

 Page 1012

Optimal Keyword Cover Search

P.Anuradha

M.Tech(SE) Student

Department of IT

Geethanjali College of Engineering & Technology.

K.Srinivas

Professor

Department of CSE

Geethanjali College of Engineering & Technology.

ABSTRACT

It is common that the objects in a spatial database

(e.g., restaurants/hotels) are associated with

keyword(s) to indicate their

businesses/services/features. An interesting problem

known as Closest Keywords search is to query

objects, called keyword cover, which together cover a

set of query keywords and have the minimum inter-

objects distance. In recent years, we observe the

increasing availability and importance of keyword

rating in object evaluation for the better decision

making. This motivates us to investigate a generic

version of Closest Keywords search called Best

Keyword Cover which considers inter-objects

distance as well as the keyword rating of objects. The

baseline algorithm is inspired by the methods of

Closest Keywords search which is based on

exhaustively combining objects from different query

keywords to generate candidate keyword covers.

When the number of query keywords increases, the

performance of the baseline algorithm drops

dramatically as a result of massive candidate keyword

covers generated. To attack this drawback, this work

proposes a much more scalable algorithm called

keyword nearest neighbor expansion (keyword-

NNE). Compared to the baseline algorithm, keyword-

NNE algorithm significantly reduces the number of

candidate keyword covers generated. The in-depth

analysis and extensive experiments on real data sets

have justified the superiority of our keyword-NNE

algorithm.

INTRODUCTION

Now a days, use of mobile computing increases.

Inspired by the mobile computing, the spatial

keywords search problem has attracted much attention

recently because of location-based services and wide

availability of extensive digital maps and satellite

imagery. So the number of users using the location

based services has been also increased to large extend.

Spatial objects indicates the information such as its

business/services/features which are associated to

keyword In spatial database, each tuple represents a

spatial object. The main idea behind the spatial

keywords search is to identify spatial object(s) which

are associated with keywords relevant to a set of query

keywords which are close to each other and/or close to

the query location. This problem has unique value in

various Applications because users‟ requirements are

often expressed as multiple keywords. In existing,

spatial keyword search problem have been studied

because of the value of the special keyword search in

practice. This paper investigates a generic version of

mock query, called Best Keyword Cover (BKC) query,

which considers inter-objects distance as well as

keyword rating. It is motivated by the observation of

increasing availability and importance of keyword

rating in decision making. Millions of

businesses/services/features around the world have

been rated by customers through online business

review sites such as Yelp, City search, ZAGAT and

Dining, etc. For example, a restaurant is rated 65 out of

100 (ZAGAT.com) and a hotel is rated 3.9 out of 5

(hotels.com). According to a survey in 2013 conducted

by Dimensional Research (dimensionalresearch.com),

an overwhelming 90 percent of respondents claimed

that buying decisions are influenced by online business

review/rating. Due to the consideration of keyword

rating, the solution of BKC query can be very different

from that of mCK query).

This work develops two BKC query processing

algorithms, baseline and keyword-NNE. The baseline

algorithm is inspired by the mCK query processing

 Page 1013

methods Both the baseline algorithm and keyword-

NNE algorithm are supported by indexing the objects

with an R*-tree like index, called KRR*-tree. In the

baseline algorithm, the idea is to combine nodes in

higher hierarchical levels of KRR*-trees to generate

candidate keyword covers. Then, the most promising

candidate is assessed in priority by combining their

child nodes to generate new candidates. Even though

BKC query can be effectively resolved, when the

number of query keywords increases, the performance

drops dramatically as a result of massive candidate

keyword covers generated. To overcome this critical

drawback, we developed much scalable keyword

nearest neighbour expansion (keyword-NNE)

algorithm which applies a different strategy. Keyword-

NNE selects one query keyword as principal query

keyword. The objects associated with the principal

query keyword are principal objects. For each

principal object, the local best solution (known as local

best keyword cover (lbkc)) is computed. Among them,

the lbkc with the highest evaluation is the solution of

BKC query. Given a principal object, its lbkc can be

identified by simply retrieving a few nearby and highly

rated objects in each non-principal query keyword

(two-four objects in average as illustrated in

experiments). Compared to the baseline algorithm, the

number of candidate keyword covers generated in

keyword-NNE algorithm is significantly reduced. The

in-depth analysis reveals that the number of candidate

keyword covers further processed in keyword-NNE

algorithm is optimal, and each keyword candidate

cover processing generates much less new candidate

keyword covers than that in the baseline algorithm.

Baseline Algorithm:

The baseline algorithm is inspired by the mCK query

processing methods. For mCK query processing, the

method in browses index in top-down manner while

the method in does bottom-up. Given the same

hierarchical index structure, the top-down browsing

manner typically performs better than the bottom-up

since the search in lower hierarchical levels is always

guided by the search result in the higher hierarchical

levels. However, the significant advantage of the

method in over the method in has been reported. This

is because of the different index structures applied.

Both of them use a single tree structure to index data

objects of different keywords. But the number of nodes

of the index in has been greatly reduced to save I/O

cost by keeping keyword information with inverted

index separately. Since only leaf nodes and their

keyword information are maintained in the inverted

index, the bottom-up index browsing manner is used.

When designing the baseline algorithm for BKC query

processing, we take the advantages of both methods.

First, we apply multiple KRR*-trees which contain no

keyword information in nodes such that the number of

nodes of the index is not more than that of the index in

second, the top-down index browsing method can be

applied since each keyword has own index.

Suppose KRR*-trees, each for one keyword, have been

constructed. Given a set of query keywords T ¼ fk1; . .

. ; kng, the child nodes of the root of KRR*ki-tree (i _ i

_ n) are retrieved and they are combined to generate

candidate keyword covers. Given a candidate keyword

cover O ¼ fNk1; . . .;Nkng where Nki is a node of

KRR*ki-tree.

where N:maxrating is the maximum value of objects

under N in keyword rating dimension; distðNi;NjÞ is

the minimum euclidean distance between Ni and Nj in

the twodimensional geographical space defined by x

and y dimensions.

Algorithm 1 shows the pseudo-code of the baseline

algorithm. Given a set of query keywords T, it first

generates candidate keyword covers using Generate

Candidate function which combines the child nodes of

 Page 1014

the roots of KRR*ki-trees for all ki 2 T (line 2). These

candidates are maintained in a heap H. Then, the

candidate with the highest score in H is selected and its

child nodes are combined using Generate Candidate

function to generate more candidates.

Since the number of candidates can be very large, the

depth-first KRR*ki-tree browsing strategy is applied to

access the leaf nodes as soon as possible (line 6). The

first candidate consisting of objects (not nodes of

KRR*-tree) is the current best solution, denoted as

bkc, which is an intermediate solution. According to

Lemma 2, the candidates in H are pruned if they have

score less than bkc:score (line 8). The remaining

candidates are processed in the same way and bkc is

updated if the better intermediate solution is found.

Once no candidate is remained in H, the algorithm

terminates by returning current bkc to BKC query.

EXISTING SYSTEM:

 Some existing works focus on retrieving

individual objects by specifying a query

consisting of a query location and a set of

query keywords (or known as document in

some context). Each retrieved object is

associated with keywords relevant to the query

keywords and is close to the query location.

 The approaches proposed by Cong et al. and

Li et al. employ a hybrid index that augments

nodes in non-leaf nodes of an R/R*-tree with

inverted indexes.

 In virtual bR*-tree based method, an R*-tree is

used to index locations of objects and an

inverted index is used to label the leaf nodes in

the R*-tree associated with each keyword.

Since only leaf nodes have keyword

information the mCK query is processed by

browsing index bottom-up.

DISADVANTAGES OF EXISTING SYSTEM:

 When the number of query keywords

increases, the performance drops dramatically

as a result of massive candidate keyword

covers generated.

 The inverted index at each node refers to a

pseudo-document that represents the keywords

under the node. Therefore, in order to verify if

a node is relevant to a set of query keywords,

the inverted index is accessed at each node to

evaluate the matching between the query

keywords and the pseudo-document associated

with the node.

PROPOSED SYSTEM:

 This paper investigates a generic version of

mCK query, called Best Keyword Cover

(BKC) query, which considers inter-objects

distance as well as keyword rating. It is

motivated by the observation of increasing

availability and importance of keyword rating

in decision making. Millions of

businesses/services/features around the world

have been rated by customers through online

business review sites such as Yelp, Citysearch,

ZAGAT and Dianping, etc.

 This work develops two BKC query

processing algorithms, baseline and keyword-

NNE. The baseline algorithm is inspired by

the mCK query processing methods. Both the

baseline algorithm and keyword-NNE

algorithm are supported by indexing the

objects with an R*-tree like index, called

KRR*-tree.

 Page 1015

 We developed much scalable keyword nearest

neighbor expansion (keyword-NNE) algorithm

which applies a different strategy. Keyword-

NNE selects one query keyword as principal

query keyword. The objects associated with

the principal query keyword are principal

objects. For each principal object, the local

best solution (known as local best keyword

cover lbkc) is computed. Among them, the

lbkc with the highest evaluation is the solution

of BKC query. Given a principal object, its

lbkc can be identified by simply retrieving a

few nearby and highly rated objects in each

non-principal query keyword (two-four objects

in average as illustrated in experiments).

ADVANTAGES OF PROPOSED SYSTEM:

 Compared to the baseline algorithm, the

number of candidate keyword covers

generated in keyword-NNE algorithm is

significantly reduced. The in-depth analysis

reveals that the number of candidate keyword

covers further processed in keyword-NNE

algorithm is optimal, and each keyword

candidate cover processing generates much

less new candidate keyword covers than that in

the baseline algorithm.

 The proposed keyword-NNE algorithm applies

a different processing strategy, i.e., searching

local best solution for each object in a certain

query keyword. As a consequence, the number

of candidate keyword covers generated is

significantly reduced.

 The analysis reveals that the number of

candidate keyword covers which need to be

further processed inkeyword-NNE algorithm

is optimal and processing each keyword

candidate cover typically generates much less

new candidate keyword covers in keyword-

NNE algorithm than in the baseline algorithm.

SYSTEM ARCHITECTURE:

IMPLEMENTATION

MODULES:

1. Indexing Keyword Ratings

2. Keyword nearest Neighbor Expansion

3. LBKC Computation

4. Weighted Average of Keyword Ratings

MODULESDESCSRIPTION:

Indexing Keyword Ratings

A single tree structure is used to index objects of

different keywords. The single tree can be extended

with an additional dimension to index keyword rating.

A single tree structure suits the situation that most

keywords are query keywords. For the above

mentioned example, all keywords, i.e., “hotel”,

“restaurant” and “bar”, are query keywords. However,

it is more frequent that only a small fraction of

keywords are query keywords. For example in the

experiments, only less than 5 percent keywords are

query keywords. In this situation, a single tree is poor

to approximate the spatial relationship between objects

of few specific keywords. Therefore, multiple KRR*-

trees are used in this work, each for one keyword.1

The KRR*-tree for keyword ki is denoted as KRR*ki-

tree. Given an object, the rating of an associated

keyword is typically the mean of ratings given by a

number of customers for a period of time. The change

does happen but slowly. Even though dramatic change

occurs, the KRR*-tree is updated in the standard way

of R*-tree update.

 Page 1016

Keyword nearest Neighbor Expansion

Using the baseline algorithm, BKC query can be

effectively resolved. However, it is based on

exhaustively combining objects (or their MBRs). Even

though pruning techniques have been explored, it has

been observed that the performance drops

dramatically, when the number of query keywords

increases, because of the fast increase of candidate

keyword covers generated. This motivates us to

develop a different algorithm called keyword nearest

neighbor expansion. We focus on a particular query

keyword, called principal query keyword. The objects

associated with the principal query keyword are called

principal objects.

The goal of the interface is to provide point of interest

information (static and dynamic ones) with, at least, a

location, some mandatory’s attributes and optional

details (description,…). In order to provide that

information, the component that implements the

interface uses the map database information to locate

and display point of interest (POI) or to select POI as

route waypoint and favorite. This component not only

provides search functionalities for the local database

but also a way to connect external search engine to this

component and enhance the search criteria and the list

of results It also proposes a solution to get custom

POIs (not part of the local map database) or to

dynamically update content and description of local

POI. This is achieved by specifying and providing

interfaces to:

 Select POIs from one of their attributes (e.g.,

Category, Name,…)

 Retrieve POI attributes (e.g., Location and

Description)

 Get dynamic content for a given POI.

 Add custom POI to the map display

 Import new POIs and POIs categories from

local file.

LBKC Computation

Given a spatial database, each object may be

associated with one or multiple keywords. Without

loss of generality, the object with multiple keywords

are transformed to multiple objects located at the same

location, each with a distinct single keyword.When

further processing a candidate keyword cover,

keyword-NNE algorithm typically generates much less

new candidate keyword covers compared to BF-

baseline algorithm. Since the number of candidate

keyword covers further processed in keyword-NNE

algorithm is optimal the number of keyword covers

generated in BF-baseline algorithm is much more than

that in keyword- NNE algorithm. In turn, we conclude

that the number of keyword covers generated in

baseline algorithm is much more than that in keyword-

NNE algorithm. This conclusion is independent of the

principal query keyword since the analysis does not

apply any constraint on the selection strategy of

principal query keyword.

Weighted Average of Keyword Ratings

In keyword-NNE algorithm, the best-first browsing

strategy is applied like BF-baseline but large memory

requirement is avoided. For the better explanation, we

can imagine all candidate keyword covers generated in

BF-baseline algorithm are grouped into independent

groups. Each group is associated with one principal

node (or object). That is, the candidate keyword covers

fall in the same group if they have the same principal

node (or object).

When further processing a candidate keyword cover,

keyword-NNE algorithm typically generates much less

new candidate keyword covers compared to BF-

baseline algorithm. Since the number of candidate

keyword covers further processed in keyword-NNE

algorithm is optimal, the number of keyword covers

generated in BF-baseline algorithm is much more than

that in keyword-NNE algorithm. In turn, we conclude

that the number of keyword covers generated in

baseline algorithm is much more than that in keyword-

NNE algorithm. This conclusion is independent of the

principal query keyword since the analysis does not

apply any constraint on the selection strategy of

principal query keyword.

 Page 1017

SCREEN SHOTS

Admin login:

2.Admin Home:

UserDetails:

Upload Images:

User Login:

UserHome:

CONCLUSION

Compared to the most relevant mCK query, BKC

query provides an additional dimension to support

more sensible decision making. The introduced

baseline algorithm is inspired by the methods for

processing mCK query.

The baseline algorithm generates a large number of

candidate keyword covers which leads to dramatic

performance drop when more query keywords are

given. The proposed keyword- NNE algorithm applies

a different processing strategy, i.e., searching local

best solution for each object in a certain query

keyword. As a consequence, the number of candidate

keyword covers generated is significantly reduced. The

analysis reveals that the number of candidate keyword

covers which need to be further processed in.

 Page 1018

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules in large databases,” in Proc.

20th Int. Conf. Very Large Data Bases, 1994, pp. 487–

499.

[2] T. Brinkhoff, H. Kriegel, and B. Seeger, “Efficient

processing of spatial joins using r-trees,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data, 1993, pp.

237–246.

[3] X. Cao, G. Cong, and C. Jensen, “Retrieving top-k

prestige-based relevant spatial web objects,” Proc.

VLDB Endowment, vol. 3, nos. 1/2, pp. 373–384, Sep.

2010.

[4] X. Cao, G. Cong, C. Jensen, and B. Ooi,

“Collective spatial keyword querying,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2011, pp. 373–

384.

[5] G. Cong, C. Jensen, and D. Wu, “Efficient retrieval

of the top-k most relevant spatial web objects,” Proc.

VLDB Endowment, vol. 2, no. 1, pp. 337–348, Aug.

2009.

[6] R. Fagin, A. Lotem, and M. Naor, “Optimal

aggregation algorithms for middleware,” J. Comput.

Syst. Sci., vol. 66, pp. 614–656, 2003.

[7] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword

search on spatial databases,” in Proc. IEEE 24th Int.

Conf. Data Eng., 2008, pp. 656–665.

[8] R. Hariharan, B. Hore, C. Li, and S. Mehrotra,

“Processing spatialkeyword (SK) queries in

geographic information retrieval (GIR) systems,” in

Proc. 19th Int. Conf. Sci. Statist. Database Manage.,

2007, pp. 16–23.

[9] G. R. Hjaltason and H. Samet, “Distance browsing

in spatial databases,” ACM Trans. Database Syst., vol.

24, no. 2, pp. 256–318, 1999.

[10] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee,

and X. Wang, “IRTree: An efficient index for

geographic document search,” IEEE Trans. Knowl.

Data Eng., vol. 99, no. 4, pp. 585–599, Apr. 2010.

[11] N. Mamoulis and D. Papadias, “Multiway spatial

joins,” ACM Trans. Database Syst., vol. 26, no. 4, pp.

424–475, 2001.

[12] D. Papadias, N. Mamoulis, and B. Delis,

“Algorithms for querying by spatial structure,” in Proc.

Int. Conf. Very Large Data Bases, 1998, pp. 546–557.

[13] D. Papadias, N. Mamoulis, and Y. Theodoridis,

“Processing and optimization of multiway spatial joins

using r-trees,” in Proc. 18
th
 ACM SIGMOD-SIGACT-

SIGART Symp. Principles Database Syst., 1999, pp.

44–55.

[14] J. M. Ponte and W. B. Croft, “A language

modeling approach to information retrieval,” in Proc.

21st Annu. Int. ACM SIGIR Conf.

[15] J. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K.

Nørva g, “Efficient processing of top-k spatial

keyword queries,” in Proc. 12th Int. Conf. Adv. Spatial

Temporal Databases, 2011, pp. 205–222. Collaborative

computing,”INFOCOM 2008, pp. 1211-1219.

