
 
 

 Page 947 
 

Reliable Low Power Multiplier Design Using Fixed Width Reduced 

Precision Replica Block 

Kadiri Mrunalini 

M.Tech Student 

Stanley Stephen college of Engineering & Technology, 

Panchalingala, Kurnool – 518004. A.P. 

N.Praveen Kumar, M.Tech, (Ph.D), 

Associate Professor 

Stanley Stephen college of Engineering & Technology, 

Panchalingala, Kurnool – 518004. A.P. 

 

Abstract 

In this paper, we propose a reliable low-power 

multiplier design by adopting algorithmic noise 

tolerant (ANT) architecture with the fixed-width 

multiplier to build the reduced precision replica 

redundancy block (RPR). The proposed ANT 

architecture can meet the demand of high precision, 

low power consumption, and area efficiency. We 

design the fixed-width RPR with error compensation 

circuit via analyzing of probability and statistics. 

Using the partial product terms of input correction 

vector and minor input correction vector to lower the 

truncation errors, the hardware complexity of error 

compensation circuit can be simplified. In a 12 × 12 

bit ANT multiplier, circuit area in our fixed-width 

RPR can be lowered by 44.55% and power 

consumption in our ANT design can be saved by 23% 

as compared with the state-of-art ANT design. 

 

Index Terms— Algorithmic noise tolerant (ANT), 

fixed-width multiplier, reduced-precision replica 

(RPR), voltage overscaling (VOS). 

 

I. INTRODUCTION 

The rapid growth of portable and wireless computing 

systems in recent years drives the need for ultralow 

power systems. To lower the power dissipation, supply 

voltage scaling is widely used as an effective low-

power technique since the power consumption in 

CMOS circuits is proportional to the square of supply 

voltage. However, in deep-sub micrometer process 

technologies, noise interference problems have raised 

difficulty to design the reliable and efficient 

microelectronics systems; hence, the design techniques 

to enhance noise tolerance have been widely 

developed. 

An aggressive low-power technique, referred to as 

voltage overscaling (VOS), was proposed to lower 

supply voltage beyond critical supply voltage without 

sacrificing the throughput. However, VOS leads to 

severe degradation in signal-to-noise ratio (SNR). A 

novel algorithmic noise tolerant (ANT) technique 

combined VOS main block with reduced-precision 

replica (RPR),which combats soft errors effectively 

while achieving significant energy saving. However, 

the RPR designs in the ANT designs are designed in a 

customized manner, which are not easily adopted and 

repeated. The RPR designs in the ANT designs can 

operate in a very fast manner, but their hardware 

complexity is too complex. 

 

As a result, the RPR design in the ANT design is still 

the most popular design because of its simplicity.  

However, adopting with RPR should still pay extra 

area overhead and power consumption. 

 
Fig. 1.ANT architecture. 

 

In this paper, we further proposed an easy way using 

the fixed-width RPR to replace the full-width RPR 

block . Using the fixed-width RPR, the computation 

error can be corrected with lower power consumption 

and lower area overhead. We take use of probability, 

statistics, and partial product weight analysis to find 
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the approximate compensation vector for a more 

precise RPR design. In order not to increase the 

critical path delay, we restrict the compensation circuit 

in RPR must not be located in the critical path. As a 

result, we can realize the ANT design with smaller 

circuit area, lower power consumption, and lower 

critical supply voltage. 

 

II. ANT ARCHITECTURE DESIGNS 

The ANT technique includes both main digital signal 

processor (MDSP) and error correction (EC) block, as 

shown in Fig. 1. To meet ultralow power demand, 

VOS is used in MDSP. However, under the VOS, once 

the critical path delay Tcp of the system becomes 

greater than the sampling period Tsamp, the soft errors 

will occur. It leads to severe degradation in signal 

precision. In the ANT technique, a replica of the 

MDSP but with reduced precission operands and 

shorter computation delay is used as EC block. Under 

VOS, there are a number of input-dependent soft 

errors in its output ya[n]; however, RPR output yr [n]is 

still correct since the critical path delay of the replica 

is smaller than Tsamp. Therefore yr[n] is applied to 

detect errors in the MDSP output ya[n]. 

 

Error detection is accomplished by comparing the 

difference | ya[n] – yr [n] | against a threshold Th. Once 

the difference between ya[n] and yr [n] is larger than 

Th, the output ˆy[n] is yr [n] instead of ya[n]. As a 

result, ˆy[n] can be expressed as 

 
 

Th is determined by 

 
Where  yo[n] is error free output signal. In this way, 

the power consumption can be greatly lowered while 

the SNR can still be maintained without severe 

degradation. 

III. PROPOSED ANT MULTIPLIER 

DESIGN USING FIXED-WIDTH RPR 

In this paper, we further proposed the fixed-width 

RPR to replace the full-width RPR block in the ANT 

design, as shown in Fig. 2, which can not only provide 

higher computation precision, lower power 

consumption, and lower area overhead in RPR, but 

also perform with higher SNR, more area efficient, 

lower operating supply voltage, and lower power 

consumption in realizing the ANT architecture. We 

demonstrate our fixed-width RPR-based ANT design 

in an ANT multiplier. 

 

The fixed-width designs are usually applied in DSP 

applications to avoid infinite growth of bit width. 

Cutting off n-bit least significant bit (LSB) output is a 

popular solution to construct a fixed-width DSP with 

n-bit input and n-bit output. The hardware complexity 

and power consumption of a fixed-width DSP is 

usually about half of the full-length one. However, 

truncation of LSB part results in rounding error, which 

needs to be compensated precisely. Many literatures 

have been presented to reduce the truncation error with 

constant correction value or with variable correction 

value. The circuit complexity to compensate with 

constant corrected value can be simpler than that of 

variable correction value; however, the variable 

correction approaches are usually more precise. 

 
Fig. 2.   Proposed ANT architecture with fixed- width 

RPR. 

 

Compensation method is to compensate the truncation 

error between the full-length multiplier and the fixed-

width multiplier. However, in the fixed-width RPR of 

an ANT multiplier, the compensation error we need to 

correct is the overall truncation error of MDSP block. 
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Our compensation method is to compensate the 

truncation error between the full-length MDSP 

multiplier and the fixed-width RPR multiplier. In 

nowadays, there are many  fixed-width multiplier 

designs applied to the full-width multipliers. However, 

there is still no fixed-width RPR design applied to the 

ANT multiplier designs. 

 

To achieve more precise error compensation, we 

compensate the truncation error with variable 

correction value. We construct the error compensation 

circuit mainly using the partial product terms with the 

largest weight in the least significant segment. The 

error compensation algorithm makes use of 

probability, statistics, and linear regression analysis to 

find the approximate compensation value. To save 

hardware complexity, the compensation vector in the 

partial product terms with the largest weight in the 

least significant  segment is directly inject into the 

fixed-width RPR, which does not need extra 

compensation logic gates . To further lower the 

compensation error, we also consider the impact of 

truncated products with the second most significant 

bits on the error compensation. We propose an error 

compensation circuit using a simple minor input 

correction vector to compensation the error remained. 

In order not to increase the critical path delay, we 

locate the compensation circuit in the noncritical path 

of the fixed-width RPR. As compared with the full-

width RPR design, the proposed fixed-width RPR 

multiplier not only performs with higher SNR but also 

with lower circuitry area and lower power 

consumption. 

 

A. Proposed Precise Error Compensation 

Vector for Fixed-Width RPR Design 

In the ANT design, the function of RPR is to correct 

the errors occurring in the output of MDSP and 

maintain the SNR of whole system while lowering 

supply voltage. In the case of using fixed-width RPR 

to realize ANT architecture, we not only lower circuit 

area and power consumption, but also accelerate the 

computation speed as compared with the conventional 

full-length RPR. However, we need to compensate 

huge truncation error due to cutting off many hardware 

elements in the LSB part of MDSP. In the MDSP of n-

bit ANT Baugh–Wooley array multiplier, its two 

unsigned n-bit inputs of X and Y can be expressed as 

 
The multiplication result P is the summation of partial 

products of xi y j , which is expressed as 

 
The (n/2)-bit unsigned full-width Baugh–Wooley 

partial product array can be divided into four subsets, 

which are most significant part (MSP), input 

correction vector [ICV(β)], minor ICV [MICV(α)], 

and LSP, as shown in Fig. 3. In the fixed-width RPR, 

only MSP part is kept and the other parts are removed. 

 

Therefore, the other three parts of ICV(β ), MICV(α), 

and LSP are called as truncated part. The truncated 

ICV(β ) and MICV(α) are the most important parts 

because of their highest weighting. Therefore, they can 

be applied to construct the truncation error 

compensation algorithm. 
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To evaluate the accuracy of a fixed-width RPR, we 

can exploit the difference between the (n/2)-bit fixed-

width RPR output and the 2n-bit full-length MDSP 

output, which is expressed as 

 
where P is the output of the complete multiplier in 

MDSP and Pt is the output of the fixed-width 

multiplier in RPR. Pt can be expressed as 

 
where f (EC) is the error compensation function, 

f(ICV) is the error compensation function contributed 

by the input correction vector ICV(β), and f (MICV) is 

the error compensation function contributed by minor 

input correction vector MICV(α). 

 

The source of errors generated in the fixed-width RPR 

is dominated by the bit products of ICV since they 

have the largest weight.  It is reported that a low-cost 

EC circuit can be designed easily if a simple 

relationship between f (EC) and β is found. 

 
Fig. 4. Statistical curves of average truncation error in 

the LSP block and the curves of compensation 

function with β− 1, β, and β + 1 in the 12-bit fixed-

width RPR-based ANT multiplier 

 
Fig. 5. Analysis of absolute average compensation 

error under various β values in the 12-bit fixed-width 

RPR-based ANT based ANT multiplier. 

 

It is noted that β is the summation of all partial 

products of ICV. By statistically analyzing the 

truncated difference between MDSP and fixed-width 

RPR with uniform input distribution, we can find the 

relationship between f (EC) and β. As shown in Fig. 4, 

the statistical results show that the average truncation 

error in the fixed-width RPR multiplier is 

approximately distributed between β and β +1. More 

precisely, as β = 0, the average truncation error is close 

to β + 1. As β> 0, the average truncation error is very 

close to . If we can select β as the compensation 

vector, the compensation vector can directly inject into 

the fixed-width RPR as compensation, which does not 

need extra compensation logic gates. 

 

We go further to analyze the compensation precision 

by selecting β as the compensation vector. We can find 

that the absolute average error in β = 0 is much larger 

than that in other β cases, as shown in Fig. 5. 

Moreover, the absolute average error in β = 0 is larger 

than 0.5∗ 2(3n/2), while the absolute average error in 

other β situations is smaller than 0.5∗ 2(3n/2). Therefore, 

we can apply multiple input error compensation 

vectors to further enhance the error compensation 

precision. For the β > 0 case, we can still select β as 

the compensation vector. For the β = 0 case, we select 

β+1 combining with MICV as the compensation 

vector. 

 

Before directly injecting the compensation vector β 

into the fixed-width RPR, we go further to double 

check the weight for the partial product terms in ICV 

with the same partial product summation value β but 
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with different locations. As shown in Table I, the 

average error value for each ICV vector with the same 

partial product term summation value is Relation 

between the partial product term’s location in icv and 

the statistical compensation error eavg 

 

TABLE I 

Relation between the partial product term’s location in 

icv and the statistical compensation error eavg 

 
 

 
Fig. 6. Analysis of average positive and negative 

compensation error under various β values in the 12-

bit fixed-width RPR-based ANT multiplier 

 

Nearly the same even their partial product term’s 

location is different. That is to say that no matter ICV 

= (1,0,0,0,0,0), ICV = (0,1,0,0,0,0), ICV = (0, 0, 1, 0, 

0, 0), ICV = (0, 0, 0, 1, 0, 0), ICV = (0, 0, 0, 0, 1, 0), or 

ICV = (0, 0, 0, 0, 0, 1), their weight in each partial 

product term for truncation error compensation is 

nearly the same. Therefore, we apply the same weight 

of unity to each input correction vector element. This 

conclusion is beneficial for us to inject the 

compensation vector β into the fixed-width RPR 

directly. In this way, no extra compensation logic gates 

are needed for this part compensation and only wire 

connections are needed. 

 

For the β = 0 case, we go further to analyze the error 

profile in the ICV and MICV. In ICV, we can find that 

all the truncation errors are positive when β = 0, as 

shown in Fig. 6. 

 

It implies us that if we adopt the multiple 

compensation vectors for the average compensation 

error terms are larger than 0.5∗ 2 (3n /2), we can lower 

the compensation error effectively and no additional 

compensation error will be generated. The multiple 

compensation vectors are constructed by ICV(β) 

combined with MICV(α). The weight of MICV(α) is 

only half of ICV(β ). The summation of all partial 

products of MICV(α), which is denoted as βl , have 

four possible values of 0, 1, 2, and 3 as n = 12 and β = 

0. 

 

In Fig. 7, the statistical results show that the average 

truncation error contributed by the MICV in the case 

of β = 0 is approximately proportional to α. Moreover, 

the absolute average truncation error in the situation of 

α = 0 is smaller than 0.5∗ 2(3n/2), while the absolute 

average truncation error in the situation of βl > 0 is 

larger than 0.5∗ 2(3n/2). For the case of the absolute 

average truncation error is smaller than 0.5∗ 2(3n/2), βl = 

0, selecting β as the compensation vector is suitable. 

 
 

 
Fig. 7. Analysis of absolute average compensation 

error under various βl values while β = 0 in the 12-bit 

fixed-width RPR-based ANT multiplier 
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However, for the case of the absolute average 

truncation error is larger than 0.5∗ 2(3n /2), selecting β as 

the compensation vector is not suitable since 

insufficient error compensation will occur. Therefore, 

we adopt ICV together with MICV to amend this 

insufficient error compensation case when β = 0 and βl 

> 0 as well. If β = 0 is contributed by βl > 0, we will 

inject one more carry-in compensated vector in the 

weight of 2(3n/2). In this way, we can remove the cases 

of |ε| > 0.5∗ 2(3n/2) effectively. 

 

Finally, the proposed error compensation algorithm is 

expressed as equ (7). 

 

As shown in Fig. 8, we can demonstrate that the 

compensation error is effectively lowered by adopting 

ICV together with MICV while comparing with the 

case of fixed-width RPR only applying the 

compensation vector of β and with the case of full-

width RPR. 

 

B. Proposed Precise Error compensation Vector for 

Fixed-width RPR Design 

To realize the fixed-width RPR, we construct one 

directly injecting ICV (β ) to basically meet the 

statistic distribution and one minor compensation 

vector MICV(α) to amend the insufficient error 

compensation cases. The compensation vector ICV(β ) 

is realized by directly injecting the partial terms of  X 

n−1Yn/2, X n−2Y(n/2)+1, X n−3Y(n/2)+2, . . . , X 

(n/2)+2Yn−2. 

 

These directly injecting compensation terms are 

labeled as C1, C2, C3, . . . , C(n/2)−1 in Fig. 9. The other 

compensation vector used to mend the insuf One input 

of OR gate is injected by X (n /2)Yn−1, which is designed 

to realize the function of compensation vector β . The 

other input is conditional controlled by the judgment 

formula used to judge whether β = 0 and βl  = 0 as 

well. As shown in Fig. 8, the term Cm1 is used to 

judge whether β = 0 or not. The judgment function is 

realized by one NOR gate, while its inputs are X 

n−1Yn/2, X n−2Y(n/2)+1,  X n−3Y(n/2)+2, . . . , X 

(n/2)+2Yn−2.  The term Cm2  is used to judge whether βl   

= 0. The judgment function is realized by one  OR  

gate, while its inputs are X n−2Yn/2, X n−3Y(n/2)+1, X 

n−4Y(n/2)+2, . . . , X (n/2)+1Yn−2. If both of these two 

judgments are true, a compensation term Cm is 

generated via a two-input AND gate. Then, Cm is 

injected together with X (n/2)Yn−1 into a two-input OR 

gate to correct the insufficient error compensation.  

 

 
Fig. 8.  Comparison of absolute error between the 

proposed design, the fixedwidth RPR with 

compensation vectorβ only, and the full-width RPR in 

the 12-bit fixed-width RPR-based ANT multiplier. 

 

Moreover, the carry-in signal C(n/2) is injected in the 

bottom of error compensation vector, which is the 

farthest location away from the critical path. 

 

Therefore, not only the error compensation precision 

in the fixed-width RPR can be enhanced, the 

computation delay will also not be postponed. Since 

the critical supply voltage is dominated by the critical 

delay time of the RPR circuit, preserving the critical 

path of RPR not be postponed is very important. 

Finally, the proposed high-precision fixed-width RPR 

multiplier circuit is shown in Fig. 9. 

 

In our presented fixed-width RPR design, the adder 

cells can be saved by half as compared with the 

conventional full-width RPR. Moreover, the proposed 

high-precision fixed-width RPR design can even 

provide higher precision as compared with the full-

width RPR design. 
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Fig 

9. Proposed high-accuracy fixed-width RPR multiplier 

with compensation constructed by the multiple 

truncation EC vectors combined ICV together. 

 

IV. SIMULATION RESULT 

In simulation results we compare device utilization 

(area efficiency) and delay for both array multiplier 

and booth multiplier, using Xilinx ISE and Model Sim 

softwares. 

 

LOGIC DIAGRAMS: 

16-bit  Array Multiplier: 

 
Fig10.  Logic Diagram of 16-Bit Array Multiplier 

 

16-bit Booth Multiplier: 

 
Fig11. Logic Diagram of 16-Bit Booth Multiplier 

RPR Block: 

 
Fig13 Logic Diagram of Fixed Width RPR Block 

 

RTL Schematics: 

 
Fig13 RTL Schematic of 16-Bit Array Multiplier 

 
Fig.14 RTL Schematic of 16-Bit Booth Multiplier 

 

Device utilization summary fo16-bit multiplies: 

 
Table: Device Utilization of 16-Bit Array Multiplier 
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Table:  Device Utilization of 16-Bit Booth Multiplier 

 

Simulation report: 

Delay Analysis 

The synthesis of the above mentioned multipliers is 

done in Xilinx tool ISE 13.2. The   delay parameters 

are being compared between RPR unit using different 

multipliers and then tabulated. 

 
Table: Comparison of 16-bit multipliers in terms of 

delay 

 

 
Table: Device utilization summary for RPR unit using 

16-bit multipliers 

 

Simulation results: 

Simulation result for 16-bit Array Multiplier with RPR 

unit. 

 
Fig.15 Simulated wave forms for 16-bit Array 

Multiplier design with RPR 

 

 
Fig 16 Simulated wave forms for    16-bit Booth 

Multiplier design with RPR 

 

V. CONCLUSION 

A low error and area-efficient fixed width RPR based 

ANT multiplier design is implemented. Noise sources 

such as cosmic rays and alpha particles can impact the 

error control blocks as well. We have proposed novel 

algorithmic noise tolerant technique referred to as 

reduced precision redundancy (RPR) to combat errors 

in hardware. ANT is an elegant technique to increase 

SNR. While using 16-bit Array multiplier with RPR 

unit, the delay is 63.655ns and number of slice is 379. 

However, the 16- bit Booth multiplier with RPR unit 

gives delay of 36.618ns and reduced number of slices 

(i.e 289). Hence, Booth multiplier with RPR unit 

reduces delay to half and number of slices is also 

reduced as compared to Array multiplier. 
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