

 Page 1374

A Novel Implementation of Floating Point Arithmetic Unit by Using

Reversible Logic Gates
Kotha Swapnika

M.Tech(VLSI & SD),

Anurag Engineering College.

M.Venkataratnam, M.Tech

Assistant Professor,

Anurag Engineering College.

Abstract:

The study of reversible circuits holds great promise for

emerging technologies. Reversible circuits offer the

possibility for great reductions in power consumption,

and quantum computers will require logically

reversible digital circuits. Many different reversible

implementations of logical and arithmetic units have

been proposed in the literature, but very few reversible

floating-point designs exist. Floating-point operations

are needed very frequently in nearly all computing

disciplines, and studies have shown floating-point

addition to be the most oft used floating-point

operation. In this paper we present for the first time a

reversible floating-point adder that closely follows the

IEEE754 specification for binary floating-point

arithmetic. Our design requires reversible designs of a

controlled swap unit, a subtracter, an alignment unit,

signed integer representation conversion units, an

integer adder, a normalization unit, and a rounding

unit. We analyze these major components in terms of

quantum cost, garbage outputs, and constant inputs.

Keyword:

IEEE754, Reversible logic, Garbage output, Quantum

cost, Floating Point, Arithmetic Unit etc.

I.INTRODUCTION:

In past decades, there were several of difficulties and

issues occurred in the development of conventional

computing technologies. The main difficulty of the

conventional computing technologies is power

dissipation and it a significant problem in today’s

computer chip [1]. The advancement in VLSI designs

especially in portable device technologies lead to

faster, smaller and more complex electronic system

design.

In VLSI design, the conventional logic circuits

dissipate more power. Reversible logic is a promising

computing design paradigm which presents a method

for constructing computers that produce no heat

dissipation. Reversible computing emerged as a result

of the application of quantum mechanics principles

towards the development of a universal computing

machine. The basic principle of reversible computing

is that a bijective device with an identical number of

input and output lines will produce a computing

environment where the electrodynamics of the system

allow for prediction of all future states based on known

past states, and the system reaches every possible state,

resulting in no heat dissipation. Reversible computing

differs from conventional computing in that it

performs the computation in a logically reversible

way: The output of a (fully) reversible circuit always

uniquely identifies the input. Circuits can take

advantage of this logical reversibility to reduce power

by reusing the information instead of discarding it:

Landauer showed that any time a bit of information is

discarded, it equates to some quantum of energy lost as

heat [1].Moreover in 1973, Bennett has shown that this

energy loss can be reduced or even removed if the

circuits are designed using reversible gates [2]. An

arithmetic circuit which performs digital arithmetic

operations has many applications in digital

coprocessors, application specific circuits, etc.

Because of the advancements in the VLSI technology,

many complex algorithms that appeared impractical to

put into practice have become easily realizable today

with desired performance parameters so that new

designs can be incorporated. Modern computers use

conventions for representing non integer numbers, the

most widespread of which is the IEEE 754 Standard

for Floating-Point calculations.

 Page 1375

This standard defines binary representation for

floating-point numbers of varying precision, giving

specific examples of the binary32 (or single precision)

format, binary64 (or double precision) format, and it

defines operations on floating-point numbers. The

essential components in IEEE 754 standard floating

point numbers are the sign, the exponent, and the

mantissa.

Table I-Bit Range For Floating-Point Values

Table II-Floating Point Number Representation

There are four types of exceptions that arise during

floating point operations. Whenever the result cannot

be shown as a definite number in the precision format

of the destination the Overflow exception is occurred.

The Underflow exception take place when an

intermediate result is very small to be calculated

correctly. When zero divides a finite nonzero number,

the Division by zero exception arises. The Invalid

operation exception is raised if the given inputs are not

appropriate for the operation to be performed. The

remaining paper is structured as follows. SectionII

consist of important details of reversible logic design,

with coverage of some reversible logic primitive gates.

Section III provides details of floating-point addition

algorithm and architecture. Section IV outlines

approaches towards multiplier and divider design.

Section v presents our final measurements, a brief

analysis of the architecture, and direction for future

work. Section VI concludes the paper with our list of

references.

II. BACKGROUND WORK

Many traditional logic gates such as the AND, OR,

NAND, NOR, and XOR gates are fundamentally

irreversible.

That is to say that the output combination of any of

these gates does not expose the input combination that

caused the output. Thus we have a need for primitive

reversible logic gates.

A.Reversible Gate:

Reversible gates are the circuits having one to-one

relationship between vectors of input and output.

Therefore from output vector state we can reconstruct

the vector of input states.

B. Quantum Cost:

Every quantum circuit is built using 1X1 and 2X2

quantum primitives and its cost is calculated as a total

sum of 2X2 gates used since 1X1 gate has no cost, i.e.,

zero. Basically the quantum primitives are matrix

operation which is applied on qubits state. All the

gates of the form 2X2 has equal quantum cost and the

cost is unity, i.e., one [3]. Since every reversible gate

consists of 1X1 or 2X2 quantum gate, the quantum

cost of a reversible design calculates the total number

of 2X2 gates used. The quantum costs of Feynman

gate [4], Peres gate [5] and DPG gate (as full adder)

[6] are one, four and six respectively.

C. Garbage Output:

Unwanted or unused output of a reversible gate (or

circuit) is known as garbage output, i.e., the output(s)

which is(are) needed only to maintain the reversibility

is(are) known as garbage output(s).

D. Delay:

The maximum number of gates in a route from any

input signal line to any output line is known as delay

of a circuit. At the beginning, each gate performs the

design computation in one unit time. Secondly, all

inputs to the circuit are known before the computation

begins.

E. Popular Reversible Gate:

1) Feynman Gate:

The input and output vectors of 2x2 Feynman Gate

(FG) [4] are (Ip)v and (Op)v respectively and can be

defined as follows:

 Page 1376

(Ip)v ={a} and

(Op)v={a xor b}

2)Peres Gate:

The input and output vectors of 3x3 Peres Gate (PG)

[5] are (Ip)v and Ov respectively and can be defined as

follows:

(Ip)v = {a,b,c}and

(Op)v = {a,axorb,abxor c}

The 3 bit Peres gate has Quantum cost of 4.

3)Double Peres Gate

Input vector, (Ip)v and output vector,(Op)v of 4x4

Double Peres Gate (DPG) [6] are defined as follows:

(Ip)v = {a,b,c,d} and

(Op)v = {a,axorb,axor b xor d,(a xor b)d xorabxor c}

4) Fredkin Gate

Input vector, (Ip)v and output vector,(Op)v of 3x3

Fredkin Gate(FR) are defined as follows:

(Ip)v ={a,b,c} and

(Op)v={a,a’bxorab,a’cxorab}

5)HNG Gate

Input vector,(Ip)v and output vector, (Op)v of 4x4

HNG are defined as follows:

(Ip)v={a,b,c,d} and

(Op)v={a,b,axor b xor c,(a xor b)c xorabxor d}

III.FLOATING POINT ADDITION:

Given two floating-point numbers to be added, the

IEEE754 Standard for Floating-Point Arithmetic

details how their sum can be found [7].First, if the

exponents are not equal, the smaller is incremented

until it aligns with the larger. To align the floating-

point number with the smaller exponent without

altering its value, its respective trailing significand

must be shifted one place to the right for every time

the exponent is incremented. Once the exponents are

equal, the significands can be summed. The sum is

then normalized and rounded. Fig. 1 illustrates the

block-level schematic of the architecture our proposed

reversible floating-point adder design uses

Fig-1 Proposed design of reversible addition

architecture

A) Reversible Conditional Swapping:

The first step in our reversible floating-pointer adder

architecture is to swap the floating-point operands

conditionally and reversibly. The rest of the

architecture operates assuming that X is the floating-

point number with the greater exponent, and Y is the

floating-point number that possibly needs to be aligned

with X. The exponents of the two floating-point

numbers both are unpacked and expanded to nine bits.

In order to find their difference the 812 exponent that

is the minuend is complemented using two's

complement, and with it the difference is calculated.

The nine HNG gates implement the reversible

subtracter circuit [8]. The sign bit of the difference of

the exponents acts as the condition (control) by which

the two entire floatingpoint numbers are swapped: If

expA<expB,then the floating point numbers will swap

position, otherwise expA≥expB and the floating-point

numbers are passed through to the next stage without

swapping.

B)Reversible Barrel Shifter:

In our proposed system we require (256,8) reversible

barrel shifter. But due to complexity & space problem

we shown here design for (4,2) reversible barrel

shifter. The circuit works as follows: Each stage of

Fredkin gate shifts the input according to the control

value of sk. Suppose, to design a (4, 2) shifter which

takes i0, i1, i2, i3 as data inputs and s0s1 = 11 as select

 Page 1377

input. So the input will be shifted 2^0+ 2^1 = 3 times

to the left. Thus the sequence of the shift/rotate

operation will be i1i2i3 i0 for the first stage and then

i3i0i1i2 for the next. On the other hand, for the select

input s0s1 = 00, the input sequence will remain same

for both stages of multiplexing. Thus, each Fredkin

gate chooses between two input lines it receives and

performs the appropriate operation according to the

select input of that particular stage. Hence, for the first

stage (Stage 0) of above (4:2) shifter, the first Fredkin

gate will either select input i0 or i1, the second one

will do either i1 or i2 and so on. All other stages

perform the selection task in the same way.

Fig2-Proposed Design of reversible barrel shifter[9]

C) Conversion unit

We have designed a reversible conversion unit that

serves simultaneously as a sign magnitude-to-two's

complement unit and a two's complement-to-sign

magnitude unit. Of note is that our unit performs a

reversible mapping, f , with the following fixed point:

f (10…0)=10…0 This implies, for an n bit signed

integer:

f ([−2n−1]2' s complement)=[−0]sign−magnitude

f ([−0]sign−magnitude)=[−2n−1]2 ' s complement

Our design requires two of the 28 bit reversible

converters (one for each trailing significand), and a

single 29 bit converter for the output of the 28 bit full

adder. Before the ensuing reversible normalization

step, this 29 bit sign extended sum is converted back to

sign magnitude with a single instance of a 29 bit

reversible conversion unit.

D.28-Bit Ripple Carry Full Adder

For this implementation, we will be using the Peres

gate as it is the gate with the lower quantum cost. The

Peres gate implementation of Full Adder with its

corresponding quantum cost can be seen below:

Fig3-Ripple carry full adder[10]

E. Reversible Normalization:

After the sum of the trailing significands has been

converted back into sign-magnitude representation, the

sign bit is connected directly to the final stage as the

sign of the floating-point sum, and the magnitude may

need to be normalized. This normalization step may

involve either left shifting or right shifting. If a right

shift is required, only a right shift of a single position

will be required. Otherwise a left shift of possibly

several placed may be required. A synchronous

floating-point adder architecture might accomplish this

behavior using synchronous leading-one detectors and

synchronous shift registers, but in keeping with our

asynchronous reversible design methodology, we

design a completely asynchronous reversible

normalization unit.

F. Reversible Rounding:

Our reversible rounding unit performs the reversible

round toward zero rounding algorithm specified in the

IEEE754standard. This unit is a pseudo unit, in that it

consists of no extra hardware: It operates simply by

transforming some of the input bits into garbage

outputs by ignoring them altogether.

IV.EFFICIENT APPROACHES TOWARDS

EFFICIENT FLOATING POINT

MULTIPLICATION UNIT AND DIVISION

UNIT:

A)Reversible Multiplication Unit For to design single

precision floating-point multiplier, there is requirement

of efficient 24x24 bit integer multiplier. Operand

 Page 1378

decomposition approach is efficient for the propose

reversible design of 32 bit floating point multiplier. To

design the reversible 24x24 (AxB) bit multiplier, the

values are divided into three subgroups of 8 bits each.

Thus, the 24x24 bit reversible multiplication can be

performed through nine reversible 8x8 bit Wallace tree

multipliers, of which outputs are then summed.

Fig-4 Algorithm for floating point multiplication

There are three conceptual stages in wallance tree

multiplication:partial product compression using 4:2

compressors, Partial product generation, full &half

adders and then the final addition stage to generate the

product. In this work there is requirement of

optimization at each of these three stages.

B) Reversible Division Unit(Conventional)

Let, Dividend, A = A0:A1A2:::An

Divisor, D = D0:D1D2:::Dn

Remainder, R = R0:R1R2:::Rn Quotient,

Q = Q0:Q1Q2:::Qn

The operands are assumed to be positive, normalized

fracsigned fractions. So, A0 = D0 = 0 and A1 = D1 =

1. The quotient is positive and the partial remainder R

is a signed fraction, and R0 is the sign bit with R being

represented in 2’s complement form.

Fig-5 Conventional Division Array :8-bit Dividend

and 4- bit Divisor[11]

C) Proposed reversible divider using high speed

division array

The reversible divider using high speed division array

is designed by some major modifications of the design

previous section. The carry ripple time, which is

proportional to n, has been omitted in this design. The

partial remainder R is not developed in each row of the

array, but is represented by two binary vectors S and C

which, if added, would produce the correct partial

remainder at that row level. A single carry-look ahead

circuit is used to determine from the S and C vectors

what the carry sign would be, facilitating the

determination of the sign of the resulting partial

remainder, the quotient bit for that row level, and the

control (add or subtract divisor) to the next row.

Subtraction of the divisor is implemented using 2’s

complement addition as in the conventional array.

Three types of cell, namely, A cell, S cell and CLA

cell have been used in the high speed array design. The

Ajs (dividend) are input from the top, and the

complemented Djs (divisor) are input through the

diagonal lines. Addition or subtraction is to be

performed in the A cells.

 Page 1379

Fig-6 Reversible High Speed Division Array[11]

V.SIMULATION RESULTS

The corresponding simulation results of the floating

point adders are shown below. All the synthesis and

simulation results are performed using Verilog HDL.

The synthesis and simulation are performed on Xilinx

ISE 14.4. The simulation results are shown below

figures.

Figure-7: RTL schematic of Top-level of proposed

floating point adder

Figure 8: RTL schematic of Internal block of

proposed floating point adder

Figure 9: Technology schematic of proposed

floating point adder

Figure 10: Synthesis report of floating point adder

Figure 11: simulated outputs for proposed floating

point adder

CONCLUSION:

Floating point arithmetic is one of the most important

units in modern day digital systems. Many researchers

have proposed various approaches which includes the

use of reversible logic in the design of arithmetic unit.

This paper presents the floating point unit according to

IEEE 754 Standard. All modules has been designed in

reversible way to reduce power consumption. Analysis

of all units has been in terms of quantum cost, garbage

outputs, constant inputs, speedand delay parameter.

 Page 1380

The simulation results of addition unit is provided in

this paper.Most of the designs using the reversible

logic architecture optimize the delay, latency and the

area utilization In future the analysis of multiplication

unit will be possible.

REFERENCES:

[1] R. Landauer, “Irreversibility and heat generation in

the computational process,” IBM Journal of Research

and Development, 5, pp. 183-191, 1961.

[2]C. H. Bennett, “Logical reversibility of

computation,” IBM Journal of Research and

Development, pp. 525-532, November 1973.

[3]A. K. Biswas, M. M. Hasan, A. R. Chowdhury, and

H. M. H. Babu, “Efficient approaches for designing

reversible binary coded decimal adders,”

Microelectronics Jounrnal, vol. 39(12), 2008.

[4]R. P. Feynman, “Quantum mechanical computers,”

Opt. News, vol. 11(2), pp. 11–20, 1985.

[5]A. Peres, “Reversible logic and quantum

computers,” Physical review A, vol. 32, pp. 3266–

3276, 1985.

[6]W. Hung, X. Song, G. Yang, J. Yang, and M.

Perkowski, “Optimal synthesis of multiple output

boolean functions using a set of quantum gates by

symbolic reachability analysis,”IEEE Transactions on,

vol. 25, no. 9, pp. 1652 –1663, sept. 2006.

[7]"IEEE Standard for Floating-Point Arithmetic,"

IEEE Std 754-2008, vol., no., pp.1-58, Aug. 29 2008.

[8]M. Haghparast, S. Jassbi, K. Navi, and O.

Hashemipour, “Design of a novel reversible multiplier

circuit using HNG gate in nanotechnology,” World

Applied Sciences Journal, vol. 3, no. 6, pp. 974–978,

2008.

[9]Irina Hashmi, Hafiz Md. HasanBabu “An Efficient

Design of a Reversible Barrel Shifter” 23rd

International Conference on VLSI Design,2010

[10]Alejandro Y. Pérez V, “ Reversible Adder

Implementation in VHDL” Digital Design Using HDL

(ECE 590) Portland State University, Spring 2006

[11]Lafifa Jamal and Hafiz Md. HasanBabu, “Efficient

Approaches to Design a Reversible Floating Point

Divider” Department of Computer Science and

Engineering, University of Dhaka, Dhaka-1000,

Bangladesh

[12] David Goldberg, “What Every Computer Scientist

Should Know About Floating-Point Arithmetic”, ACM

Computing Surveys, Vol 23, No 1, March 1991, Xerox

Palo Alto Research Center, 3333 Coyote Hill Road,

Palo Alto, California 94304

