

 Page 1575

An Efficient Approach to Optimize the Keyword Cover Search

Ms. Supriya Kumar More

M.Tech student

Marri Laxman Reddy Institute of Technology &

Management

Hyderabad.

Mr. K. Siva Ram Prasad

Assistant Professor

Marri Laxman Reddy Institute of Technology &

Management

Hyderabad.

Abstract

Spatial database stores the information about the

spatial objects which are associated with the

keywords to indicate the information such as its

business/services/features. None of the individual

objects is associated with all query keywords, this

motivates studies to retrieve multiple objects, called

keyword cover, which together cover all query

keywords and are close to each other. In m closest

keyword search, it covers a set of query keywords and

minimum distance between objects. From last few

years, keyword rating increases its availability and

importance in object evaluation for the decision

making. This is the main reason for developing the

new algorithm called best keyword cover which is

consider inter- distance as well as the keyword rating

provided by the customers through the online

business. m closest keyword search algorithm

combines the objects from different query keywords

to generate candidate keyword covers. Baseline

algorithm and keyword nearest neighbor expansion

algorithms are used to find the best keyword cover.

The performance of the m closest keyword algorithm

drops dramatically, when the number of query

keyword increases. This work proposes to solve

generic version problem of the existing algorithm

called keyword nearest neighbor expansion which

reduces the resulted candidate keyword covers.

Keywords: Spatial database, point of interests,

keywords, keyword rating, keyword cover

INTRODUCTION

An increasing number of applications require the

efficient execution of nearest neighbor (NN) queries

constrained by the properties of the spatial objects.

Due to the popularity of keyword search, particularly

on the Internet, many of these applications allow the

user to provide a list of keywords that the spatial

objects (henceforth referred to simply as objects)

should contain, in their description or other attribute

[1, 2]. For example, online yellow pages allow users to

specify an address and a set of keywords and produce

results which have description to these keywords,

ordered by their distance to the specified address

location. As another example, real estate web sites

allow users to search for properties with specific

keywords in their description and rank them according

to their distance from a specified location. We call

such queries spatial keyword queries. A spatial

keyword query consists of a query area and a set of

keywords. The answer is a list of objects ranked

according to a combination of their distance to the

query area and the relevance of their text description to

the query keywords. A simple popular variant, which

is used in our running example, is the distance-first

spatial keyword query, where objects are ranked by

distance and keywords are applied as a conjunctive

filter to eliminate objects that do not contain them.

Which is our running example, displays a dataset of

fictitious hotels with their spatial coordinates and a set

of descriptive attributes (name, amenities)? An

example of a spatial keyword query is “find the nearest

 Page 1576

hotels to point that contain keywords internet and

pool”. The top result of this query is the hotel object.

Unfortunately there is no efficient support for top-k

spatial keyword queries, where a prefix of the results

list is required. Instead, current systems use ad-hoc

combinations of nearest neighbor (NN) and keyword

search techniques to tackle the problem. For instance,

an R- Tree is used to find the nearest neighbors and for

each neighbor an inverted index is used to check if the

query keywords are contained. We show that such

two-phase approaches are inefficient [3–5].

EXISTING SYSTEM:

Some existing works focus on retrieving individual

objects by specifying a query consisting of a query

location and a set of query keywords (or known as

document in some context). Each retrieved object is

associated with keywords relevant to the query

keywords and is close to the query location.

The approaches proposed by Cong et al. and Li et al.

employ a hybrid index that augments nodes in non-leaf

nodes of an R/R*-tree with inverted indexes.

In virtual bR*-tree based method, an R*-tree is used

to index locations of objects and an inverted index is

used to label the leaf nodes in the R*-tree associated

with each keyword. Since only leaf nodes have

keyword information the mCK query is processed by

browsing index bottom-up.

DISADVANTAGES OF EXISTING SYSTEM:

When the number of query keywords increases, the

performance drops dramatically as a result of massive

candidate keyword covers generated.

The inverted index at each node refers to a pseudo-

document that represents the keywords under the node.

Therefore, in order to verify if a node is relevant to a

set of query keywords, the inverted index is accessed

at each node to evaluate the matching between the

query keywords and the pseudo-document associated

with the node.

PROPOSED SYSTEM:

This paper investigates a generic version of mCK

query, called Best Keyword Cover (BKC) query,

which considers inter-objects distance as well as

keyword rating. It is motivated by the observation of

increasing availability and importance of keyword

rating in decision making. Millions of

businesses/services/features around the world have

been rated by customers through online business

review sites such as Yelp, Citysearch, ZAGAT and

Dianping, etc.

This work develops two BKC query processing

algorithms, baseline and keyword-NNE. The baseline

algorithm is inspired by the mCK query processing

methods. Both the baseline algorithm and keyword-

NNE algorithm are supported by indexing the objects

with an R*-tree like index, called KRR*-tree.

We developed much scalable keyword nearest

neighbor expansion (keyword-NNE) algorithm which

applies a different strategy. Keyword-NNE selects one

query keyword as principal query keyword. The

objects associated with the principal query keyword

are principal objects. For each principal object, the

local best solution (known as local best keyword cover

lbkc) is computed. Among them, the lbkc with the

highest evaluation is the solution of BKC query. Given

a principal object, its lbkc can be identified by simply

retrieving a few nearby and highly rated objects in

each non-principal query keyword (two-four objects in

average as illustrated in experiments).

ADVANTAGES OF PROPOSED SYSTEM:

Compared to the baseline algorithm, the number of

candidate keyword covers generated in keyword-NNE

algorithm is significantly reduced. The in-depth

analysis reveals that the number of candidate keyword

covers further processed in keyword-NNE algorithm is

optimal, and each keyword candidate cover processing

generates much less new candidate keyword covers

than that in the baseline algorithm.

The proposed keyword-NNE algorithm applies a

different processing strategy, i.e., searching local best

solution for each object in a certain query keyword. As

a consequence, the number of candidate keyword

covers generated is significantly reduced.

The analysis reveals that the number of candidate

keyword covers which need to be further processed

 Page 1577

inkeyword-NNE algorithm is optimal and processing

each keyword candidate cover typically generates

much less new candidate keyword covers in keyword-

NNE algorithm than in the baseline algorithm.

SYSTEM ARCHITECTURE:

PROPOSED ALGORITHM

Baseline Algorithm

Baseline algorithm is not feasible in practice. The main

reason is that baseline algorithm requires maintaining

H in memory. The peak size of H can be very large

because of the exhaustive combination until the first

current best solution best keyword cover (bkc) is

obtained. To release the memory bottleneck, the depth-

first browsing strategy is applied in the baseline

algorithm such that the current best solution is

obtained as soon as possible. Compared to the best-

first browsing strategy which is global optimal, the

depth-first browsing strategy is a kind of greedy

algorithm which is local optimal. As a consequence, if

a candidate keyword cover (kc) has kc.score >

bkc.score, kc is further processed by retrieving the

child nodes of kc and combining them to generate

more candidates. Note that bkc.score increases from 0

to BKC.score in the baseline algorithm. Therefore, the

candidate keyword covers which are further processed

in the baseline algorithm can be much more than that

in baseline algorithm. Given a candidate keyword

cover kc, it is further processed in the same way in

both the baseline algorithm and baseline algorithm,

i.e., retrieving the child nodes of kc and combines

them to generate more candidates using Generate

Candidate function in Algorithm. Since the candidate

keyword covers further processed in the baseline

algorithm can be much more than that in baseline

algorithm, the total candidate keyword covers

generated in the baseline algorithm can be much more

than that in baseline algorithm. Note that the analysis

captures the key characters of the baseline algorithm in

BKC query processing which are inherited from the

methods for mCK query processing.

Keyword-NNE Algorithm

In keyword-NNE algorithm, the best-first browsing

strategy is applied like baseline but large memory

requirement is avoided. For the better explanation, we

can imagine all candidate keyword covers generated in

baseline algorithm are grouped into independent

groups. Each group is associated with one principal

node (or object). That is, the candidate keyword covers

fall in the same group if they have the same principal

node (or object). Given a principal node Nk, let GNk

be the associated group. The example in Figure shows

GNk where some keyword covers such as kc1, kc2

have score greater than BKC.score, denoted as G1Nk,

and some keyword covers such as kc3, kc4 have score

not greater than BKC.score, denoted as G2Nk. In

baseline algorithm, GNk is maintained in H before

the first current best solution is obtained and every

keyword cover in G1Nk needs to be further processed.

In keyword-NNE algorithm, the keyword cover in

GNk with the highest score, i.e., lbkcNk, is identified

and maintained in memory. That is, each principal

node (or object) keeps its lbkc only.

Fig. 1: Baseline vs. Keyword-NNE.

 Page 1578

CONCLUSION

The proposed system provides more sensible decision

making than the mCK query. Baseline algorithm is

inspired by the mCK query. The main problem of

baseline algorithm is that, it reduces the performance

when number of query keyword increases. Keyword-

NNE algorithm applies a different strategy that

searches the best solution in query keyword for each

object. It reduces the generated candidate keyword

covers. Baseline keyword covers are passed to

keyword-NNE algorithm for further processing which

is optimal and generates less new candidate keyword

covers than the baseline algorithm.

REFERENCES

1.Ke Deng, Xin Li, Jiaheng Lu et al. Best keyword

cover search. IEEE Transactions on Knowledge and

Data Engineering. 2015; 27(1).

2.X. Cao, G. Cong, C. Jensen. Retrieving top-k

prestige-based relevant spatial web objects. Proc.

VLDB Endowment. 2010; 3(1/2): 373–384p.

3.X. Cao, G. Cong, C. Jensen et al. Collective spatial

keyword querying. In Proc. ACM SIGMOD Int. Conf.

Manage. Data. 2011; 373–384p.

4.G. Cong, C. Jensen, D. Wu. Efficient retrieval of the

top-k most relevant spatial web objects. Proc. VLDB

Endowment. 2009; 2(1): 337–348p.

5.I. D. Felipe, V. Hristidis, N. Rishe. Keyword search

on spatial databases. In Proc. IEEE 24th Int. Conf.

Data Eng. 2008; 656–665p.

6.R. Hariharan, B. Hore, C. Li et al. Processing spatial

keyword (SK) queries in geographic information

retrieval (GIR) systems. In Proc. 19th Int. Conf. Sci.

Statist. Database Manage. 2007; 16–23p.

7.Z. Li, K. C. Lee, B. Zheng et al. IRTree: An efficient

index for geographic document search. IEEE Trans.

Knowl. Data Eng. 2010; 99(4): 585–599p.

8.J. Rocha-Junior, O. Gkorgkas, S. Jonassen et al.

Efficient processing of top-k spatial keyword queries.

In Proc.12th Int. Conf. Adv. Spatial Temporal

Databases. 2011; 205–222p.

9.S. B. Roy, K. Chakrabarti. Location- aware type

ahead search on spatial databases: Semantics and

efficiency. In Proc. ACM SIGMOD Int. Conf.

Manage. Data. 2011; 361–372p.

10.D. Zhang, Y. Chee, A. Mondal et al. Keyword

search in spatial databases: Towards searching by

document. In Proc. IEEE Int. Conf. Data Eng. 2009;

688–699p

