

 Page 511

Design and Simulation of 32-Bit Block Processor
Kunam Bhagya Lakshmi

M.Tech VLSI Design,

Vidya Jyothi Institute of

Technology.

Sapati Upender, M.Tech, (Ph.D)

Associate Professor,

Vidya Jyothi Institute of

Technology.

Dr.K.Manjunathachari

Professor & HOD,

Dept of ECE

GITAM University.

Abstract:

In this paper we propose a novel technique of run-time

loading of machine code for 32-bit block processor. As

we know, implementing fewer instructions and

addressing modes on silicon reduces the complexity of

the instruction decoder, the addressing logic, and the

execution unit. This allows the machine to be clocked

at a faster speed, since less work needs to be done each

clock period. Our proposed RISC block Processor

technique sends the machine code to the instruction

memory of the soft-core from the software tool

through UART. The user should use that software tool

to write assembly code, debug the code and generate

the machine code. Also, the software tool is used for

establishing UART connection.

Keywords:

MIPS, Data Flow, Data Path, Pipeline, RISC, CISC.

1. Introduction:

Processors are regarded as one of the most important

devices in our everyday machines called computers.

Before we start, we need to understand what exactly

processors are and their appropriate implementations.

Processor is an electronic circuit that functions as the

central processing unit (CPU) of a computer, providing

computational control. Processors are also used in

other advanced electronic systems, such as computer

printers, automobiles, and jet airliners, Calculators and

etc. Typical processors incorporate arithmetic and

logic functional units as well as the associated control

logic, instruction processing circuitry, and a portion of

the memory hierarchy. Portions of the interface logic

for the input/output (I/O) and memory subsystems may

also be infused, allowing cheaper overall systems.

While many processors and single-chip designs, some

high-performance designs rely on a few chips to

provide multiple functional units and relatively large

caches. Processors have been described in many

different ways. They have been compared with the

brain and the heart of humans. Their operation has

been linked to a switched board, and to the nervous

system in an animal. They have often been called

microcomputers. The original purpose of the processor

was to control memory. That is what they were

originally designed to do, and that is what they do

today. Specifically, a processor is “a component that

implements memory.” Processors are much faster than

memories. For example, a processor clocked at 100

MHz would like to access memory in 10 nanoseconds,

the period of its 100 MHz clock. Unfortunately, the

memory interfaced to the processor might require 60

nanoseconds for an access.

So, the processor ends up waiting during each memory

access, wasting execution cycles. To reduce the

number of accesses to main memory, designers added

instruction and data cache to the processors. A cache is

a special type of high speed RAM where data and the

address of the data are stored. Whenever the processor

tries to read data from main memory, the cache is

examined first. If one of the addresses stored in the

cache matches the address being used for the memory

read (called a hit), the cache will supply the data

instead. Cache is commonly ten times faster than main

memory, so you can see the advantage of getting data

in 10 nanoseconds instead of 60 nanoseconds. Only

when we miss (i.e., do not find the required data in the

cache), does it take the full access time of 60

nanoseconds. But this can only happen once. Since a

copy of the new data is written into the cache after a

miss.

 Page 512

The data will be there the next time we need it.

Instruction cache is used to store frequently used

instructions. Data cache is used to store frequently

used data. Implementing fewer instructions and

addressing modes on silicon reduces the complexity of

the instruction decoder, the addressing logic, and the

execution unit. This allows the machine to be clocked

at a faster speed, since less work needs to be done each

clock period. RISC typically has large set of registers.

The number of registers available in a processor can

affect performance the same way a memory access

does. A complex calculation may require the use of

several data values. If the data values all reside in

memory during the calculations, many memory

accesses must be used to utilize them. If the data

values are stored in the internal registers of the

processor instead, their access during calculations will

be much faster. It is good then to have lot of internal

registers.

2. THE BLOCK PROCESSOR

The BLOCK instruction set architecture (ISA) is a

RISC based microprocessor architecture that was

developed by BLOCK Computer Systems Inc. in the

early 1980s. BLOCK is now an industry standard and

the performance leader within the embedded industry.

Their designs can be found in Canon digital cameras,

Windows CE devices, Cisco Routers, Sony Play

Station 2 game consoles, and many more products

used in our everyday lives. By the late 1990s it was

estimated that one in three of all RISC chips produced

was a BLOCK-based design. Architecture of BLOCK

RISC microprocessor includes, fix-length

straightforward decoded instruction format, memory

accesses limited to load and store instructions,

hardwired control unit, a large general purpose register

file, and all operations are done within the registers of

the microprocessor. Due to these design

characteristics, computer architecture courses in

university and technical schools around the world

often study the BLOCK architecture. One of the most

widely used tools that helps students understand

BLOCK is SPIM (BLOCK spelled backwards) a

software simulator that enables the user to read and

write BLOCK assembly language programs and

execute them. SPIM is a great tool because it allows

the user to execute programs one step or instruction at

a time. This then allows the user to see exactly what is

happening during their program execution. SPIM also

provides a window displaying all general purpose

registers which can also be used during the debug of a

program. This simulator is another impressive tool that

gives the computer architecture students an

opportunity to visually observe how the BLOCK

processor works.

Figure 1 Instruction Formats

As mentioned before BLOCK is a RISC

microprocessor architecture. The BLOCK Architecture

defines 32-bit general purpose registers (GPRs).

Register $r0 is hard-wired and always contains the

value zero. The CPU uses byte addressing for word

accesses and must be aligned on a byte boundary

divisible by four (0, 4, 8, …). BLOCK only has three

instruction types: I-type is used for the Load and

Stores instructions, R-type is used for Arithmetic

instructions, and J-type is used for the Jump

instructions as shown in Figure 1 which provides a

description of each of the fields used in the three

different instruction types. BLOCK is a load/store

architecture, meaning that all operations are performed

on operands held in the processor registers and the

main memory can only be accessed through the load

and store instructions (e.g lw, sw). A load instruction

loads a value from memory into a register. A store

instruction stores a value from a register to memory.

 Page 513

The load and store instructions use the sum of the

offset value in the address/immediate field and the

base register in the $rs field to address the memory.

Arithmetic instructions or R-type include: ALU

Immediate (e.g. addi), three-operand (e.g. add, and,

slt), and shift instructions (e.g. sll, srl). The J-type

instructions are used for jump instructions (e.g. j).

Branch instructions (e.g. beq, bne) are I-type

instructions which use the addition of an offset value

from the current address in the address/immediate field

along with the program counter (PC) to compute the

branch target address; this is considered PC-relative

addressing.

3. BLOCK PROCESSOR IMPLEMENTATION

The BLOCK single-cycle processor performs the tasks

of instruction fetch, instruction decode, execution,

memory access and write-back all in one clock cycle.

First the PC value is used as an address to index the

instruction memory which supplies a 32-bit value of

the next instruction to be executed. This instruction is

then divided into the different fields shown in fig. 1.

The instructions opcode field bits [31-26] are sent to a

control unit to determine the type of instruction to

execute. The type of instruction then determines which

control signals are to be asserted and what function the

ALU is to perform, thus decoding the instruction. The

instruction register address fields rs bits [25 - 21], rt

bits [20 - 16], and rd bits [15-11] are used to address

the register file. The register file supports two

independent register reads and one register write in

one clock cycle.

The register file reads in the requested addresses and

outputs the data values contained in these registers.

These data values can then be operated on by the ALU

whose operation is determined by the control unit to

either compute a memory address (e.g. load or store),

compute an arithmetic result (e.g. add, and or slt), or

perform a compare (e.g. branch). If the instruction

decoded is arithmetic, the ALU result must be written

to a register. If the instruction decoded is a load or a

store, the ALU result is then used to address the data

memory. The final step writes the ALU result or

memory value back to the register file.

Figure 2.The BLOCK Processor

The initial task of this paper was to implement in

VERILOG HDL the BLOCK single-cycle processor

.A good VERILOG HDL reference and tutorial can be

found in the appendices to the book Fundamentals of

Digital Logic with VERILOG HDL Design by Stephen

Brown and Zvonko Vranesic [2]. The IEEE Standard

VERILOG HDL Language Reference Manual [3], also

helped in the overall design of the VERILOG HDL

implementation. The first part of the design was to

analyze the single-cycle datapath and take note of the

major function units and their respective connections.

The BLOCK implementation as with all processors,

consists of two main types of logic elements:

combinational and sequential elements. Combinational

elements are elements that operate on data values,

meaning that their outputs depend on the current

inputs. Such elements in the BLOCK implementation

include the arithmetic logic unit (ALU) and adder.

Sequential elements are elements that contain a hold

state. Each state element has at least two inputs and

one output. The two inputs are the data value to be

written and a clock signal. The output signal provides

the data values that were written in an earlier clock

cycle. State elements in the BLOCK implementation

include the Register File, Instruction Memory, and

Data Memory as seen in Figure 2. While many of logic

units are straightforward to design and implement in

VERILOG HDL, considerable effort was needed to

implement the state elements.

 Page 514

Figure 3 BLOCK Register File

INSTRUCTION FETCH UNIT

The function of the instruction fetch unit is to obtain

an instruction from the instruction memory using the

current value of the PC and increment the PC value for

the next instruction as shown in Figure 4. Since this

design uses an 8-bit data width we had to implement

byte addressing to access the registers and word

address to access the instruction memory. The

instruction fetch component contains the following

logic elements that are implemented in VERILOG

HDL: 8-bit program counter (PC) register, an adder to

increment the PC by four, the instruction memory, a

multiplexer, and an AND gate used to select the value

of the next PC.

Figure 4 Instruction Fetch Unit

INSTRUCTION DECODE UNIT

The main function of the instruction decode unit is to

use the 32-bit instruction provided from the previous

instruction fetch unit to index the register file and

obtain the register data values as seen in Figure 5. This

unit also sign extends instruction bits [15 - 0] to 32-bit.

However with our design of 8-bit data width, our

implementation uses the instruction bits [7 – 0] bits

instead of sign extending the value. The logic elements

to be implemented in VHDL include several

multiplexers and the register file that was described

earlier.

THE CONTROL UNIT

The control unit of the MIPS singlecycle processor

examines the instruction opcode bits [31 – 6] and

decodes the instruction to generate nine control signals

to be used in the additional modules as shown in

Figure 6. The RegDst control signal determines which

register is written to the register file. The Jump control

signal selects the jump address to be sent to the PC.

The Branch control signal is used to select the branch

address to be sent to the PC. The MemRead control

signal is asserted during a load instruction when the

data memory is read to load a register with its memory

contents. The MemtoReg control signal determines if

the ALU result or the data memory output is written to

the register file. The ALUOp control signals determine

the function the ALU performs. (e.g. and, or, add, sbu,

slt) The MemWrite control signal is asserted when

during a store instruction when a registers value is

stored in the data memory. The ALUSrc control signal

determines if the ALU second operand comes from the

register file or the sign extend. The RegWrite control

signal is asserted when the register file needs to be

written.

 Page 515

Figure 6 MIPS Control Unit

Execution Unit

The execution unit of the MIPS processor contains the

arithmetic logic unit (ALU) which performs the

operation determined by the ALUop signal. The

branch address is calculated by adding the PC+4 to the

sign extended immediate field shifted left 2 bits by a

separate adder. The logic elements to be implemented

in VHDL include a multiplexer, an adder, the ALU

and the ALU control as shown in Figure 2 & 7

DATA MEMORY UNIT

The data memory unit is only accessed by the load and

store instructions. The load instruction asserts the

MemRead signal and uses the ALU Result value as an

address to index the data memory.

The read output data is then subsequently written into

the register file. A store instruction asserts the

MemWrite signal and writes the data value previously

read from a register into the computed memory

address. The VHDL implementation of the data

memory was described earlier. Figure 8 shows the

signals used by the memory unit to access the data

memory.

Figure 8 MIPS Data Memory Unit

4 . Simulation Results

The results obtained from the Xilinx ISE 12.2 which

are implemented using Verilog HDL.

Figure 4.1 : Loading instructions

Figure 4.2: Loading instruction into Memory

 Page 516

Figure 4.3: Executing ALU operation

Figure 4.4: Block processor Output

5. Conclusion:

The work presented in this paper describes a functional

implementation design of a Block Processor and

pipelined processor designed using Verilog HDL. The

results show first the instruction memory initialization,

which is used to fill the instruction memory with the

instructions to be executed, which are indexed by the

program counter (PC). The second is the actual 32-bit

instruction represented using hexadecimal numbers.

The third is the PC value used to index the instruction

memory to retrieve an instruction. From the results we

have observed that the Block processor executes the

instructions very fast.

	page9

