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Abstract: 

In this paper we propose a novel technique of run-time 

loading of machine code for 32-bit block processor. As 

we know, implementing fewer instructions and 

addressing modes on silicon reduces the complexity of 

the instruction decoder, the addressing logic, and the 

execution unit. This allows the machine to be clocked 

at a faster speed, since less work needs to be done each 

clock period. Our proposed RISC block Processor 

technique sends the machine code to the instruction 

memory of the soft-core from the software tool 

through UART. The user should use that software tool 

to write assembly code, debug the code and generate 

the machine code. Also, the software tool is used for 

establishing UART connection.  
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1. Introduction: 

Processors are regarded as one of the most important 

devices in our everyday machines called computers. 

Before we start, we need to understand what exactly 

processors are and their appropriate implementations. 

Processor is an electronic circuit that functions as the 

central processing unit (CPU) of a computer, providing 

computational control. Processors are also used in 

other advanced electronic systems, such as computer 

printers, automobiles, and jet airliners, Calculators and 

etc. Typical processors incorporate arithmetic and 

logic functional units as well as the associated control 

logic, instruction processing circuitry, and a portion of 

the memory hierarchy. Portions of the interface logic 

for the input/output (I/O) and memory subsystems may 

also be infused, allowing cheaper overall systems.  

 

While many processors and single-chip designs, some 

high-performance designs rely on a few chips to 

provide multiple functional units and relatively large 

caches. Processors have been described in many 

different ways. They have been compared with the 

brain and the heart of humans. Their operation has 

been linked to a switched board, and to the nervous 

system in an animal. They have often been called 

microcomputers. The original purpose of the processor 

was to control memory. That is what they were 

originally designed to do, and that is what they do 

today. Specifically, a processor is “a component that 

implements memory.” Processors are much faster than 

memories. For example, a processor clocked at 100 

MHz would like to access memory in 10 nanoseconds, 

the period of its 100 MHz clock. Unfortunately, the 

memory interfaced to the processor might require 60 

nanoseconds for an access. 

So, the processor ends up waiting during each memory 

access, wasting execution cycles. To reduce the 

number of accesses to main memory, designers added 

instruction and data cache to the processors. A cache is 

a special type of high speed RAM where data and the 

address of the data are stored. Whenever the processor 

tries to read data from main memory, the cache is 

examined first. If one of the addresses stored in the 

cache matches the address being used for the memory 

read (called a hit), the cache will supply the data 

instead. Cache is commonly ten times faster than main 

memory, so you can see the advantage of getting data 

in 10 nanoseconds instead of 60 nanoseconds. Only 

when we miss (i.e., do not find the required data in the 

cache), does it take the full access time of 60 

nanoseconds. But this can only happen once. Since a 

copy of the new data is written into the cache after a 

miss. 
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The data will be there the next time we need it. 

Instruction cache is used to store frequently used 

instructions. Data cache is used to store frequently 

used data. Implementing fewer instructions and 

addressing modes on silicon reduces the complexity of 

the instruction decoder, the addressing logic, and the 

execution unit. This allows the machine to be clocked 

at a faster speed, since less work needs to be done each 

clock period. RISC typically has large set of registers. 

The number of registers available in a processor can 

affect performance the same way a memory access 

does. A complex calculation may require the use of 

several data values. If the data values all reside in 

memory during the calculations, many memory 

accesses must be used to utilize them. If the data 

values are stored in the internal registers of the 

processor instead, their access during calculations will 

be much faster. It is good then to have lot of internal 

registers. 

2. THE BLOCK PROCESSOR 

The BLOCK instruction set architecture (ISA) is a 

RISC based microprocessor architecture that was 

developed by BLOCK Computer Systems Inc. in the 

early 1980s. BLOCK is now an industry standard and 

the performance leader within the embedded industry. 

Their designs can be found in Canon digital cameras, 

Windows CE devices, Cisco Routers, Sony Play 

Station 2 game consoles, and many more products 

used in our everyday lives. By the late 1990s it was 

estimated that one in three of all RISC chips produced 

was a BLOCK-based design. Architecture of BLOCK 

RISC microprocessor includes, fix-length 

straightforward decoded instruction format, memory 

accesses limited to load and store instructions, 

hardwired control unit, a large general purpose register 

file, and all operations are done within the registers of 

the microprocessor. Due to these design 

characteristics, computer architecture courses in 

university and technical schools around the world 

often study the BLOCK architecture. One of the most 

widely used tools that helps students understand 

BLOCK is SPIM (BLOCK spelled backwards) a 

software simulator that enables the user to read and 

write BLOCK assembly language programs and 

execute them. SPIM is a great tool because it allows 

the user to execute programs one step or instruction at 

a time. This then allows the user to see exactly what is 

happening during their program execution. SPIM also 

provides a window displaying all general purpose 

registers which can also be used during the debug of a 

program. This simulator is another impressive tool that 

gives the computer architecture students an 

opportunity to visually observe how the BLOCK 

processor works. 

 

Figure 1 Instruction Formats 

As mentioned before BLOCK is a RISC 

microprocessor architecture. The BLOCK Architecture 

defines 32-bit general purpose registers (GPRs). 

Register $r0 is hard-wired and always contains the 

value zero. The CPU uses byte addressing for word 

accesses and must be aligned on a byte boundary 

divisible by four (0, 4, 8, …). BLOCK only has three 

instruction types: I-type is used for the Load and 

Stores instructions, R-type is used for Arithmetic 

instructions, and J-type is used for the Jump 

instructions as shown in Figure 1 which provides a 

description of each of the fields used in the three 

different instruction types. BLOCK is a load/store 

architecture, meaning that all operations are performed 

on operands held in the processor registers and the 

main memory can only be accessed through the load 

and store instructions (e.g lw, sw). A load instruction 

loads a value from memory into a register. A store 

instruction stores a value from a register to memory.  
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The load and store instructions use the sum of the 

offset value in the address/immediate field and the 

base register in the $rs field to address the memory. 

Arithmetic instructions or R-type include: ALU 

Immediate (e.g. addi), three-operand (e.g. add, and, 

slt), and shift instructions (e.g. sll, srl). The J-type 

instructions are used for jump instructions (e.g. j). 

Branch instructions (e.g. beq, bne) are I-type 

instructions which use the addition of an offset value 

from the current address in the address/immediate field 

along with the program counter (PC) to compute the 

branch target address; this is considered PC-relative 

addressing. 

3. BLOCK PROCESSOR IMPLEMENTATION 

The BLOCK single-cycle processor performs the tasks 

of instruction fetch, instruction decode, execution, 

memory access and write-back all in one clock cycle. 

First the PC value is used as an address to index the 

instruction memory which supplies a 32-bit value of 

the next instruction to be executed. This instruction is 

then divided into the different fields shown in fig. 1. 

The instructions opcode field bits [31-26] are sent to a 

control unit to determine the type of instruction to 

execute. The type of instruction then determines which 

control signals are to be asserted and what function the 

ALU is to perform, thus decoding the instruction. The 

instruction register address fields rs bits [25 - 21], rt 

bits [20 - 16], and rd bits [15-11] are used to address 

the register file. The register file supports two 

independent register reads and one register write in 

one clock cycle.  

The register file reads in the requested addresses and 

outputs the data values contained in these registers. 

These data values can then be operated on by the ALU 

whose operation is determined by the control unit to 

either compute a memory address (e.g. load or store), 

compute an arithmetic result (e.g. add, and or slt), or 

perform a compare (e.g. branch). If the instruction 

decoded is arithmetic, the ALU result must be written 

to a register. If the instruction decoded is a load or a 

store, the ALU result is then used to address the data 

memory. The final step writes the ALU result or 

memory value back to the register file. 

 

Figure 2.The BLOCK Processor 

The initial task of this paper was to implement in 

VERILOG HDL the BLOCK single-cycle processor 

.A good VERILOG HDL reference and tutorial can be 

found in the appendices to the book Fundamentals of 

Digital Logic with VERILOG HDL Design by Stephen 

Brown and Zvonko Vranesic [2]. The IEEE Standard 

VERILOG HDL Language Reference Manual [3], also 

helped in the overall design of the VERILOG HDL 

implementation. The first part of the design was to 

analyze the single-cycle datapath and take note of the 

major function units and their respective connections. 

The BLOCK implementation as with all processors, 

consists of two main types of logic elements: 

combinational and sequential elements. Combinational 

elements are elements that operate on data values, 

meaning that their outputs depend on the current 

inputs. Such elements in the BLOCK implementation 

include the arithmetic logic unit (ALU) and adder. 

Sequential elements are elements that contain a hold 

state. Each state element has at least two inputs and 

one output. The two inputs are the data value to be 

written and a clock signal. The output signal provides 

the data values that were written in an earlier clock 

cycle. State elements in the BLOCK implementation 

include the Register File, Instruction Memory, and 

Data Memory as seen in Figure 2. While many of logic 

units are straightforward to design and implement in 

VERILOG HDL, considerable effort was needed to 

implement the state elements. 
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Figure 3 BLOCK Register File 

INSTRUCTION FETCH UNIT 

The function of the instruction fetch unit is to obtain 

an instruction from the instruction memory using the 

current value of the PC and increment the PC value for 

the next instruction as shown in Figure 4. Since this 

design uses an 8-bit data width we had to implement 

byte addressing to access the registers and word 

address to access the instruction memory. The 

instruction fetch component contains the following 

logic elements that are implemented in VERILOG 

HDL: 8-bit program counter (PC) register, an adder to 

increment the PC by four, the instruction memory, a 

multiplexer, and an AND gate used to select the value 

of the next PC. 

 

Figure 4 Instruction Fetch Unit 

INSTRUCTION DECODE UNIT 

The main function of the instruction decode unit is to 

use the 32-bit instruction provided from the previous 

instruction fetch unit to index the register file and 

obtain the register data values as seen in Figure 5. This 

unit also sign extends instruction bits [15 - 0] to 32-bit.  

However with our design of 8-bit data width, our 

implementation uses the instruction bits [7 – 0] bits 

instead of sign extending the value. The logic elements 

to be implemented in VHDL include several 

multiplexers and the register file that was described 

earlier. 

 

THE CONTROL UNIT 

The control unit of the MIPS singlecycle processor 

examines the instruction opcode bits [31 – 6] and 

decodes the instruction to generate nine control signals 

to be used in the additional modules as shown in 

Figure 6. The RegDst control signal determines which 

register is written to the register file. The Jump control 

signal selects the jump address to be sent to the PC. 

The   Branch control signal is used to select the branch 

address to be sent to the PC. The MemRead control 

signal is asserted during a load instruction when the 

data memory is read to load a register with its memory 

contents. The MemtoReg control signal determines if 

the ALU result or the data memory output is written to 

the register file. The ALUOp control signals determine 

the function the ALU performs. (e.g. and, or, add, sbu, 

slt) The MemWrite control signal is asserted when 

during a store instruction when a registers value is 

stored in the data memory. The ALUSrc control signal 

determines if the ALU second operand comes from the 

register file or the sign extend. The RegWrite control 

signal is asserted when the register file needs to be 

written.  
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Figure 6 MIPS Control Unit 

Execution Unit 

The execution unit of the MIPS processor contains the 

arithmetic logic unit (ALU) which performs the 

operation determined by the ALUop signal. The 

branch address is calculated by adding the PC+4 to the 

sign extended immediate field shifted left 2 bits by a 

separate adder. The logic elements to be implemented 

in VHDL include a multiplexer, an adder, the ALU 

and the ALU control as shown in Figure 2 & 7 

 

DATA MEMORY UNIT 

The data memory unit is only accessed by the load and 

store instructions. The load instruction asserts the 

MemRead signal and uses the ALU Result value as an 

address to index the data memory.  

The read output data is then subsequently written into 

the register file. A store instruction asserts the 

MemWrite signal and writes the data value previously 

read from a register into the computed memory 

address. The VHDL implementation of the data 

memory was described earlier. Figure 8 shows the 

signals used by the memory unit to access the data 

memory. 

 

Figure 8 MIPS Data Memory Unit 

4 . Simulation Results 

The results obtained from the Xilinx ISE 12.2 which 

are implemented using Verilog HDL. 

 

Figure 4.1 : Loading instructions 

 

Figure 4.2: Loading instruction into Memory 
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Figure 4.3: Executing ALU operation 

 

Figure 4.4: Block processor Output 

5. Conclusion: 

The work presented in this paper describes a functional 

implementation design of a Block Processor and 

pipelined processor designed using Verilog HDL. The 

results show first the instruction memory initialization, 

which is used to fill the instruction memory with the 

instructions to be executed, which are indexed by the 

program counter (PC).  The second is the actual 32-bit 

instruction represented using hexadecimal numbers. 

The third is the PC value used to index the instruction 

memory to retrieve an instruction. From the results we 

have observed that the Block processor executes the 

instructions very fast. 
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