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Abstract: 

The study of reversible circuits holds great promise for 

emerging technologies. Reversible circuits offer the 

possibility for great reductions in power consumption, 

and quantum computers will require logically 

reversible digital circuits. Many different reversible 

implementations of logical and arithmetic units have 

been proposed in the literature, but very few reversible 

floating-point designs exist. Floating-point operations 

are needed very frequently in nearly all computing 

disciplines, and studies have shown floating-point 

addition to be the most oft used floating-point 

operation. In this paper we present for the first time a 

reversible floating-point adder that closely follows the 

IEEE754 specification for binary floating-point 

arithmetic. Our design requires reversible designs of a 

controlled swap unit, a subtracter, an alignment unit, 

signed integer representation conversion units, an 

integer adder, a normalization unit, and a rounding 

unit. We analyze these major components in terms of 

quantum cost, garbage outputs, and constant inputs. 
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I.INTRODUCTION: 

In past decades, there were several of difficulties and 

issues occurred in the development of conventional 

computing technologies. The main difficulty of the 

conventional computing technologies is power 

dissipation and it a significant problem in today’s 

computer chip [1]. The advancement in VLSI designs 

especially in portable device technologies lead to 

faster, smaller and more complex electronic system 

design.  

 

 

In VLSI design, the conventional logic circuits 

dissipate more power. Reversible logic is a promising 

computing design paradigm which presents a method 

for constructing computers that produce no heat 

dissipation. Reversible computing emerged as a result 

of the application of quantum mechanics principles 

towards the development of a universal computing 

machine. The basic principle of reversible computing 

is that a bijective device with an identical number of 

input and output lines will produce a computing 

environment where the electrodynamics of the system 

allow for prediction of all future states based on known 

past states, and the system reaches every possible state, 

resulting in no heat dissipation. Reversible computing 

differs from conventional computing in that it 

performs the computation in a logically reversible 

way: The output of a (fully) reversible circuit always 

uniquely identifies the input. Circuits can take 

advantage of this logical reversibility to reduce power 

by reusing the information instead of discarding it:  

 

Landauer showed that any time a bit of information is 

discarded, it equates to some quantum of energy lost as 

heat [1].Moreover in 1973, Bennett has shown that this 

energy loss can be reduced or even removed if the 

circuits are designed using reversible gates [2]. An 

arithmetic circuit which performs digital arithmetic 

operations has many applications in digital 

coprocessors, application specific circuits, etc. 

Because of the advancements in the VLSI technology, 

many complex algorithms that appeared impractical to 

put into practice have become easily realizable today 

with desired performance parameters so that new 

designs can be incorporated. Modern computers use 

conventions for representing non integer numbers, the 

most widespread of which is the IEEE 754 Standard 

for Floating-Point calculations.  
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This standard defines binary representation for 

floating-point numbers of varying precision, giving 

specific examples of the binary32 (or single precision) 

format, binary64 (or double precision) format, and it 

defines operations on floating-point numbers. The 

essential components in IEEE 754 standard floating 

point numbers are the sign, the exponent, and the 

mantissa. 

 

Table I-Bit Range For Floating-Point Values 

 
Table II-Floating Point Number Representation 

 
There are four types of exceptions that arise during 

floating point operations. Whenever the result cannot 

be shown as a definite number in the precision format 

of the destination the Overflow exception is occurred. 

The Underflow exception take place when an 

intermediate result is very small to be calculated 

correctly. When zero divides a finite nonzero number, 

the Division by zero exception arises. The Invalid 

operation exception is raised if the given inputs are not 

appropriate for the operation to be performed. The 

remaining paper is structured as follows. SectionII 

consist of important details of reversible logic design, 

with coverage of some reversible logic primitive gates. 

Section III provides details of floating-point addition 

algorithm and architecture. Section IV outlines 

approaches towards multiplier and divider design. 

Section v presents our final measurements, a brief 

analysis of the architecture, and direction for future 

work. Section VI concludes the paper with our list of 

references. 

 

II. BACKGROUND WORK 

Many traditional logic gates such as the AND, OR, 

NAND, NOR, and XOR gates are fundamentally 

irreversible.  

That is to say that the output combination of any of 

these gates does not expose the input combination that 

caused the output. Thus we have a need for primitive 

reversible logic gates.  

 

A.Reversible Gate: 

Reversible gates are the circuits having one to-one 

relationship between vectors of input and output. 

Therefore from output vector state we can reconstruct 

the vector of input states. 

 

B. Quantum Cost: 

Every quantum circuit is built using 1X1 and 2X2 

quantum primitives and its cost is calculated as a total 

sum of 2X2 gates used since 1X1 gate has no cost, i.e., 

zero. Basically the quantum primitives are matrix 

operation which is applied on qubits state. All the 

gates of the form 2X2 has equal quantum cost and the 

cost is unity, i.e., one [3]. Since every reversible gate 

consists of 1X1 or 2X2 quantum gate, the quantum 

cost of a reversible design calculates the total number 

of 2X2 gates used. The quantum costs of Feynman 

gate [4], Peres gate [5] and DPG gate (as full adder) 

[6] are one, four and six respectively.  

 

C. Garbage Output: 

Unwanted or unused output of a reversible gate (or 

circuit) is known as garbage output, i.e., the output(s) 

which is(are) needed only to maintain the reversibility 

is(are) known as garbage output(s). 

 

D. Delay: 

The maximum number of gates in a route from any 

input signal line to any output line is known as delay 

of a circuit. At the beginning, each gate performs the 

design computation in one unit time. Secondly, all 

inputs to the circuit are known before the computation 

begins. 

 

E. Popular Reversible Gate:  

1) Feynman Gate: 

The input and output vectors of 2x2 Feynman Gate 

(FG) [4] are (Ip)v and (Op)v respectively and can be 

defined as follows:  
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(Ip)v ={a} and 

(Op)v={a xor b}  

2)Peres Gate:  

The input and output vectors of 3x3 Peres Gate (PG) 

[5] are (Ip)v and Ov respectively and can be defined as 

follows:  

(Ip)v = {a,b,c}and  

(Op)v = {a,axorb,abxor c} 

The 3 bit Peres gate has Quantum cost of 4. 

3)Double Peres Gate 

Input vector, (Ip)v and output vector,(Op)v of 4x4 

Double Peres Gate (DPG) [6] are defined as follows: 

(Ip)v = {a,b,c,d} and  

(Op)v = {a,axorb,axor b xor d,(a xor b)d xorabxor c}  

4) Fredkin Gate 

Input vector, (Ip)v and output vector,(Op)v of 3x3 

Fredkin Gate(FR) are defined as follows:  

(Ip)v ={a,b,c} and 

(Op)v={a,a’bxorab,a’cxorab} 

5)HNG Gate 

Input vector,(Ip)v and output vector, (Op)v of 4x4 

HNG are defined as follows: 

(Ip)v={a,b,c,d} and  

(Op)v={a,b,axor b xor c,(a xor b)c xorabxor d} 

 

III.FLOATING POINT ADDITION:  

Given two floating-point numbers to be added, the 

IEEE754 Standard for Floating-Point Arithmetic 

details how their sum can be found [7].First, if the 

exponents are not equal, the smaller is incremented 

until it aligns with the larger. To align the floating-

point number with the smaller exponent without 

altering its value, its respective trailing significand 

must be shifted one place to the right for every time 

the exponent is incremented. Once the exponents are 

equal, the significands can be summed. The sum is 

then normalized and rounded. Fig. 1 illustrates the 

block-level schematic of the architecture our proposed 

reversible floating-point adder design uses 

 
Fig-1 Proposed design of reversible addition 

architecture 

A) Reversible Conditional Swapping: 

The first step in our reversible floating-pointer adder 

architecture is to swap the floating-point operands 

conditionally and reversibly. The rest of the 

architecture operates assuming that X is the floating-

point number with the greater exponent, and Y is the 

floating-point number that possibly needs to be aligned 

with X. The exponents of the two floating-point 

numbers both are unpacked and expanded to nine bits. 

In order to find their difference the 812 exponent that 

is the minuend is complemented using two's 

complement, and with it the difference is calculated. 

The nine HNG gates implement the reversible 

subtracter circuit [8]. The sign bit of the difference of 

the exponents acts as the condition (control) by which 

the two entire floatingpoint numbers are swapped: If 

expA<expB,then the floating point numbers will swap 

position, otherwise expA≥expB and the floating-point 

numbers are passed through to the next stage without 

swapping. 

 

B)Reversible Barrel Shifter: 

In our proposed system we require (256,8) reversible 

barrel shifter. But due to complexity & space problem 

we shown here design for (4,2) reversible barrel 

shifter. The circuit works as follows: Each stage of 

Fredkin gate shifts the input according to the control 

value of sk. Suppose, to design a (4, 2) shifter which 

takes i0, i1, i2, i3 as data inputs and s0s1 = 11 as select 
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input. So the input will be shifted 2^0+ 2^1 = 3 times 

to the left. Thus the sequence of the shift/rotate 

operation will be i1i2i3 i0 for the first stage and then 

i3i0i1i2 for the next. On the other hand, for the select 

input s0s1 = 00, the input sequence will remain same 

for both stages of multiplexing. Thus, each Fredkin 

gate chooses between two input lines it receives and 

performs the appropriate operation according to the 

select input of that particular stage. Hence, for the first 

stage (Stage 0) of above (4:2) shifter, the first Fredkin 

gate will either select input i0 or i1, the second one 

will do either i1 or i2 and so on. All other stages 

perform the selection task in the same way. 

 
Fig2-Proposed Design of reversible barrel shifter[9] 

C) Conversion unit 

 

We have designed a reversible conversion unit that 

serves simultaneously as a sign magnitude-to-two's 

complement unit and a two's complement-to-sign 

magnitude unit. Of note is that our unit performs a 

reversible mapping, f , with the following fixed point: 

f (10…0)=10…0 This implies, for an n bit signed 

integer:  

 

f ([−2n−1]2' s complement )=[−0]sign−magnitude 

f ([−0]sign−magnitude)=[−2n−1]2 ' s complement 

Our design requires two of the 28 bit reversible 

converters (one for each trailing significand), and a 

single 29 bit converter for the output of the 28 bit full 

adder. Before the ensuing reversible normalization 

step, this 29 bit sign extended sum is converted back to 

sign magnitude with a single instance of a 29 bit 

reversible conversion unit. 

 

 

D.28-Bit Ripple Carry Full Adder 

For this implementation, we will be using the Peres 

gate as it is the gate with the lower quantum cost. The 

Peres gate implementation of Full Adder with its 

corresponding quantum cost can be seen below: 

 
Fig3-Ripple carry full adder[10] 

 

E. Reversible Normalization:  

After the sum of the trailing significands has been 

converted back into sign-magnitude representation, the 

sign bit is connected directly to the final stage as the 

sign of the floating-point sum, and the magnitude may 

need to be normalized. This normalization step may 

involve either left shifting or right shifting. If a right 

shift is required, only a right shift of a single position 

will be required. Otherwise a left shift of possibly 

several placed may be required. A synchronous 

floating-point adder architecture might accomplish this 

behavior using synchronous leading-one detectors and 

synchronous shift registers, but in keeping with our 

asynchronous reversible design methodology, we 

design a completely asynchronous reversible 

normalization unit. 

 

F. Reversible Rounding: 

Our reversible rounding unit performs the reversible 

round toward zero rounding algorithm specified in the 

IEEE754standard. This unit is a pseudo unit, in that it 

consists of no extra hardware: It operates simply by 

transforming some of the input bits into garbage 

outputs by ignoring them altogether. 

 

IV.EFFICIENT APPROACHES TOWARDS 

EFFICIENT FLOATING POINT 

MULTIPLICATION UNIT AND DIVISION 

UNIT: 

A)Reversible Multiplication Unit For to design single 

precision floating-point multiplier, there is requirement 

of efficient 24x24 bit integer multiplier. Operand 
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decomposition approach is efficient for the propose 

reversible design of 32 bit floating point multiplier. To 

design the reversible 24x24 (AxB) bit multiplier, the 

values are divided into three subgroups of 8 bits each. 

Thus, the 24x24 bit reversible multiplication can be 

performed through nine reversible 8x8 bit Wallace tree 

multipliers, of which outputs are then summed. 

 
Fig-4 Algorithm for floating point multiplication 

 

There are three conceptual stages in wallance tree 

multiplication:partial product compression using 4:2 

compressors, Partial product generation, full &half 

adders and then the final addition stage to generate the 

product. In this work there is requirement of 

optimization at each of these three stages. 

 

B) Reversible Division Unit(Conventional)  

Let, Dividend, A = A0:A1A2:::An 

Divisor, D = D0:D1D2:::Dn 

Remainder, R = R0:R1R2:::Rn Quotient,  

Q = Q0:Q1Q2:::Qn 

The operands are assumed to be positive, normalized 

fracsigned fractions. So, A0 = D0 = 0 and A1 = D1 = 

1. The quotient is positive and the partial remainder R 

is a signed fraction, and R0 is the sign bit with R being 

represented in 2’s complement form. 

 
Fig-5 Conventional Division Array :8-bit Dividend 

and 4- bit Divisor[11] 

 

C) Proposed reversible divider using high speed 

division array 

The reversible divider using high speed division array 

is designed by some major modifications of the design 

previous section. The carry ripple time, which is 

proportional to n, has been omitted in this design. The 

partial remainder R is not developed in each row of the 

array, but is represented by two binary vectors S and C 

which, if added, would produce the correct partial 

remainder at that row level. A single carry-look ahead 

circuit is used to determine from the S and C vectors 

what the carry sign would be, facilitating the 

determination of the sign of the resulting partial 

remainder, the quotient bit for that row level, and the 

control (add or subtract divisor) to the next row. 

Subtraction of the divisor is implemented using 2’s 

complement addition as in the conventional array. 

Three types of cell, namely, A cell, S cell and CLA 

cell have been used in the high speed array design. The 

Ajs (dividend) are input from the top, and the 

complemented Djs (divisor) are input through the 

diagonal lines. Addition or subtraction is to be 

performed in the A cells. 
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Fig-6 Reversible High Speed Division Array[11] 

 

V.SIMULATION RESULTS 

The corresponding simulation results of the floating 

point adders are shown below. All the synthesis and 

simulation results are performed using Verilog HDL. 

The synthesis and simulation are performed on Xilinx 

ISE 14.4. The simulation results are shown below 

figures. 

 
Figure-7: RTL schematic of Top-level of proposed 

floating point adder 

 
Figure 8: RTL schematic of Internal block of 

proposed floating point adder 

 
Figure 9: Technology schematic of proposed 

floating point adder 

 
Figure 10: Synthesis report of floating point adder 

 
Figure 11: simulated outputs for proposed floating 

point adder 

 

CONCLUSION: 

Floating point arithmetic is one of the most important 

units in modern day digital systems. Many researchers 

have proposed various approaches which includes the 

use of reversible logic in the design of arithmetic unit. 

This paper presents the floating point unit according to 

IEEE 754 Standard. All modules has been designed in 

reversible way to reduce power consumption. Analysis 

of all units has been in terms of quantum cost, garbage 

outputs, constant inputs, speedand delay parameter.  



 

  
                                                                                                                                                                                                                    Page 1380 

 

The simulation results of addition unit is provided in 

this paper.Most of the designs using the reversible 

logic architecture optimize the delay, latency and the 

area utilization In future the analysis of multiplication 

unit will be possible. 
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