-NAT coding technique
[6] using Fibonacci number system. {1 + L. b, [{n + 1)/(2)])-NAT
codewords are generated using the subgroups of [« 1.oh. (0
13/121]1-NAT codewords and {12, b, [{n/2)]}-NAT codewords. The
cardinality of each subgroup of {(n. 0. [{n/2)]}-NAT codewords is
related to a Fibonacci number.

One common thing among the techniques proposed in [B]-[11]
is that for a given dataword, an equivalent codeword is gen-
erated in Fibonacci number system, i.e., for every dataword
d = d,.....dy, a codeword + = ¢, .....c0 is generated such
that X7 ;2" = 27 e fi, where [; is the /th Fibonacci number.

By exploiting Fibonacci number system, we propose a family of Fi-
bonacci coding techniques for crosstalk avoidance, give a generalized
framework to generate crosstalk avoidance codes, and establish rela-
tionship between different crosstalk avoidance coding techniques.

II. FIBONACCI NUMBER SYSTEM

A number system § = {[". ("} is defined by a strictly increasing
sequence of positive integers ' = (u,, ), = and a finite subset ' of
positive integers. Elements of sets [7 and ' are called the basis ele-
ments and digits of the number system, respectively. A positive integer

N in the number system S — ([7. ('} is represented by a finite se-
quence of elements #,......dy of C" such that ¥ = X! d,u,. The
binary number system is defined as 5 = [(2"), ;. {0. 1} .

Fibonacci number system [12] of order s, s > 2, is defined as S =
(4510, 1}, where . = (f.}, =0 such that

fi=2"forD<i<s—1
o= fici+ - fiosfori = s,

It has been shown that Fibonacci number system of order s. s >
2. is complete [13], i.e., every integer has a representation in § =
{4°..{0,1}}). Note that an integer may have multiple representations
in Fibonacci number system of order 5. s« > 2. To overcome the am-
biguity in representing integers in Fibonacci number system of order
s. s > 2, a normal-form [13] is defined, wherein each integer has a
unique representation which does not contain s consecutive bits equal
to 1.

III. EXPLOITING FIBONACCI REPRESENTATIONS FOR
CROSSTALK AVOIDANCE

Throughout the paper, we use notation datawerd and codeword for
data to be encoded and encoded data, respectively. We assume that
datawords are represented in the binary number system. For every data-
word, we give a codeword using Fibonacci number system of order 2
such that the decimal equivalent of the dataword is same as that of the
codeword.

A. Neormal-Form Fibonacci (NFF) Coding Technigue

‘We describe NFF technique in two parts, namely, data encoding
and data transmission. For data encoding, we use normal-form
Fibonacci number system of order 2. For a »-bit dataword,
d = d,_ 1dn_a,.... dy, using the NFF technique, the unique
mi-bit codeword, ne = o, —%.....c0, can be generated using
NFF encoding algorithm as shown in Table L. Let A" 5.7, be the set
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TABLE I
NFF ENCODING ALGORITHM
Input: d:
T'm = .
fork=m —1to1do
if i1 < f, then
Cp = 0;
else
cp =1,
end if
T =TEy1 — fk ok
end for
co =11}
Output: Crp—1Cm—2 - - €0t

TABLE I
CRF ENCODING ALGORITHM

Tnput: d;
Tm =
for k=m— 11t 1do
if rpp1 < f,zrx;_rl.l then
o =0
else
cp = 11
end if
TR =Tkl — fe—1 e
end for
¢ =T1;
Output: ¢y —1cm—2- - cp:

TABLE III
CONVERSION FROM 3-BIT DATAWORDS TO 4-BIT CODEWORDS
data- Fibonacei codeword
word [NFFa] RFas |CRFa
I35 2T[52T1TT52T11
00000 0000000000
0011000 I(0ODO1|0O0T10O
010001001 00J00T1 1
01 1HOTO00T 011000
100010101 111010
10L{1000(LT0OO0|LOTI1
l1ojtoolfri1o1)111o
L11j1orofr1r1ajrrtnil
TABLE IV
1-BIT TO 4-BIT NFF CODEWORDS
NFF INFFNFF[NFF,
I 2 T 32 1153721
0 0 O [00 0O[0000
1 0 1 (00 1j00O01
1 0 |01 00010
10 00100
10 10101
1000
1001
1010

of m-bit NFF codewords. Table III gives 4-bit codewords for 3-bit
datawords. Second column in the table refers to the NFF codewords.
N FF,. can be generated recursively as follows:

,'\-—ffu = [f)
NFEF ={0.1}
NEL o = {00 10y | Ve e NEL, (1. Vye NI, )

Table IV shows 1-bit to 4-bit NFF codewords. Note that \"FF
is same as the set of (n, b, [(n/2)])-NAT codewords [6]. For imple-
menting (.5, [(n/2)])-NAT coding technique, though it is not ex-
plicitly mentioned in the paper [11], the authors indeed considered
normal-form Fibonacci number system of order 2. Hence, NFF tech-
nique can implement (. b, |{1/2}])-NAT coding technique, and vice
versa.

Uniqueness property of the normal-form Fibonacci number system
of order 2 prohibits two consecutive 1s to present in codewords. From
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TABLE V
ILLUSTRATION OF DIFFERENT CODING TECHNIQUES. .‘\'..'F.'FE,_S INDICATES THE
TRANSMISSION OF 1 -BIT NFF CODEWORDS USING TS TECHNIQUE

data- Fibonacci codeword
word | NFFy | NFF] RF4 CRF,
1 [1] g } 1

cooc—cood
S ———e
OO D et
SO0 O
—— )t S
—_— D — O D ——

|
|
1
|
1
0
0
|

coo——o -
Lk — b= T
o= — -
2 D e T
Errrrer -
[ T
- e D
e e——
e

—coo——

So———oo
coo——o—do

Table I'V, we can see that NFF codewords do not contain adjacent 1s.
‘We now formally prove this fact.
Lemma 1: NFF codewords do not contain adjacent 1s.

Proof: Assume that an NFF codeword ¢ = ¢, 1. .... c1en has
adjacent 1s at ith and (7 + 1)th bit positions. So, ¢ir o = iy =
00 and ¢;4y = ¢; = 1. When ¢;4,¢; = 11, the decimal value of

corresponding pair of bits is { ;-1 + /i }, which is equal to f, 1, where
/i is the ith Fibonacci number. If this is the case, according to the NFF
encoding algorithm as showninTable I, . o = land ;1 = ¢; = 00,
which contradicts our assumption. |
It may result in crosstalk transitions when certain pairs of NFF code-
words are transmitted one after another. For example, transmission of
NFF codewords 0001 and 0010 results in crosstalk transitions in the
least significant two bits. In order to avoid crosstalk transitions, NFF
codewords are transmitted using transition signaling (TS) technique
[7]. wherein data to be transmitted is XORed with the data present on
the bus.
Lemma 2: Transmitting NFF codewords using the TS technique
eliminates crosstalk transitions.
Proof: Let us consider an n-bit bus. We assume that trans-
mitting NFF codewords using the TS technique does not elimi-

nate crosstalk transitions. Let d, : al_,..... @it ah and
41 [EE 41
depr roa T i a," be the present data and

next data on the bus, respectively, such that there are crosstalk
transitions at i/th and (¢ + 1)th bit positions for some ¢ > (). So,

rrf+| = rr§+|. rrf- = rr;i:, rrf:ll = nf+',and rJf_H = fJ'{'. Let
cpn el [P r‘f+| ko r‘ﬁ be an NFF codeword transmitted using

the TS technique to get ;.. k & {f.f+ 1}. Then

Y [N [N (R
Cigg T g iy = g iy = 1
[N i 41 41 1

e = ;o BN AE = 1.

g = |

Thus, codeword ;| has two adjacent bits equal to 1, which contradicts
Lemma 1. Hence, the wrong assumption. |

We illustrate Lemma 2 using an example as shown in Table V. Trans-
mitting a set of eight 3-bit datawords as it is results in crosstalk transi-
tions (refer to the first column of Table V). Similarly, transmitting NFF
codewords as it is results in crosstalk transitions as shown in the second
column of Table V. As shown in the third column of Table V, trans-
mitting NFF codewords using the TS technique eliminates crosstalk
transitions.

B. Redundant Fibonacci (RF) Coding Technigque

We now present a coding technique which does not require the TS
technique to eliminate crosstalk transitions.

In the case of NFF technique, Fibonacci numbers [, _,..... [, are
considered as the basis elements to generate 1 -bit codewords. Similar
to the NFF technique, in redundant Fibonacci (RF) coding technique,
we consider Fibonacci numbers as the basis elements with the excep-
tion that [ is used twice. That is, in order to generate /-bit RF code-
words, we consider [, 2. . ... fu. fu as the basis elements. As f; is
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TABLE VI
1-BIT TO 4-BIT RF CODEWORDS
RF 1 [RF:[RF:] RF,
T T TIZTT37T1
0 [0 00000000
I 10 10010001
I 1{100j0100
101{0101
I1L1jor11
1100
1101
|

TABLE VII
1-BIT TO 4-BIT CRF CODEWORDS
CRFA[CRF,[CRF;]CRF,
I I T IZT T[32T1
0 [0 00000000
1 I 010100010
I 1101 10011
1101000
1111010
1011
1110
1111

considered twice in the RF technique, we get two sets of RF codewords,
each is a complement of the other. We consider these two sets as re-
dundant Fibonacci (RF) and complement redundant Fibonacci (CRF)
codeword sets.

Let R.F,,, be the set of 11 -bit RF codewords. Then

RFy =10

RF = {01}
RFosgoe = {00 11y | Vo € RFo 0. Yy € RFs,.,}
RFops = {Le 00y | Ve € RFo 2. Yy € RFougi )

Table VI shows 1-bit to 4-bit RF codewords. Note that, W, is
same as the set of codewords of the FTF-CAC technique [9]. Hence,
the encoding logic given in [9] can be used for implementing the RF
technique.

CRF codewords are generated by taking bit-wise complement of
each codeword from the set of RF codewords. Let C'R*,,, be the set of
m -bit CRF codewords. Then

CRE, = (7| Ve e RF. . (1)

Table VII shows 1-bit to 4-bit CRF codewords. Third and fourth
columns of Table III give 4-bit RF and CRF codewords, respectively,
for given 3-bit datawords.

CRF encoding algorithm as shown in Table II is similar to the
encoding algorithm given in [9] for implementing FTF-CAC tech-
nique. The only difference is the comparison operation. Instead
of (repn < fol(ky241)) as suggested in [9], here we consider
(Pt < Jerii—1i42)7 ). So from the implementation point of view,
the CRF algorithm has the same complexity as that of the FTF-CAC
algorithm [9].

Lemma 3: RF and CRF techniques eliminate crosstalk transitions.

Proof: Let us assume that RF technique does not elimi-

o I3 t I3 {3
nate crosstalk transitions. Let «, @ o ... 00 0., -y and
t it t t F
e et ettt "' be two RF, codewords. As-

sume that when ;4 is transmitted after «,, it results in a crosstalk
transition at ith and {/ + 1)th positions. This indicates that in the
{i + 1)th and /th positions, , and ¢, , must have either 01 and 10,
or 10 and 01 bit strings, respectively. But, according to the recursive
procedure for generating R *,, codewords, all the codewords of R F,
can have bit values from either {00, 01. 11} or {00, 10, 11} at{i+ 1)th
and ith positions. This shows that our assumption is wrong. Hence,

Volume No: 3 (2016), Issue No: 9 (September)

www.ijmetmr.com

RF technique eliminates crosstalk transitions. Similar argument can
be given for CRF technique. |

IV. DEPENDENCY AMONG DIFFERENT CROSSTALK
AVOIDANCE CODES

In this section we show how one set of Fibonacci codes is related
to the other set of Fibonacci codes. We also relate our Fibonacci tech-
niques with other crosstalk avoidance coding techniques.

Lemma 4: RF.. = {r A, | Yo € NFF..}, where | is
bit-wise XOR operation and A, is an 1 -bit string such that if 1 is odd,
Ay = {012 otherwise, Ay, = (013 Here (01)!/*!
indicates an i -bit string 0101 ... 01 ({m/2} times).

Proof: We prove it using mathematical induction.

Form = L. NFF, = {0.1}. Thus, {0 1.1 01} = {1.0} =
‘R.F\. Hence, the statement is true for m = 1.

Form = 2, N"FF, = {00,01,10}. Then, {00 01,01 701, 10+
01} = {01,00,11} = RF..

Let us assume that the statement is true for m: = & — 1, where
F {k = 1} is an odd number.

We now prove the statement for /. = k. From the recursive defini-
tion of .F ., we know that

RFe = {100y |Wer e RFe . Vye RF._a}
- {1(”‘- Ap ). 00(: 5 By ) | Yo € NEF, .
Ay = (001 T ¥ e NFF . By = 1(01) 2 }
- {[[]rr'} (146_1),(102) 7 (10By_2) | Yo € NFF iy,
k—1 ~ E—1
A = (O T V- € NEFi 0. By o = 1[01)7}
- {([]m)- A (102) 5 Ay | Yo € NFFiy,
i k=1
Ve NFFp_p Ay = 1(01)7}
= o0 Ay | Ve € NFFe Ay = 10017,

Thus, RF, = {e & A, |Vee NFF .

Lemma 5: CRF,, = {v 0 A, | ¥r € NFF, }, where © is
bit-wise XOR operation and A, is an /n-bit dataword such that if n: is
odd, A, = 0(10)"" /2 otherwise, A, = (10"~ N

Proof: Using Lemma 4 and (1).
As Boolean XOR is a reversible operation, we can easily generate

NFF,, fromagiven RF,, or CRF .. From the above two lemmas,

it is clear that all the three Fibonacci code sets are inter-related and for
each element in one code set, there is a unique element in another code
set. Also, we know that \" F F issame as thatof (v, b, [(n/2)])-NAT
codeword set [6] and R, is same as the codewords of the FTF-CAC
technique [9]. This indicates that if we have an encoding logic for
one technique, we can easily generate the codewords of the other
techniques. From [6] and [9], we know that the cardinality of the set of
{n.b.[(1n/2)])-NAT codewords and the set of »-bit codewords of the
FTE-CAC technique is [, , the nth Fibonacci number. Also, as there
is one-to-one mapping between the codewords of any two techniques
A and Y, where XY & (NEFF.REF.CRENAT FPTEF-CACY,
INFF, | =|RF.,| =I|CRF.,| = f.. the nth Fibonacci number.

V. GENERALIZED FRAMEWORK FOR CROSSTALK AVOIDANCE

Fig. 1 shows a codec mechanism by which codewords of a
technique can be generated from other techniques. Given any
dataword « as input, an encoder Ny, of a technique X €
{NFIVRE.CRENAT PTE-CACY  converts  the  dataword
into a codeword . To generate a codeword -y of a technique
Y oe (NFF.RF.CREFONAT,FTF-CACY, we XOR ey with Yo, a
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cx @ @Cx

d— XE“ YT Cy Cy YT

Xpe T>d

Encoding Logic Decoding Logic

Fig. 1. Conversion from one coding technique to other. Here,
d is a dataword, Ng, is an encoding logic for technique
XN £ |NFF.RF,CRF.NAT.FTF-CAC}. rx is a codeword of
N Y is a bit string which is XORed with ¢ x to generate a codeword ry- of a
technique ¥" € {NFF. RF. CRF. NAT. FTF-CAC}.

TABLE VIII
TRANSFORMATIONS {Y7-) THAT CAN BE APPLIED ON A CODEWORD ¢ x TO

GENERATE ¢y, XY € {NFF.RF.CRF. NAT. FTF -CAC}. HERE
Amo= 101)ym=/ 2 Am = (1) (m 2, pm o= 0(10)m—0A(2),

Bt = 0y cm, T i Dy, = DI, =0
V=S NFF[RF[CRI, b, T NAT[FTF-CAC]
NFF — 1A B g2 iy
TT T -1 C p) T
CRF BT - B C
Wb IZ) NATT D [A] B B )
FIT-CACT [ A DT g =
TABLE IX

ILLUSTRATING THE TRANSFORMATIONS AMONG
DIFFERENT CODING TECHNIQUES

0000 [ OTOT [ TOTO 0000 TOTOT T TTTT (J()UU U](J TTTT
0001 1 OT00 | TOTT 0001 10100 [ TTTO 0010 | TOOO | TT01
OOTO TOTIT | TOOO 0100 10001 | TOTT 00TT [ TOOT | TT0O
0700 [O0OT [ TTT0 OT0T [ 0000 | TOTO 1000 [O0TO | OTTT
OTOT [ 0000 [ TTTT OTTT [ 00TO | TODO 1010 [ 0000 | OTOT
TO00 | TTOT [ O0TO TTO0 [ TOOT TO0TT TOTT T000T T 0T00
TO0T [ 1T00 [ 00T 1TOT | 1000 [ 0010 ITT0 [ G100 | 000T
TOTO [ TTIT [ 0000 [TTT [ TOTO [ 0000 [TIT [OTOT | 0000

bit string, as shown in Table VIII. Based on whether the codeword
length is even or odd, we consider Y as either S",',‘|,| or 5., where
Se { A B.C.D}and Ay = 100 g = o1y
g = [1[)}' m—1]/(2) B"’“ = (1[)}' mz) Ty o= O L= 1
and 1, = D! = 0. Note that the demmal value of a codeword
~ may not be equal to that of the corresponding «y . This will not
have any impact on the crosstalk avoidance as long as a codeword of
technique X' uniquely maps to a codeword of another technique }'.
From Lemmas 4-5 and (1), we can easily see that the bit strings of Y
from Table VIIT will uniquely map a ~v to a ¢y, where X and } are
different crosstalk avoidance techniques considered in the report.

Table [X illustrates the transformations among different coding tech-
niques. The Y datawords for each coding technique are shown in bold
face. We consider Y as 0101 and 1010 for converting the NFF code-
word set into RF and CRF codeword sets, respectively. Similarly, for
RF to NFF and CRF codeword set conversion, we consider 1", as 0101
and 1111, respectively. Codewords in the second and third column of
each sub-table are obtained by taking bit-wise XOR of corresponding
Y'; and the codewords in the first column. From the three sub-tables,
we can easily see that a codeword of a coding technique is uniquely
mapped to a codeword of other technique.

As efficient codec designs are presented and thoroughly analyzed
from the scalability point of view in [9], [11] for FTF-CAC and
{n.b.[{n/2)])-NAT techniques, respectively. and these techniques
are related to our techniques, the same implementations can be ap-
plied directly to our techniques. Since all these techniques eliminate
crosstalk transitions completely, according to [14], the worst-case

odd =
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propagation delay will be (1 + 2(C";}/{C)), where 7, is the delay
of a crosstalk-free line, and '; and (', are the wire-to-substrate ca-
pacitance and inter-wire capacitance, respectively. For the uniformly
distributed random data, all these techniques incur nearly the same
number of switching transitions on an average.

VI. CONCLUSION

By exploiting Fibonacci number system, we proposed a family
of Fibonacci coding techniques for crosstalk avoidance. We showed
the inter-dependency among the proposed techniques and provided
a formal procedure to convert a codeword set into another codeword
set. We also related our proposed techniques with some of the existing
crosstalk avoidance coding techniques. The proposed techniques
eliminate crosstalk completely, but not inductance. The worst-case
inductance occurs when adjacent lines transition in the same direction.
We plan to come up with a suitable mechanism to minimize the
inductance effects using Fibonacci codes in future.
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