

 Page 873

Distributed and Isolation mechanisms for providing concurrent

Data Access in Cloud Computing

K.Laxmi

Assistant Professor

Department of IT

Teegala Krishna Reddy Engineering College

Medbowli, Saroornagar, Hyderabad.

G.Archana

Assistant Professor

Department of IT

Teegala Krishna Reddy Engineering College

Medbowli, Saroornagar, Hyderabad.

Abstract- Cloud database environments are very

attractive for the deployment of large scale

applications due to their highly scalable and available

infrastructure. The main reason for the users

deploying different types of applications in the cloud

is its pay-for-use cost model. This survey contains the

most prominent concurrency control protocols that

can be used in the encrypted cloud database. The

degree of data consistency and cost requirements

varies according to the concurrency control

protocols.

Index Terms- Cloud; database; data consis tency;

concurrency control.

1. INTRODUCTION

Cloud based services are becoming popular as they focus

on high availability and scalability at low cost. While

providing high availability and scalability, placing

critical data to cloud poses many security issues. For

avoiding these security issues the data are stored in the

cloud database in an encrypted format. The encrypted

cloud database allows the execution of SQL operations

by selecting the encryption schemes that support SQL

operators. Encrypted cloud database permits different

types of accesses such as distributed, concurrent, and

independent. One of the architecture that supports these

three kinds of access is Secure DBaaS, which was

proposed by Luca Ferretti et al [1]. The Secure DBaaS

architecture supports multiple and independent clients to

execute concurrent SQL operations on encrypted data.

Data consistency should be maintained by leveraging

concurrency control mechanisms used in DBMS

engines.

This survey explains the various concurrency control

protocols that can be used in the encrypted cloud

database. The applications need 1SR if data is replicated.

Hence, to guarantee the merits of cloud, it is essential to

provide high scalability, availability, low cost and data

with strong consistency, which is able to dynamically

adapt to system conditions. Self-optimizing one copy

serializability (SO-1SR) is the concurrency control

protocol that dynamically optimizes all stages of

transaction execution on replicated data in the cloud

database [2]. Current DBMSs supported by cloud

providers allows relaxed consistency guarantees which

in turn increase the design complexity of applications

[3].

The second concurrency control protocol is the snapshot

isolation (SI) which provides increased concurrency in

cloud environment when compared to 1SR [4].

Transactions are read from the snapshot, reads are never

blocked because of write locks which in turn increases

concurrency. SI does not allow many of the

inconsistencies, but allows write skew anomalies. SI

allows transaction inversions. To avoid transaction

 Page 874

inversions strong consistency guarantee is required, i.e.

strong SI (SSI). The third concurrency control protocol

is the session consistency (SC) [5]. Session consistency

is a different variety of eventual consistency. The system

provides read your writes consistency inside each

session. Session consistency is at a low cost while

considering response time and transaction cost.

The cost based concurrency control in the cloud is the C3

i.e. cost-based adaptive concurrency control in cloud [6].

C3 dynamically switch between strong consistency level

and weak consistency level of transactions in a cloud

database according to the cost at runtime. It is built on

the top of 1SR and SSI.

2. SECUREDBAAS:

SecureDBaaS (Secure database as a service) architecture

proposed by Luca Ferretti et al supports multiple clients

and clients which are geographically distributed to

execute the independent and concurrent operation on

encrypted data in the remote database [1]. SecureDBaaS

also guarantees data confidentiality and cloud level

consistency.This architecture eliminates the intermediate

server between the cloud database and client in order to

provide availability and scalability [7].

SecureDBaaS is the architecture that supports the

concurrent execution of operations in the encrypted

cloud database. The existing proxy based architecture

constraints the multiple and distributed clients to access

data concurrently from the same database. The data

consistency during the concurrent access of data and

metadata can be assured by using some isolation

mechanisms or the concurrency control protocols in the

cloud database. SecureDBaaS allows the execution of

concurrent SQL operations (INSERT, DELETE,

SELECT, UPDATE) from multiple and distributed

clients. In order to provide data confidentiality the tenant

data and metadata should be in an encrypted format. For

this reason, clients convert plaintext SQL statements into

SQL statements that support transactions and isolation

mechanisms allowed in cloud databases [8]. The

solutions for the consistency issues lies in the five

contexts: (1) data manipulation (2) modification of

structures (3) altering table (4) modification of secure

type (5) unrestricted operations.

 2.1. Architecture design

The architecture design of Secure DBaaS consists of one

or more client machines with Secure DBaaS installed

and cloud database. This client is responsible for the

connection of a user to the cloud DBaaS to perform SQL

operations. The Secure DBaaS manages plaintext data,

metadata, encrypted data and encrypted meta data. The

plaintext data includes the data user wants to save in

cloud DBaaS [9]. In order to avoid the confidentiality

issues, multiple cryptographic approaches are used to

convert plaintext data to encrypted form for storing in

cloud database. The metadata includes information

needed to encrypt or decrypt data. Moreover, metadata is

also stored in an encrypted format [10].

Encryption Schemes:

The encryption schemes supported by Secure DBaaS

[11] are:

 Plain: it supports the storage of unencrypted

data in the cloud and allows all types of SQL

operations. OPE: order preserving encryption

permits the execution of inequality and range

queries on encrypted data

 Det: it permits the execution of equality and

aggregation operators on encrypted data.

 Random: it assures highest confiden tiality level.

But it restricts all SQL operators.

2.2. Implementation

SecureDBaaS client consists of five components:

Operation parser software: Is responsible for the

conversion of receiving plain text SQL command into

intermediate form which is processed later by other

modules.

Encryption engine: Is responsible for all kinds of

encryption and decryption operations specified in the

metadata of SecureDBaaS.

Metadata manager: it manages metadata local copies and

assures its consistency.

Query writer: it translates the query in intermediate form

from the operation parser into SQL statements that can

be executed by the cloud database over encrypted data.

 Page 875

Database connector: it acts as an interface between client

and remote DBMS.

3.Concurrency Control Protocols

In what follows, we briefly present the most prominent

concurrency control protocols that can be used in cloud

database.

3.1. Self-optimizing One Copy Serializability (SO-1SR)

1SR is the strongest and well known correctness

criterion for applications that are newly deployed in the

cloud. It assures the serializable execution of concurrent

transactions and a one copy view of the data. The most

commonly used approaches to implement 1SR is to use

lock based protocols such as strict two-phase locking

(S2PL) for providing serializable transaction execution

and two-phase commit (2PC) for synchronous updating

all replicas.

3.1.1. Transaction model:

In a system providing 1SR, each transaction which

writes to a data object must update all copies of the data

object. In case of update transactions the replicated data

increases the response time and thus decreases the

overall scalability of the system. In order to exploit the

merits of the cloud, it is essential to provide scalability,

availability, low cost and strongly consistent data

management. Under distributed systems, it is not

possible to provide consistency and availability. The

stronger consistency level decreases the availability and

scalability.In cloud environments, the cost of

guaranteeing a certain consistency level on top of

replicated data is to be considered. Strong consistency is

costly; on the other hand, weak consistency is cheaper,

but may lead to high operational costs of compensating

the effects of anomalies and access to stale data. The

first generation cloud DBMS’s provide on the weak

consistency in order to provide maximum scalability and

availability. It is sufficient for satisfying requirements

related to consistency of simple cloud applications.

However, more sophisticated like web shops, online

stores and credit card services requires strong

consistency levels. The advantages of cloud such as

availability and scalability are not yet exploited by

existing commercial and open source DBMS’s which

provide strong consistency [12].

SO-1SR (self-optimizing 1SR) is a novel protocol for

replicated data in a cloud that dynamically optimize all

phases of transaction executions. System model of SO-

1SR assumes that applications are built on the top of a

cloud data environment.

3.1.2. Implementation:

The SO-1SR middleware should be present at each

replica node. The transactions that are submitted by the

client to the application servers are forwarded to the SO-

1SR middleware for optimal execution. The SO-1SR is

based on a fully replicated system and flat transaction

model. Protocols like 2PC or Paxos are needed to

provide strong consistency guarantees. The main goal of

SO-1SR is to decrease latency by using dynamic

optimization technique at different phases of transaction

life cycle, not to replace protocols like 2PC or Paxos.

3.2. Snapshot Isolation:

The transactional guarantees of SI are weaker than 1SR,

such that the database system can achieve increased

concurrency by relaxing isolation requirements on

transaction. In SI, the transaction attempting read is

never blocked. The tradeoff between transaction

isolation and performance is that higher degrees of

transaction isolation assure fewer anomalies. Anomalies

avoided by 1SR are also avoided in SI. Under SI, write

skew anomaly is possible if two transactions

concurrently update one or more common data item. For

example, consider two transactions Tm and Tn.

Transaction Tm reads data items p and q and then

updates concurrently with other transaction Tn that reads

data item p and q and then updates q. Here transaction

Tm and Tn do not have a write-write conflict because

none of the transaction updates a common data item.

Different variations of SI exist for replicated systems

like cloud which provide different consistency

guarantees. In a lazily synchronized replicated database

system; if two transactions Ts and Tv do not have a

write–write conflict under SI, then their updates may be

 Page 876

committed in the order Ts followed by Tv at a site S1 but

in reverse order at another site S2 in which each site

individually guarantees SI. In this case, consider a

transaction Tk that reads x and y at site S1 and view

database state from the commit of Ts will not view this

same database state if it were to be executed on the

database replica at site S2.But this kind of replica in

consistency will not occur in a centralized database

system that guarantees SI.

SI was introduced by Berenson et al [13]. SI is defined

as; it does not allow dirty reads, dirty writes, non-

repeatable reads, phantoms or lost updates. Write skew

anomalies are possible in SI. By the definition of SI,

when the transaction starts the system assigns a

transaction Ta start timestamp called start (T). The

database state seen by T is determined by start (T). The

system can choose any time less than or equal to the

actual start time of T to start (T). The update transactions

made by Tl that commit after start (T) will not be visible

to T. Only update transaction that commits before start

(T) will be visible to T. Each transaction T is able to see

its own updates are also a requirement in SI. Thus, if T

updates a database item and reads that item, then T will

see the updating even though the update occurred after

the start (T).

3.2.1. Transaction model:

Commit timestamp, commit (T) is assigned to a

transaction when a transaction is to commit. The time

commit (T) is more recent than any other start or

commit timestamp assigned to any transaction. If no

other committed transaction Tk with lifespan [start (Tk),

commit (Tk)] that overlaps with a T’s lifespan of [start

(T), commit (T)] write data that T has also written then

only T commits. Otherwise, to prevent lost updates T is

getting aborted. This technique of preventing lost

updates is called the first-committer-wins (FCW) rule.

Transaction inversions are possible in SI, i.e. for every

pair of transactions T1 and T2, if T2 executes after T1

then T1 will view T1’s updates. This is because the actual

start time of T2 can be larger than that of a start (T2). In

particular, if T2 starts after T1 has finished, then T2 will

see a database state that does not contain the effects of

T1. In order to prevent these kinds of transaction

inversions, strong SI is introduced.

In the definition of strong SI (SSI), if for every pair of

committed transactions Tp and Tq in transaction history

TH such that Tp’s commit precedes the first operation of

Tq, start (Tq) > commit (Tp) and it is SI then we can say

that the transaction execution history TH is strong SI.

3.2.2. Implementation:

The decentralized model of SI based transactions

consists of some mechanisms such as: (a) Keeping a

consistent, committed snapshot for reading (b) a global

sequencer is used for arranging the transactions by

allocating commit timestamps (c) detection of write-

write anomalies in concurrent transactions and(d)

atomically commit the updates and make them durable.

In the model, each transaction goes through a sequence

of phases during execution. The main phase is the active

phase in which all read/write on data item is performed

in this phase. The remaining phases are part of the

commit of the transaction. Validation phase is required

for detecting the conflicts among transactions that are

executed concurrently.

3.3. Session Consistency

Session Consistency is considered to be the minimum

consistency level in a distributed environment that does

not result in complexities for application developers.

Under Session Consistency, the application will not see

its own updates and may get inconsistent data from

successive accesses. The key idea is that, all data does

not need the same level of consistency. There is a term

called consistency rationing i.e. the data is divided into

three categories A, B, C and each type of data is treated

differently depending on the consistency level

provided.The category A contains data in which

consistency violations may result in large penalty costs.

The category B includes data where the consistency

requirements change over time. Category C comprises

data in which inconsistency is acceptable. Session

consistency considers data under category C. C category

is always a preferred category for placing data in the

 Page 877

cloud database [14]. By considering a transaction cost

and response time the session consistency is very cheap;

because only few messages are needed as compared to

strong consistency guarantees. The performance level

can be increased by providing extensive caching

mechanisms which in turn lowers the cost.

3.3.1. Transaction model:

By sessions, the client connects to the system. The

system assures read your own writes monotonicity as the

session ends. A new session cannot view the writes of

the last executed session, immediately. The updates in

sessions of different clients are not always visible to

each other. As the time passes, the system converges and

acquires consistency called eventual consistency. The

conflicts for concurrent updates in the C category data

depends upon the type of update. In case of commutative

and non-commutative updates, the former is solved by

the last update wins and the latter is solved by

performing the updates one after the other. But the

inconsistencies are possible in both cases.

3.3.2. Implementation:

The implementation is done on top of the Amazon’s

simple storage service (S3). The key idea is, each page’s

highest commit timestamp is recorded that is cached by

the server in the past. The server can check if a server

receives an outdated copy of the page from S3 and can

update the page from S3. The session consistency can be

guaranteed by forwarding all requests from the same

client to the same server under a session. The session ID

is used for the routing mechanism and the request is

redirected accordingly.

3.3. Cost-Based Adaptive Concurrency Control (C3)

Cost plays an important role in the cloud environment

along with the performance [15]. The strong

consistency leads to high cost, whereas weak

consistency leads to high operational costs [16]. In C3

approach, a consistency rationing model is used which

categorized the data into three: the first category

contains data which require ISR, the second category

data require SC and the third category data handled with

adaptive consistency. At the data level, specific policy

will be defined based on that policy consistency level is

selected between 1SR and SC at the time of running.

Moreover, C3 is implemented on the top of 1SR, SC and

SSI concurrency protocols by utilizing the resources

provided by the cloud providers.The update anywhere

and full replication procedure are the basis for the C3

system model. The updating of all replicas will be

carried out in ISR and SSI transactions using 2PC, while

SC transactions only commits at the remote local

replicas. The C3 model does not introduce any hindrance

for the replication strategy. Each and every replica in the

system is known to all other replicas. The C3 procedure

uses an adaptive layer, which allows the dynamic

switching between the different CCPs at runtime. Thus

the reduction of operational costs and transaction

response time is possible [17].

3.4.1. Transaction model:

An object-id is used for identifying an object uniquely

for performing operations under transactions. Only read

operations are included in the read-only transaction,

where update transactions should contain minimum one

update operation. In the transaction model of C3,

provides a unique timestamp for transactions at the start

and commit time based on their arrival order. The

highest start timestamp is assigned to the transaction

which started more recently and the highest timestamp

for commit is the most recently committed transaction.

3.4.2. Implementation:

All the middleware components are implem ented as

web services and allow deployment in possible

configurations. The components of C3 middleware are:

 Transaction Manager: Manages every

transactions and responsible for the

implementation of C3 protocol.

 Site Manager: provision of an abstract layer for

the management of local data access.

 Timestamp Manager: provides timestamps for

transactions based on the arrival order and the

management of timestamps.

 Page 878

 Lock Manager: Is responsible for management

of locks.

 Replica Manager: provides replica management.

 Freshness Manager: manages the freshness data.

Under logical architecture of C3, each replica includes a

Transaction Manager and Site Manager. Moreover, each

replica also includes a local datastore where the Site

Manager utilizes the datastore for managing real data

and Transaction Manager stores data regarding its

functionality.

Avoidance of Anomalies: The transactions with read and

write sets are required for avoiding anomalies under

consistency mixes. The implementation of C3 consists of

different types of CCPs, when the different concurrent

transactions, access the same data item with different

consistency levels for the reasons such as: First, the

design of the application supports the access of the same

data item by transactions with different consistency

levels. Second, consistency requirements will be

different for different applications that use the same data

[18]. Third, based on the cost model different replicas

execute transactions adaptively that accesses the same

data object [19]. The possible inconsistencies are:

 Inconsistencies arise because of the isolation

level between transactions that run on same

CCP.

 Inconsistencies arise because of the isolation

level between transactions that run on different

CCP.

 Data staleness is also a reason for the

inconsistency.

We analyze these concurrency control protocols in Table

1.

Table 1: Comparison of different concurrency control

protocols

4. CONCLUSION:

In this paper, the different concurrency controls in the

encrypted cloud database such as SO-ISR, SI, SC and C3

is discussed. These protocols provide different data

consistency levels at different costs. The concurrency

and performance varies according to the concurrency

protocols used in the cloud environment. The

architecture which supports the distributed, concurrent

and independent access to the encrypted cloud database

is SecureDBaaS. SecureDBaaS uses the isolation

mechanisms for providing concurrent access to its

geographically distributed clients.

Acknowledgments

I am thankful to my guide Dr. M. NewlinRajkumar &

Co-guide Dr. V. Venkatesa kumar for their guidance and

encouragement for the paper work.

5.REFERENCES

[1] L. Ferretti, M. Colajanni, and M. Marchetti,

“Distributed, Concurrent, and Independent Access

to Encrypted Cloud Databases,” IEEE Trans.

Parallel Distrib. Syst., vol. 25, no. 2, pp. 437–446,

Feb. 2014.

[2] I. Fetai and H. Schuldt, “SO-1SR: towards a self-

optimizing one-copy serializability protocol for data

management in the cloud,” in Proceedings of the

fifth international workshop on Cloud data

management, 2013, pp. 11–18.

[3] C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E.

 Page 879

Wu, S. Madden, H. Balakrishnan, and N. Zeldovich,

“Relational cloud: A database-as-a-service for the

cloud,” 2011.

[4] K.Daudjee and K. Salem, “Lazy database

replication with snapshot isolate ion,”in

Proceedings of the 32nd international conference on

Very large data bases, 2006, pp. 715–726.

[5] T. Kraska, M. Hentschel, G. Alonso, and D.

Kossmann, “Consistency Rationing in the Cloud:

Pay only when it matters,” Proc. VLDB Endow.,

vol. 2, no. 1, pp. 253–264, 2009.

[6] I. Fetai and H. Schuldt, “Cost-based data

consistency in a data-as-a-service cloud

environment,” in Cloud Computing (CLOUD), 2012

IEEE 5th International Conference on, 2012, pp.

526–533.

[7] Y. Lu and G. Tsudik, “Enhancing data privacy in

the cloud,” in Trust Management V, Springer, 2011,

pp. 117–132.

[8] L. Ferretti, M. Colajanni, and M. Marchetti,

“Supporting security and consistency for cloud

database,” in Cyberspace Safety and Security,

Springer, 2012, pp. 179–193.

[9] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing

database as a service,” in Data

Engineering, 2002. Proceedings 18th

International Conference on, 2002, pp.

29–38.

[10] K. P. Puttaswamy, C. Kruegel, and B. Y. Zhao,

“Silver line: toward data confide ntiality in storage-

intensive cloud applica tions,” in Proceedings of the

2nd ACM Symposium on Cloud Computing, 2011,

p. 10.

[11] L. Ferretti, F. Pierazzi, M. Colajanni, and M.

Marchetti, “Security and confiden tiality solutions

for public cloud database services,” in

SECURWARE 2013, The Seventh International

Conference on Emerging Security Information,

Systems and Technologies, 2013, pp. 36–42.

[12] L. Ferretti, M. Colajanni, M. Marchetti, and A.

E. Scaruffi, “Transparent Access on Encrypted Data

Distributed over Multiple Cloud Infrastructures,” in

CLOUD COMPU TING 2013, The Fourth

International Conference on Cloud Computing,

GRIDs, and Virtualization, 2013, pp. 201–207.

[13]J. G. U. Berkeley and others, “A Critique of ANSI

SQL Isolation Levels,” Online Verfügbar Http131107,

vol. 65.

[14]A. J. Feldman, W. P. Zeller, M. J. Freedman, and

E.W. Felten, “SPORC: Group Collaboration using

Untrusted Cloud Resources.,” in OSDI, 2010, vol. 10,

pp. 337–350.

[15]M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

 Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and others, “A view of cloud

computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58,

2010.

[16]W. Jansen, T. Grance, and others, “Guidelines on

security and privacy in public cloud computing,” NIST

Spec. Publ., vol. 800, p. 144, 2011.

[17]C. Almond, “A practical guide to cloud computing

security,” White Pap. Accent. Microsoft, 2009.

[18]S. Hildenbrand, D. Kossmann, T. Sanamrad, C.

Binnig, F. Faerber, J. Woehler, D. Kossmann, and D.

Kossmann, Query Processing on Encrypted Data in the

Cloud by. ETH, Department of Computer Science, 2011.

[19]Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data

Security and Privacy in Cloud Computing,” Int. J.

Distrib. Sens. Netw., vol. 2014, pp. 1–9, 2014.

