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Abstract: 

Brain activity associated with attention sustained on 

the task of safe driving has received considerable 

attention recently in many neurophysiological studies. 

Those investigations have also accurately estimated 

shifts in drivers’ levels of arousal, fatigue, and 

vigilance, as evidenced by variations in their task 

performance, by evaluating electroencephalographic 

(EEG) changes. However, monitoring the 

neurophysiological activities of automobile drivers 

poses a major measurement challenge when using a 

laboratory-oriented biosensor technology.  

 

This work presents a novel dry EEG sensor based 

mobile wireless EEG system (referred to herein as 

Mindo) to monitor in real time a driver’s vigilance 

status in order to link the fluctuation of driving 

performance with changes in brain activities. The 

proposed Mindo system incorporates the use of a 

wireless and wearable EEG device to record EEG 

signals from hairy regions of the driver conveniently. 

Additionally, the proposed system can process EEG 

recordings and translate them into the vigilance level. 

The study compares the system performance between 

different regression models.  

 

Moreover, the proposed system is implemented using 

JAVA programming language as a mobile application 

for online analysis. A case study involving 15 study 

participants assigned a 90 min sustained-attention 

driving task in an immersive virtual driving 

environment demonstrates the reliability of the 

proposed system.  

 

 

Consistent with previous studies, power spectral 

analysis results confirm that the EEG activities 

correlate well with the variations in vigilance. 

Furthermore, the proposed system demonstrated the 

feasibility of predicting the driver’s vigilance in real 

time. 

 

Introduction 

Drowsiness significantly contributes to automobile 

accidents leading to a considerable number of traffic 

collisions, injures fatalities annually [1]. Developing 

an effective system for detecting drowsiness is thus of 

priority concern for real-life driving. Such an in-

vehicle system must continuously monitor the arousal 

status of drivers and accurately predict the potential 

impact on behavioral lapse. Several bio-behavioral 

signatures have been developed to monitor drowsiness 

of automobile drivers, including eye blinking [2] and 

head nodding [3]. However, false alarms are likely 

since these visual attributes are not always 

accompanied by drowsiness [4].  

 

Related studies in recent decades have demonstrated 

that electroencephalography (EEG), i.e., the electric 

fields produced by brain activity, is a highly effective 

physiological indicator for assessing vigilance states 

[5]–[8]. EEG is the only brain imaging modality with a 

high temporal and fine spatial resolution that is 

sufficiently lightweight to be worn in operational 

settings [9]. Numerous EEG studies suggest that delta 

(1–3 Hz), theta (4–7 Hz), and alpha (8–12 Hz) 

activities are highly correlated with fatigue, 

drowsiness, and poor task performance [10]–[12].  
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By using the conventional wet and wire EEG 

acquisition system (i.e., Neuroscan System), our 

previous studies [13]–[17] explored driver brain 

activity changes: from alertness to drowsiness. Based 

on the neurological findings, drowsiness monitoring 

algorithms were developed by using several machine 

learning methods. The experimental results further 

demonstrated the feasibility of detecting or monitoring 

driver drowsiness level using EEG signals.  

 

However, designing a user acceptable and feasible 

EEG device to realize the real-time monitoring system 

is still a challenging task. Data collection in most EEG 

studies requires skin preparation and conductive gel 

application to ensure excellent electrical conductivity 

between a sensor and human skin. These procedures 

are time consuming, uncomfortable, and even painful 

for participants [18], [19].  

 

Additionally, the signal quality may degrade over time 

as the conductive gel dries out [20]. Hence, a wearable 

and wireless dry- electrode EEG system must be 

developed, capable of assessing the brain activities of 

participants performing ordinary tasks. According to a 

previous study [15], spectral dynamics of EEG at 

posterior brain regions are strongly correlated with the 

deterioration of task performance and declining 

vigilance. 

 

In [13], the power spectra were successfully linked 

with behavioral performance by regression models. 

Additionally, the advantage of using the EEG signals 

of the posterior brain region has been shown in a 

recent study [17] that the classification performance of 

the drowsiness detection system using the EEG signals 

of parietal and occipital regions is significantly better 

than that 

 

 

 

 

 

 

 

TABLE I 

COMPARISON OF DRY EEG SYSTEMS 

 
Using the EEG signals of the frontal region. However, 

these studies [13], [15], [17] still used conventional 

wet EEG electrodes in measuring EEG signals. Hence, 

acquiring the EEG signal of the hair region is a critical 

factor in developing a successful vigilance monitoring 

system. Recent studies have measured EEG signals 

using dry sensors, including silicone conductive rubber 

[21], comb-like electrode [22], goldplated electrode 

[23], bristle -type electrode [24], and foam-based 

sensor [25]. Table I lists some commercially available 

EEG systems. Most of these dry sensors are useful for 

hairy sites. EEG acquisition from the posterior region 

is available. 

 

This study develops an EEG-based in-vehicle system 

for assessing human vigilance level. EEG dynamics 

and behavioral changes of participants are 

simultaneously recorded via a new dry-contact EEG 

device [26], [27] with spring-loaded sensors [28], [29] 

when they perform a sustained-attention driving task. 

Additionally, an effective system using support vector 

regression (SVR) [30] is developed to model the 

relationship between the brain activity and the 

behavioral performance. The system performance of 

SVR-based model is compared with other state-of-art 

regression methods. Moreover, the prediction model is 

implemented on a portable device.  
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Furthermore, feasibility of the pro-posed system is 

demonstrated by monitoring human cognitive states 

during a sustained-attention driving task [31]. 

 

II. SYSTEM ARCHITECTURE 

Fig. 1 shows the proposed EEG-based in-vehicle 

system, de-signed to monitor human vigilance level 

continuously during automobile driving. To construct 

the system, EEG signals were recorded using a mobile 

and wireless EEG device with dry sensors when the 

participants performed a sustained-attention task in a 

realistic dynamic driving simulator [32]. For data 

acquisition, the wireless and mobile EEG system, as 

shown in Fig. 2, consists of dry electrodes, data 

acquisition module, Bluetooth transition module, and 

rechargeable battery. The device was de-signed for 

quickly and conveniently recording an EEG signal of 

the occipital region which is highly correlated with the 

vigilance [15]. This dry EEG system surpasses the 

conventional wet electrodes with the conduction gel 

for long- term EEG measurements [25].  

 

Additionally, the signal quality of the used dry EEG 

system is comparable with that of the NeuroScan [29]. 

For data analysis, the pre-stimulus EEG spectra of all 

experimental trials were segmented and formed as a 

training dataset of samples after applying band-pass 

filter (0.5–50 Hz) and fast Fourier transformation 

(FFT) [33]. Each training sample was ac-companied 

with the behavioral performance in response to the 

given task, indicating the presumable vigilance of a 

driver. As for the core of the prediction system, the 

relationship between EEG and behavior was modelled 

using support vector regression (SVR) [30]. Finally, 

the predicted outputs were converted to different levels 

of vigilance. For real - world applications, the 

proposed system was implemented on a mobile device 

using JAVA programming language. The wireless and 

wearable EEG device transmitted its recorded data via 

a Bluetooth interface to the user’s device. The acquired 

EEG is displayed, processed, and analyzed in real 

time. The following sections introduce in detail the 

major components of the proposed system. 

 

A. Dry EEG Electrodes 

As shown in Fig. 2(a)–(c), a new dry-contact EEG 

device with spring-loaded sensors [28] was proposed 

for potential operations in the presence or absence of 

hair and without any skin 

 
 Fig. 1. Design of EEG signal acquisition, processing, 

and analysis system, where,   and   denote the number 

of training samples, lags, and baseline samples, 

respectively. The real-time vigilance monitoring 

system is implemented in a tablet-based application 

using Java programming language. 

 
Fig. 2.  Wireless and wearable EEG devices. (a) 

Wireless and wearable EEG headsets. (b) Five dry 

EEG electrodes and one patch sensor. (c) Spring-

loaded probes. (d) Block diagram of the circuit. 

 

Preparation or conductive gel usage. Each probe was 

designed to include a probe head, plunger, spring, and 

barrel. The 17 probes were inserted into a flexible 

substrate using a one-time forming process via an 

established injection molding procedure. With 17 

spring contact probes, the flexible substrate allows for 

a high geometrical conformity between the sensor and 

the irregular scalp surface to maintain low skin-sensor 

interface impedance.  
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Additionally, the flexible substrate also initiates a 

sensor buffer effect, thereby eliminating pain when 

force is applied. This sensor is more convenient than 

conventional wet electrodes in measuring EEG signals 

without any skin preparation or conductive gel usage. 

 

B. EEG Signal Acquisition Circuit 

According to Fig. 2(d), the EEG acquisition module 

consists of four major components [28]: a amplifier 

(ISL28470, Intersil, USA);, a front-end analog -to-

digital converter (ADC, AD1298, Analog Devices, 

USA), a microcontroller (MSP430, Texas Instruments, 

USA), and a wireless transmission (BM0403, 

Unigrand Ltd., Taiwan). The voltage between the 

electrode and the reference was amplified using a 

biosignal amplifier with high input impedance. 

Meanwhile, the common -mode noise was rejected to 

precisely detect microvolt-level brain wave signals 

from the scalp [34]. In particular, transfer function of 

the preamplifier, i.e., equivalent to the form of a high-

pass filter with input signals of frequency  , is as 

follows [35]: where, and in this study.  

 

The gain of the preamplifier unit is set to 103 V/V the 

amplified signal was digitized via an ADC with a 24 

bit resolution and 256 Hz sampling rate. The minimum 

input voltage of ADC ranges from to 1.94 mV. The 

maximum input voltage of ADC ranges from to 23.30 

mV. In the microcontroller unit, the power-line 

interface was removed using a moving average filter 

with a frequency of 60 Hz. The digitalized signals after 

amplification and filtering were transmitted to a PC or 

a mobile device via Bluetooth with a baud-rate of 

921600 bits/s. Power was supplied by a high capacity 

(750 mAh, 3.0 V) Li-ion battery, which provided 23 hr 

of continuous operation at maximum power 

consumption. 

 

C. EEG Signal Processing and Analysis 

During a 90 min driving experiment (see Section III), 

the study participants encountered hundreds of 

unexpected lane-departure events. In the signal 

processing, all 2 s baseline data (512 sampling points) 

before the stimuli were extracted from continuous 

EEG signals. The data in this baseline period, without 

any confounding factors (i.e., events, motion stimuli, 

and motor actions) were an appropriate segmentation 

of EEG signals to link the physiological message with 

the driving performance. The data pair of the-th trial is 

denoted as where 4 denotes the number of channels,   

represents the number of trials: ; and      refers to the 

driving performance, as measured by the reaction time 

(RT) in response to the lane-departure event. First, a 

type I Chebyshev band-pass filter with cut-off 

frequencies of 0.5 Hz and 50 Hz was applied on the 

raw data to remove artifacts. Second, physiological 

features were extracted by transforming the EEG 

signals of all trials, into a frequency domain using FFT 

to characterize the spectral dynamics of brain 

activities. As shown in Fig. 4, the EEG signal was 

successively fed into a weighted time- frequency 

analysis before applying support vector regression. 

Power spectral density (PSD) of the EEG signal at 

time   was the weighted average of power spectrum of 

previous  

 
Fig. 3. Spectral EEG feature extraction. 

 

Power spectra at time, denoted by, are estimated by 

using FFT with Welch’s method and a weighting 

scheme, where the spectral feature are extracted every 
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2 s. windows of EEG spectrum, in which all frequency 

responses of EEG activations were calculated using a 

512-point moving window without overlapping points. 

Each 512 points (2 s) of data were further subdivided 

into several 128-point sub-windows advanced in a 64-

point step. Windowed 128-point epochs were extended 

to 256 points by zero-padding in order to calculate the 

power spectra using a 256- point FFT (Welch’s 

method), subsequently yielding an estimate of the 

power spectral density with 30 frequency bins from 1 

to 30 Hz. The power spectra of these subwindows 

were converted into a logarithmic scale and averaged 

to form a log power spectrum for each window. 

Furthermore, the estimated spectral powers of four 

channels were averaged, and the mean power spectrum 

of the first 10 min of the experiment, which was 

putatively the alert pattern, was subtracted from each 

estimated spectrum. Since the periods of the cyclic 

fluctuations of drowsiness exceeded 4 min [36], 

variance at cycle lengths shorter than 1 min was 

eliminated using a weighted-averaging filter that 

advanced in a step of 2 s. Next, PSD of the     window 

was multiplied by a weighted coefficient    , where w 

decreased as increased. In this study, and compared 

with an unprocessed PSD without a weighted- 

averaging filter, a smoother PSD estimate is obtained 

by using this algorithm. 

 
Fig. 4. Snapshot of the proposed driver drowsiness 

prediction system implemented on an Android 

platform. 

The pie chart display the current level of driver’s 

vigilance evaluated every 2 s. Four traces display the 

EEG recordings with refresh rate of five seconds. 

Color bars record the changes of vigilance level during 

driving. 

 

D. Prediction Model 

According to previous studies [15], the behavioral 

lapses induced by drowsiness correlate with the 

changes of EEG activities. To link the power spectra 

with RTs, a nonlinear model is preferred in the model 

fitting to cover linear and nonlinear relationships 

between EEG power spectra and RTs. The support 

vector machine is a conventional means of solving the 

multidimensional function estimation problem, and has 

been applied to various fields such as classification 

and regression. When used to solve the function 

approximation and regression estimation problems, 

SVM is denoted as the support vector regression 

(SVR)[30]. Fig. 1 shows the graphical framework of 

SVR, including the support vectors, mapped vectors, 

and dot product operations. SVR is a complex and 

heavy-computational implementation of a forecasting 

algorithm based on structuring risk minimization 

principles to obtain an effective generalization 

capability [37], [38].  

 

The goal of -SVR is to find a small   such that a 

function has at most deviationfrom for all the 

training data, where and denotes the dot product. 

According to [30], the -SVR, can be formulated as 

minimization of (3) and (4) as the following: where,    

are slack variables. The constant     determines the 

compromise between the flatness of   and the amount 

up to which deviations larger than   are tolerated. In 

this study, the SVR model was implemented using a 

library of LIBSVM [39]. The dot product operation of 

any two mapped vectors can be implemented by a 

kernel function which satisfies Mercer’s theorem [30]. 

In this study, most commonly used kernel functions, 

including linear, polynomial, radial basis function, and 

sigmoid function were implemented and their 

performances were com-pared. The formulas of these 

four kernels are listed as follows: 
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1) Linear kernel 

2) Polynomial kernel 

3) Radial basis function kernel (RBF kernel) 

4) Sigmoid kernel 

 

where   determines the width of RBF function,   is a 

constant trading off the higher-order versus lower-

order term in the polynomial,     is a scaling parameter 

of the input data, and     is a shifting parameter 

controlling the threshold of mapping. The root mean 

square error (RMSE) is a conventional index for 

evaluating the performance of the predictor [40]. 

RMSE can be estimated as follows: (5) where RT and   

denote the observed reaction times and the predicted 

reaction times, respectively; and   represents the 

number of validation datasets. A smaller RMSE 

implies a more accurate prediction for the used model. 

 

E. Mobile Application 

After yielding the optimal parameters of SVR, the 

proposed prediction model was incorporated in a 

mobile application using JAVA programming 

language to run on smartphones, tablet computers, and 

other mobile devices. This application connects 

wirelessly with a wearable EEG device via Bluetooth 

to record the subjects’ EEG signal and evaluate their 

vigilance level directly. Fig. 4 displays the graphic 

user interface (GUI) of the developed mobile 

application. The raw EEG recordings of 4 channels 

displayed in the middle of GUI refresh every 5 s. The 

estimated vigilance level displaying in the upper right 

hand corner (circle icon) refreshes every 2 s.  

 

The vertical bars shown in the bottom of GUI show the 

changes of vigilance level. The predicted RT was then 

converted into the presumable vigilance level byn (6) 

where rounding denotes the operator to return the 

value to the nearest integer, and    represents the 

predicted RT. In this study,   is set to 3. A ―three-

second‖ rule is generally recommended for the driver 

to follow in order to maintain a safe distance from the 

lead vehicle on the highway [41]. Here, parameter   is 

set to 8, i.e., the total number of vigilance levels. 

 

III. EXPERIMENTAL DESIGN AND  

MATERIALS 

A. Subjects 

Fifteen subjects participated in a sustained-attention 

driving task. Each subject wore a wireless and 

wearable EEG headset, sat inside the vehicle, and 

controlled the simulator by using the steering wheel. 

To easily induce drowsiness, the experiment began in 

the early afternoon (13:00–14:00) after lunch and 

lasted for approximately 90 min when the circadian 

rhythm of sleepiness reached its peak [42]. 

 

B. Driving Simulator 

As shown in Fig. 5(a), the synchronized scenes were 

projected from six projectors to constitute a 

surrounding 360 vision. At the center of the projected 

scenes, a real vehicle (without the unnecessary weight 

of an engine and other components) was mounted on a 

six degree-of - freedom motion platform. The motion 

sensation was then delivered along with the movement 

of the vehicle. A four-lane highway scene projected on 

a surrounding screen simulates a visually monotonous 

and unexciting stimulus of a driving condition to 

induce drowsiness.  

 

Additionally, the refresh rate of the highway scene was 

set properly to emulate a car driving at a fixed speed of 

100 km/hr. The four lanes from left to right were 

separated by a median stripe. The distance from the 

left side to the right side of the road was equally 

divided into 240 units (digitized into values of 1–240): 

the widths of each lane and the car were 60 units and 

28 units, respectively. These units were converted into 

the same ratio of the width of the real lane (3.75 m) 

and the car (1.8 m).  

 
Fig. 5. Sustained-attention driving task implemented in 

an immersive driving simulator. (a) The driving 

simulator was mounted on a motion platform.  
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The VR scene simulates nighttime cruising at a speed 

of 100 km/hr on a four-lane highway without other 

traffic. (b) The event-related lane-departure paradigm. 

Deviation onset: the time interval when the car starts to 

drift to the right or left of the cruising lane. (c) 

Response onset: the time interval when subjects use 

the steering wheel. (d) Response offset: the time 

interval when the car returns to the original lane. 

 

Additionally, the server also received the data via RS-

232 compatible serial port from the client which ran 

the VR program and recorded the behavioral response. 

This data stream with an 8-bit digital resolution 

including the vehicle trajectory (0–240), deviation 

onset (251/252 for left and right side of the deviation), 

response onset (253), and response offset (254), was 

synchronized with the EEG data for further event-

related analysis. 

 

C. Experimental Paradigm 

The event- related land -departure paradigm [43](Fig. 

5) was implemented in the VR driving simulator. This 

paradigm at-tempted to replicate a nonideal road 

surface to make the car randomly drift out of the 

cruising lane (deviation onset) at a deviation speed of 5 

km/hr toward the left or right side. When encountering 

each lane-departure event [Fig. 5(b)], which occurred 

approximately every 8–12 s, the subject was instructed 

to steer the car (response onset) back to the center of 

the original lane (response offset) immediately [Fig. 

5(c)].  

 

During a 90 min experiment, the total number of trials 

available from each subject was next, the subject’s 

vigilance level in each trial was quantified using the 

reaction time (RT, the duration between the deviation 

onset and the response onset). As is assumed, al-

though the subject was alert during the experiment, 

their RT was fast, whereas a slow RT accompanied the 

occurrence of drowsiness. 

 

 

 

 

IV. EXPERIMENTAL RESULTS 

A. Relationship between RTS and Power Spectra 

 
Fig. 6 shows the spectral EEG changes in response to 

changes in the increase of RT, where    denotes the 

square of Pearson’s correlation coefficient. The power 

spectra of four EEG recordings were averaged and 

converted into a logarithmic scale in order to form a 

log power spectrum. Amplitudes of the 2 s prestimulus 

EEG spectrum were then used to correlate with the 

following RT. Most studies [15], [44], [45] identified 

significant increases in the delta and theta activities, 

which were strongly correlated with the deterioration 

of task performance. However, according to our 

results, the changes of delta (        ) and Fig. 6. (a) RT-

sorted spectral changes across 1–30 Hz. (a) Delta-

power (left-upper), theta-power (right-upper), alpha-

power (left-lower), and beta-power (right-lower) 

augments as the RT changes. 
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theta (        ) powers were not linearly correlated with 

the RTs. The eye movements may have profoundly 

affected the EEG power bands, especially for the delta 

activity. The alpha power and the (theta+alpha)/beta 

and alpha/beta power ratios are commonly proposed as 

meaningful indices of poor performance, fatigue, and 

arousal [45]–[48]. Consistent with the results of these 

investigations, this study (Fig. 6) suggests that 

monotonic increases in power spectrum, as evident in 

the alpha range (        ), can be used as a potential 

indicator of the vigilance state. 

 

B. System Performance 

The feasibility of predicting drivers’ vigilance level 

based on spectral EEG patterns was examined by 

comparing the prediction performance of using either 

delta power ( ), theta power ( ), alpha power ( ), beta 

power ( ), the concatenation of four bands      , or the 

power spectra of 1–30 Hz as the feature vectors for 

training a SVR. The prediction performances of SVR 

using linear, polynomial, radial basis function (RBF), 

and sigmoid kernel functions were also compared. 

Regarding the performance validation (Table II), two-

fold cross-validation was performed and run 100 times 

to yield the average results. Restated, half of data (257 

samples) were randomly selected as the training data, 

and the remaining data (257 samples) were selected as 

the validation data.  

 

The performance was evaluated by the root mean 

square error (RMSE) and squared      between the 

recorded RT and the predicted RT. The number of 

trained support vectors was also reported. Each cell 

represents the of the measures. In terms to using the 

EEG features, SVR with a RBF kernel trained by the 

alpha power yields the lowest RMSE () and the highest 

(), compared to the delta (RMSE::), theta (RMSE::), 

and beta powers (RMSE:). When using the 

concatenation of four band powers, RMSE decreased 

to and the increased to Moreover, the RMSE decreases 

to and the increased to when RBF-SVR used the 

spectral power of 1–30 Hz as the feature vectors. The 

number of support vectors tended to de-crease if the 

number of features increased.  

Additionally, SVR with a RBF kernel, which was 

trained by the spectral power of 1–30 Hz, used the 

least number of support vectors (36% of the data), 

compared to other methods (50–70% of the data). The 

highlighted cells indicate the optimum results among 

all of the combinations of learning algorithms and 

spectral features. Overall, SVR using a RBF kernel 

yields a higher prediction ac-curacy than that using 

linear, polynomial, and sigmoid kernel functions. 

According to the safety distance between vehicles re-

ported by the Road Safety Authority [49], a minimum 

reaction distance of 20 m is recommended when 

driving at a speed of 100 km/h.  

 

Notably, the RMSEs obtained by the proposed system 

ranges from 124 ms to 481 ms (about 3–13 m at a 100 

km/hr car speed), which does not violate the 

recommended reaction distance. Additionally, the best 

performance of this study is com-parable with our 

previous result (RMSE: 130 ms) [13] in which the 

drowsiness detection system used the EEG signals 

acquired by the NeuroScan. Fig. 7 further compares 

the prediction result of SVR using different kernel 

functions, where SVR was trained by using the 

spectral powers of 1–30 Hz. The black trace is the 

recorded RT sorted from fast to slow, and the color 

traces are RT predicted by different methods. The 

black bars denote the absolute differences between the 

recorded RT and the predicted RT. This finding clearly 

indicates that SVR with a RBF kernel had a higher 

prediction accuracy than that of other methods, 

especially for the prediction of fast and slow RTs.  

 

Additionally, the uniform distribution of prediction 

errors across the entire spectrum of RT revealed how 

the RBF-based SVR provided the de-sired robustness 

for forecasting human behaviors. In our previous study 

[50], polymer foam-based sensors were used in the dry 

EEG system to record subject’s forehead EEG signal. 

Although RMSE of the prediction result was 

comparable with those obtained in this study (versus), 

the artificial noises caused by eye blinking and 

movement were observed pervasively in the forehead 
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EEG, possibly decreasing the system performance 

[51].  

 

TABLE II 

PREDICTION RESULTS OF REACTION TIMES 

USING SVR WITH DIFFERENT KERNEL 

FUNCTIONS  

 

 
Fig.  7.  RTs  predicted  by  support  vector  

regression  using  (a)  linear, (b) polynomial, 

(c) RBF, and (d) sigmoid kernels. Black and color 

traces indicate the recorded RT and the prediction 

RT, respectively. Black bars denote the prediction 

errors (i.e., absolute difference between recorded 

RTs and predicted RTs). 

 

Fig. 8 compares the system performance using SVRs 

with other state-of-art regression methods [52], 

including linear  regression  (Linear:),  ridge regression  

(Ridger:), least  absolute  shrinkage and selection  

operator (Lassor:), kernel smoother (Ksmoothr:), 

Pseudo-inverse regression (Pinvr:), partial least 

squares regression (Plsr: nearest-neighbor regression 

(knnr:). Analysis results indicated that RMSE obtained 

by RBF-SVR is better than those using other methods. 

 

C. Real-Time Vigilance Prediction 

Above results suggest that the EEG -based system 

using the RBF-based SVR is a highly promising means 

of predicting the driver’s vigilance level. An attempt 

was also made to verify the feasibility of the proposed 

system by further implementing the SVR model in 

Java language as an Android application, in which the 

parameters of the implemented model (including slack 

parameter of SVR, gamma value of RBF kernel, and 

sup-port vectors of the obtained model) were trained 

using Matlab software. 

 

Fig. 9 shows a temporal relationship between the 

vigilance levels predicted by the proposed system and 

driver’s behavior in response to regular traffic events 

or emergencies when the participant performed the 

lane-departure driving task for approximately 70 min. 

The predicted results were converted into eight degrees 

of vigilance level every 2 s according to Table III 

which shows the conversion of predicted RT into 

vigilance level. At the beginning of the experiment, the 

relatively alert state (bluish bars) was predicted and 

lasted continuously for several minutes.  

 

TABLE III 

INTERPRETATION OF THE VIGILANCE 

DEGREE PREDICTED BY THE PROPOSED 

SYSTEM  
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Fig. 8. Prediction results compared to state-of-art 

regression methods, including linear regression 

(Linear), ridge regression (Ridger), least absolute 

shrinkage and selection operator (Lassor), kernel 

smoother (Ksmoothr), Pseudo-inverse regression 

(Pinvr), partial least squares regression (Plsr),  -

nearest-neighbor regression (knnr), SVR with a linear 

kernel (linear- SVR), SVR with a polynomial kernel 

(polynomial -SVR), SVR with a RBF kernel (RBF-

SVR), and SVR with a sigmoid kernel (Sigmoid-

SVR). Fig. 9. Temporal changes in (a) the vigilance 

level predicted by the proposed system, (b) the vehicle 

trajectory, and (c) the RT observed during a 70 min 

experiment. 

 

In terms to the behavioral performance, the vehicle 

trajectory [Fig. 9(b)] and RT [Fig. 9(c)] in response to 

the unexpected departure indicated that the subject 

could correct the lane departure promptly (i.e.,     ). 

However, the severe behavioral lapse (i.e., the vehicle 

hit the right or left roadside) appeared at       . To avoid 

car accidents, delivering a warning signal to alert the 

driver to the danger is necessary if ―low vigilance 

related to severe behavioral lapse‖ is detected. As 

shown in Fig. 9, the 5th- (yellow bar), 6th- (orange 

bar), 7th- (red bar), and 8th-(brown bar) degree of 

vigilance detected by the proposed system first 

appeared at   ,      ,      , and       , respectively. This 

observation suggests that delivering a warning 

feedback no later than the appearance of 7th-degree of 

the vigilance is highly recommended to alert drivers to 

the danger of the declining vigilance and prevent 

behavioral lapses. This relationship between the 

predicted level of vigilance and behavior is 

summarized in Table III. 

 

V. CONCLUSION 

This study developed a driver vigilance prediction 

system with a wireless and wearable EEG device, an 

efficient pre-diction model, and a real -time mobile 

App to remedy for drowsy driving. Based on the 

proposed EEG system, a link was established between 

the fluctuation in the behavioral index of driving 

performance (i.e., increase in RT) and the changes in 

the brain activity (i.e., trends in EEG power spectra). 

Experimental results indicated that the RMSE could 

minimize to 0.124 ms when the SVR with a RBF 

kernel was applied as the prediction model. 

Additionally, this SVR-based prediction model was 

implemented in real time for the subjects when they 

performed a sustained-attention driving task. In the 

future, combining the proposed methods and the 

warning feedback system might lead to a practical 

closed -loop system to predict, monitor and rectify 

behavioral lapses of human operators in attention-

critical settings. 
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