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ABSTRACT 

It is common that the objects in a spatial database 

(e.g., restaurants/hotels) are associated with 

keyword(s) to indicate their 

businesses/services/features. An interesting problem 

known as Closest Keywords search is to query 

objects, called keyword cover, which together cover a 

set of query keywords and have the minimum inter-

objects distance. In recent years, we observe the 

increasing availability and importance of keyword 

rating in object evaluation for the better decision 

making. This motivates us to investigate a generic 

version of Closest Keywords search called Best 

Keyword Cover which considers inter-objects 

distance as well as the keyword rating of objects. The 

baseline algorithm is inspired by the methods of 

Closest Keywords search which is based on 

exhaustively combining objects from different query 

keywords to generate candidate keyword covers. 

When the number of query keywords increases, the 

performance of the baseline algorithm drops 

dramatically as a result of massive candidate keyword 

covers generated. To attack this drawback, this work 

proposes a much more scalable algorithm called 

keyword nearest neighbor expansion (keyword-

NNE). Compared to the baseline algorithm, keyword-

NNE algorithm significantly reduces the number of 

candidate keyword covers generated. The in-depth 

analysis and extensive experiments on real data sets 

have justified the superiority of our keyword-NNE 

algorithm. 

 

INTRODUCTION 

Now a days, use of mobile computing increases. 

Inspired by the mobile computing, the spatial 

keywords search problem has attracted much attention 

recently because of location-based services and wide 

availability of extensive digital maps and satellite 

imagery. So the number of users using the location 

based services has been also increased to large extend. 

Spatial objects indicates the information such as its 

business/services/features which are associated to 

keyword In spatial database, each tuple represents a 

spatial object. The main idea behind the spatial 

keywords search is to identify spatial object(s) which 

are associated with keywords relevant to a set of query 

keywords which are close to each other and/or close to 

the query location. This problem has unique value in 

various Applications because users‟ requirements are 

often expressed as multiple keywords. In existing, 

spatial keyword search problem have been studied 

because of the value of the special keyword search in 

practice. This paper investigates a generic version of 

mock query, called Best Keyword Cover (BKC) query, 

which considers inter-objects distance as well as 

keyword rating. It is motivated by the observation of 

increasing availability and importance of keyword 

rating in decision making. Millions of 

businesses/services/features around the world have 

been rated by customers through online business 

review sites such as Yelp, City search, ZAGAT and 

Dining, etc. For example, a restaurant is rated 65 out of 

100 (ZAGAT.com) and a hotel is rated 3.9 out of 5 

(hotels.com). According to a survey in 2013 conducted 

by Dimensional Research (dimensionalresearch.com), 

an overwhelming 90 percent of respondents claimed 

that buying decisions are influenced by online business 

review/rating. Due to the consideration of keyword 

rating, the solution of BKC query can be very different 

from that of mCK query). 

 

This work develops two BKC query processing 

algorithms, baseline and keyword-NNE. The baseline 

algorithm is inspired by the mCK query processing 
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methods Both the baseline algorithm and keyword-

NNE algorithm are supported by indexing the objects 

with an R*-tree like index, called KRR*-tree. In the 

baseline algorithm, the idea is to combine nodes in 

higher hierarchical levels of KRR*-trees to generate 

candidate keyword covers. Then, the most promising 

candidate is assessed in priority by combining their 

child nodes to generate new candidates. Even though 

BKC query can be effectively resolved, when the 

number of query keywords increases, the performance 

drops dramatically as a result of massive candidate 

keyword covers generated. To overcome this critical 

drawback, we developed much scalable keyword 

nearest neighbour expansion (keyword-NNE) 

algorithm which applies a different strategy. Keyword-

NNE selects one query keyword as principal query 

keyword. The objects associated with the principal 

query keyword are principal objects. For each 

principal object, the local best solution (known as local 

best keyword cover (lbkc)) is computed. Among them, 

the lbkc with the highest evaluation is the solution of 

BKC query. Given a principal object, its lbkc can be 

identified by simply retrieving a few nearby and highly 

rated objects in each non-principal query keyword 

(two-four objects in average as illustrated in 

experiments). Compared to the baseline algorithm, the 

number of candidate keyword covers generated in 

keyword-NNE algorithm is significantly reduced. The 

in-depth analysis reveals that the number of candidate 

keyword covers further processed in keyword-NNE 

algorithm is optimal, and each keyword candidate 

cover processing generates much less new candidate 

keyword covers than that in the baseline algorithm. 

 

Baseline Algorithm: 

The baseline algorithm is inspired by the mCK query 

processing methods. For mCK query processing, the 

method in browses index in top-down manner while 

the method in does bottom-up. Given the same 

hierarchical index structure, the top-down browsing 

manner typically performs better than the bottom-up 

since the search in lower hierarchical levels is always 

guided by the search result in the higher hierarchical 

levels. However, the significant advantage of the 

method in over the method in has been reported. This 

is because of the different index structures applied. 

Both of them use a single tree structure to index data 

objects of different keywords. But the number of nodes 

of the index in has been greatly reduced to save I/O 

cost by keeping keyword information with inverted 

index separately. Since only leaf nodes and their 

keyword information are maintained in the inverted 

index, the bottom-up index browsing manner is used. 

When designing the baseline algorithm for BKC query 

processing, we take the advantages of both methods. 

First, we apply multiple KRR*-trees which contain no 

keyword information in nodes such that the number of 

nodes of the index is not more than that of the index in 

second, the top-down index browsing method can be 

applied since each keyword has own index. 

 

Suppose KRR*-trees, each for one keyword, have been 

constructed. Given a set of query keywords T ¼ fk1; . . 

. ; kng, the child nodes of the root of KRR*ki-tree (i _ i 

_ n) are retrieved and they are combined to generate 

candidate keyword covers. Given a candidate keyword 

cover O ¼ fNk1; . . .;Nkng where Nki is a node of 

KRR*ki-tree. 

 
where N:maxrating is the maximum value of objects 

under N in keyword rating dimension; distðNi;NjÞ is 

the minimum euclidean distance between Ni and Nj in 

the twodimensional geographical space defined by x 

and y dimensions. 

 
 

Algorithm 1 shows the pseudo-code of the baseline 

algorithm. Given a set of query keywords T, it first 

generates candidate keyword covers using Generate 

Candidate function which combines the child nodes of 
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the roots of KRR*ki-trees for all ki 2 T (line 2). These 

candidates are maintained in a heap H. Then, the 

candidate with the highest score in H is selected and its 

child nodes are combined using Generate Candidate 

function to generate more candidates. 

 

Since the number of candidates can be very large, the 

depth-first KRR*ki-tree browsing strategy is applied to 

access the leaf nodes as soon as possible (line 6). The 

first candidate consisting of objects (not nodes of 

KRR*-tree) is the current best solution, denoted as 

bkc, which is an intermediate solution. According to 

Lemma 2, the candidates in H are pruned if they have 

score less than bkc:score (line 8). The remaining 

candidates are processed in the same way and bkc is 

updated if the better intermediate solution is found. 

Once no candidate is remained in H, the algorithm 

terminates by returning current bkc to BKC query. 

 

 
 

EXISTING SYSTEM: 

 Some existing works focus on retrieving 

individual objects by specifying a query 

consisting of a query location and a set of 

query keywords (or known as document in 

some context). Each retrieved object is 

associated with keywords relevant to the query 

keywords and is close to the query location. 

 The approaches proposed by Cong et al. and 

Li et al. employ a hybrid index that augments 

nodes in non-leaf nodes of an R/R*-tree with 

inverted indexes. 

 In virtual bR*-tree based method, an R*-tree is 

used to index locations of objects and an 

inverted index is used to label the leaf nodes in 

the R*-tree associated with each keyword. 

Since only leaf nodes have keyword 

information the mCK query is processed by 

browsing index bottom-up. 

 

DISADVANTAGES OF EXISTING SYSTEM: 

 When the number of query keywords 

increases, the performance drops dramatically 

as a result of massive candidate keyword 

covers generated. 

 The inverted index at each node refers to a 

pseudo-document that represents the keywords 

under the node. Therefore, in order to verify if 

a node is relevant to a set of query keywords, 

the inverted index is accessed at each node to 

evaluate the matching between the query 

keywords and the pseudo-document associated 

with the node. 

 

PROPOSED SYSTEM: 

 This paper investigates a generic version of 

mCK query, called Best Keyword Cover 

(BKC) query, which considers inter-objects 

distance as well as keyword rating. It is 

motivated by the observation of increasing 

availability and importance of keyword rating 

in decision making. Millions of 

businesses/services/features around the world 

have been rated by customers through online 

business review sites such as Yelp, Citysearch, 

ZAGAT and Dianping, etc. 

 This work develops two BKC query 

processing algorithms, baseline and keyword-

NNE. The baseline algorithm is inspired by 

the mCK query processing methods. Both the 

baseline algorithm and keyword-NNE 

algorithm are supported by indexing the 

objects with an R*-tree like index, called 

KRR*-tree. 
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 We developed much scalable keyword nearest 

neighbor expansion (keyword-NNE) algorithm 

which applies a different strategy. Keyword-

NNE selects one query keyword as principal 

query keyword. The objects associated with 

the principal query keyword are principal 

objects. For each principal object, the local 

best solution (known as local best keyword 

cover lbkc) is computed. Among them, the 

lbkc with the highest evaluation is the solution 

of BKC query. Given a principal object, its 

lbkc can be identified by simply retrieving a 

few nearby and highly rated objects in each 

non-principal query keyword (two-four objects 

in average as illustrated in experiments). 

 

ADVANTAGES OF PROPOSED SYSTEM: 

 Compared to the baseline algorithm, the 

number of candidate keyword covers 

generated in keyword-NNE algorithm is 

significantly reduced. The in-depth analysis 

reveals that the number of candidate keyword 

covers further processed in keyword-NNE 

algorithm is optimal, and each keyword 

candidate cover processing generates much 

less new candidate keyword covers than that in 

the baseline algorithm. 

 The proposed keyword-NNE algorithm applies 

a different processing strategy, i.e., searching 

local best solution for each object in a certain 

query keyword. As a consequence, the number 

of candidate keyword covers generated is 

significantly reduced. 

 The analysis reveals that the number of 

candidate keyword covers which need to be 

further processed inkeyword-NNE algorithm 

is optimal and processing each keyword 

candidate cover typically generates much less 

new candidate keyword covers in keyword-

NNE algorithm than in the baseline algorithm. 

 

 

 

 

SYSTEM ARCHITECTURE: 

 
 

IMPLEMENTATION 

MODULES: 

1. Indexing Keyword Ratings 

2. Keyword nearest Neighbor Expansion 

3. LBKC Computation 

4. Weighted Average of Keyword Ratings 

 

MODULESDESCSRIPTION: 

Indexing Keyword Ratings 

A single tree structure is used to index objects of 

different keywords. The single tree can be extended 

with an additional dimension to index keyword rating. 

A single tree structure suits the situation that most 

keywords are query keywords. For the above 

mentioned example, all keywords, i.e., “hotel”, 

“restaurant” and “bar”, are query keywords. However, 

it is more frequent that only a small fraction of 

keywords are query keywords. For example in the 

experiments, only less than 5 percent keywords are 

query keywords. In this situation, a single tree is poor 

to approximate the spatial relationship between objects 

of few specific keywords. Therefore, multiple KRR*-

trees are used in this work, each for one keyword.1 

The KRR*-tree for keyword ki is denoted as KRR*ki-

tree. Given an object, the rating of an associated 

keyword is typically the mean of ratings given by a 

number of customers for a period of time. The change 

does happen but slowly. Even though dramatic change 

occurs, the KRR*-tree is updated in the standard way 

of R*-tree update. 
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Keyword nearest Neighbor Expansion 

Using the baseline algorithm, BKC query can be 

effectively resolved. However, it is based on 

exhaustively combining objects (or their MBRs). Even 

though pruning techniques have been explored, it has 

been observed that the performance drops 

dramatically, when the number of query keywords 

increases, because of the fast increase of candidate 

keyword covers generated. This motivates us to 

develop a different algorithm called keyword nearest 

neighbor expansion. We focus on a particular query 

keyword, called principal query keyword. The objects 

associated with the principal query keyword are called 

principal objects. 

 

The goal of the interface is to provide point of interest 

information (static and dynamic ones) with, at least, a 

location, some mandatory’s attributes and optional 

details (description,…). In order to provide that 

information, the component that implements the 

interface uses the map database information to locate 

and display point of interest (POI) or to select POI as 

route waypoint and favorite. This component not only 

provides search functionalities for the local database 

but also a way to connect external search engine to this 

component and enhance the search criteria and the list 

of results It also proposes a solution to get custom 

POIs (not part of the local map database) or to 

dynamically update content and description of local 

POI. This is achieved by specifying and providing 

interfaces to: 

 Select POIs from one of their attributes (e.g., 

Category, Name,…) 

 Retrieve POI attributes (e.g., Location and 

Description) 

 Get dynamic content for a given POI. 

 Add custom POI to the map display 

 Import new POIs and POIs categories from 

local file. 

 

LBKC Computation 

Given a spatial database, each object may be 

associated with one or multiple keywords. Without 

loss of generality, the object with multiple keywords 

are transformed to multiple objects located at the same 

location, each with a distinct single keyword.When 

further processing a candidate keyword cover, 

keyword-NNE algorithm typically generates much less 

new candidate keyword covers compared to BF-

baseline algorithm. Since the number of candidate 

keyword covers further processed in keyword-NNE 

algorithm is optimal the number of keyword covers 

generated in BF-baseline algorithm is much more than 

that in keyword- NNE algorithm. In turn, we conclude 

that the number of keyword covers generated in 

baseline algorithm is much more than that in keyword-

NNE algorithm. This conclusion is independent of the 

principal query keyword since the analysis does not 

apply any constraint on the selection strategy of 

principal query keyword. 

 

Weighted Average of Keyword Ratings 

In keyword-NNE algorithm, the best-first browsing 

strategy is applied like BF-baseline but large memory 

requirement is avoided. For the better explanation, we 

can imagine all candidate keyword covers generated in 

BF-baseline algorithm are grouped into independent 

groups. Each group is associated with one principal 

node (or object). That is, the candidate keyword covers 

fall in the same group if they have the same principal 

node (or object). 

 

When further processing a candidate keyword cover, 

keyword-NNE algorithm typically generates much less 

new candidate keyword covers compared to BF-

baseline algorithm. Since the number of candidate 

keyword covers further processed in keyword-NNE 

algorithm is optimal, the number of keyword covers 

generated in BF-baseline algorithm is much more than 

that in keyword-NNE algorithm. In turn, we conclude 

that the number of keyword covers generated in 

baseline algorithm is much more than that in keyword-

NNE algorithm. This conclusion is independent of the 

principal query keyword since the analysis does not 

apply any constraint on the selection strategy of 

principal query keyword. 
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CONCLUSION 

Compared to the most relevant mCK query, BKC 

query provides an additional dimension to support 

more sensible decision making. The introduced 

baseline algorithm is inspired by the methods for 

processing mCK query. 

 

The baseline algorithm generates a large number of 

candidate keyword covers which leads to dramatic 

performance drop when more query keywords are 

given. The proposed keyword- NNE algorithm applies 

a different processing strategy, i.e., searching local 

best solution for each object in a certain query 

keyword. As a consequence, the number of candidate 

keyword covers generated is significantly reduced. The 

analysis reveals that the number of candidate keyword 

covers which need to be further processed in. 
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