
 

  
                                                                                                                                                                                                                    Page 529 

 

A Countermeasure to reserve-Inflated Denial-of-Service Censures 

T.Ramya Priya 

PG Scholar, 

Department CS, 

Sri Indu Institute of Engineering & 

Technology. 

Yada Sunitha 

Associate Professor, 

Department CSE, 

Sri Indu Institute of Engineering & 

Technology. 

Dr.I.Satyanarayana 

Principal, 

Sri Indu Institute of Engineering & 

Technology. 

 

Abstract: 

Currency-based mechanisms have been proposed as a 

way to use resource fairness among contenders for a 

service to thwart Denial of Service (DoS) attacks. 

Under resource fairness, a server allocates its service 

to the clients in proportion to their payment of a 

resource, making the resource serve as a kind of 

currency. We consider the vulnerability of currency-

based DoS defense mechanisms to various resource 

inflation attacks in which an attacker can substantially 

inflate its possession of the resource at low cost and in 

a way that may be either difficult or undesirable for a 

valid client to do. We provide a simple theoretical 

analysis of resource inflation attacks and investigate its 

application to a number of payment schemes to rank 

their likely vulnerability. We find that the threat of 

Graphics Processing Units (GPUs) for inflation attacks 

is especially severe: we are able to demonstrate 

inflation of up to 630x with common inexpensive 

GPUs. We also review threats from other capabilities, 

including multi-core processors, cloud computing, and 

bandwidth inflation schemes. 

Keywords: 

Data storage, cloud storage auditing, multi-keyword, 

ranked search service. 

I.INTRODUCTION: 

Denial of Service (DoS) attacks on the Internet aim to 

prevent legitimate clients from accessing a service and 

are considered a serious threat to the availability and 

reliability of the Internet services. DoS attacks vary 

significantly in many aspects, including, (1) the target 

layer (and protocol) in the network stack, (2) the 

distribution of attack sources, (3) the specific strategy 

employed, and (4) their impact. Despite this significant 

variety, there exists a common objective amongst 

almost all types of DoS attacks; the attackers aim to 

exhaust scarce resources, including CPU cycles, 

memory or disk space, and bandwidth, by generating 

too many requests. Such an attack is feasible because 

the attacker often pays very little for requesting a 

service, most of the time only the cost of sending a 

network packet. Numerous DoS defense mechanisms 

have been proposed in the literature. Among them, we 

particularly focus on currency-based mechanisms. In 

these defense mechanisms a server under attack 

demands some type of payment from all clients in 

order to raise the bar for provoking work by the server. 

Classic currency examples in this context are money  

CPU cycles, also known as puzzle-based schemes and 

bandwidth Puzzle-based mechanisms have been 

suggested as a defense mechanism in a broad range of 

contexts.  

For instance, Hash Cashes are puzzle-based 

mechanisms that aim to throttle the attacker from 

sending too much spam. In another context, the 

authors of suggest using computational puzzles as a 

defense mechanism against Sybil attacks in peer-to-

peer systems. Computational client-puzzles are also 

suggested as a way of protecting certain protocols such 

as SSL and ZRTP] from DoS . The broad design  

objective of the currency-based defense mechanisms is 

to achieve resource fairness The idea is to provide 

access to the service proportional to the resource 

payment by each client. However, a major challenge 

with resource fairness is that valid clients will among 

themselves display a measure of disparity in their 



 

  
                                                                                                                                                                                                                    Page 530 

 

possession of a resource. As attacks demand increasing 

resource allocation to get service, the poorer valid 

clients may experience unacceptable resource demands 

to obtain service and the currency mechanism will not 

accomplish its goal. Disparity is inevitable, but it has 

been argued that it is sufficiently modest for proposed 

resources that currency-based schemes can be effective 

if they adapt to attackers dynamically. For example, 

[35] figures that there is a disparity factor of about 40x 

between high and low-end systems for computational 

cycles and that this is low enough to make a cycle 

resource currency usable as a DoS counter-measure. 

During an attack, the poorer clients would experience 

longer latencies as they take more time to solve 

puzzles, but this delay would be significantly lower 

than the delay that would have occurred had the DoS 

attack been allowed to proceed without payments to 

slow the attackers too. In this paper we argue that such 

claims need to be analyzed in light of a threat that 

adversaries may have a way to achieve resource 

inflation, where they use resources or techniques that 

valid clients may not have implemented.  

If this inflation technique is good enough, then the 

arguments that disparity is acceptable begin to break 

down, as increasingly large numbers of valid clients 

are unable to muster the resources needed to obtain 

service. Of course, in many cases it is sufficient for the 

valid clients just to use the inflation technique 

themselves, thus leveling the playing field. However, 

in other cases this may not be possible or desirable. 

For instance, for bandwidth-based schemes, a client 

may increase their bandwidth resources by either 

deliberately misusing the wireless MAC layer, or 

ignoring congestion control back-off rules at the 

transport layer. This enables them to gain extra 

bandwidth at the expense of other hosts.  

Such modifications may require special administrative 

privileges or access to specialized software and can 

create DoS or congestion in the network so valid 

clients are not likely to use them. In such cases, it is 

hoped that the inflation threat is not too severe or that 

other measures, like detection of such behavior, can 

limit its effectiveness.  

In other cases, the issue may be more borderline and it 

may be debatable whether valid clients should use the 

same inflation tactics as attackers. In all three cases, 

however, it is prudent to have some way of analyzing 

the threat to determine whether the valid nodes should 

match the inflation technique, ignore it because its 

impact is small, or change to different currency-based 

schemes. We consider a range of resource inflation 

strategies and attempt to access their likely 

effectiveness. These include: cloud computing 

(outsourcing of puzzles), multi-core parallel 

computations (enabled by many new processors), the 

use of Graphical Processing Units (GPUs), and the 

bandwidth inflation techniques mentioned above. 

Among these we find that GPUs pose the greatest 

threat and require the most immediate attention. We 

show that attackers can use cheap and widely available 

GPUs to inflate their ability to solve typical cycle 

exhaustion puzzles by more than a 600x factor.  

While adaptive puzzle schemes may be able to tolerate 

a disparity of 40x, they fail when faced with a 600x 

disparity. In this range, adaptively making the resource 

demands higher does not help, since adversaries are so 

much richer than valid clients that the latter are „priced 

out of the market‟ and fail to get service in a 

reasonable time. Reasonable people could disagree on 

whether valid clients could or should even the score by 

using GPUs themselves to solve puzzles. Indeed, the 

software we demonstrate for attackers can itself be 

used by valid clients. On the other hand, we consider 

some of the drawbacks valid clients might experience 

if they use their GPUs to solve DoS puzzles. 

 

The paper makes three primary contributions. First, we 

introduce and analyze the concept of resource inflation 

as a „thinking out of the box‟ approach to defeating 

DoS countermeasures. This includes a sim-ple 

quantitative model to assess the impact of resource 

inflation. We argue that currency-based schemes 

should always be analyzed with this model to estimate 

their resilience against resource inflation.  

 



 

  
                                                                                                                                                                                                                    Page 531 

 

Second, we illustrate a series of resource inflation 

attacks on existing DoS defense mechanisms to 

underscore the significance and implications of this 

threat. Third, while the general idea of using GPUs to 

solve puzzles may seem obvious to some, how to 

implement and measure a full range of strategies is not 

obvious and comprised the bulk of the work we needed 

to do for this paper. 

II. RELATED WORK: 

In currency-based DoS defense mechanisms a server 

under attack demands some type of payment from all 

clients in order to raise the bar for provoking work by 

the server. In this section we explain some of the 

existing work on two classes of currency-based 

mechanisms: puzzle-based and bandwidth-based. We 

also explain resource fairness as a goal that currency 

mechanisms aim to achieve. 

A. Puzzle-Based Mechanisms  

Puzzle-based defense mechanisms such as] try to 

correct the imbalance between the cost to the attacker 

for generating a request and cost to the server for 

processing a request by demanding a payment, in the 

form of a puzzle solution, from each client. In a typical 

puzzle-based scheme, a request must be accompanied 

by a proof of payment from the client. The payment 

may be in the form of computation or memory 

accesses that the client needs to perform to solve the 

puzzle. Since the amount of resources available to the 

attacker is limited (even if it is much more than that of 

the legitimate clients), the attacker will not be able to 

trivially amplify his attack. There are different kinds of 

schemes that build on this general principle. Laurie et 

al. have analyzed proof-of-work schemes in the 

context of a spam deterrent mechanism and conclude 

that proof-of-work schemes do not work, because the 

cost involved for legitimate senders would be too high. 

However, their economic estimation contains a 

miscalculation. More importantly, their analysis 

considers fixed-cost puzzle schemes and does not 

analyze adaptive proof-of-work schemes proposed by 

recent DoS counter-measures. 

B. Hash-Reversal based Puzzle Schemes  

Hash-reversal-based puzzle schemes are among the 

most popular classes of puzzle schemes suggested in 

various DoS defense mechanisms. In such a scheme 

before a client is given access to a resource, the server 

(or a third-party) presents a puzzle-seed s to the client. 

The client then needs to find the puzzle solution x and 

compute the hash: 

p = H(xjjsjjr) 

where r is a set of parameters whose exact contents are 

dependent on the puzzle scheme in question. The 

server (or a participating router) verifies that the last l 

bits of p are zeros (and also that the client has used a 

valid seed and that it is not a duplicate). The value l 

determines the difficulty level of the puzzle. If the 

hash-algorithm H used is pre-image resistant, the client 

has no better algorithm than trying to guess x 

randomly. Therefore, the work required to solve a 

puzzle of difficulty level l is of the order 2
l
. There are a 

few variations of the general scheme above which 

allow the server to have a more fine-grained level of 

the work required by the client, for instance, by using 

multiple sub-puzzles or by giving the user a hint as to 

the starting value to guess [21]. 

A very useful characteristic of a hash-reversal-based 

scheme is that the cost paid by the server is low 

(generally a single hash computation and some 

verification) compared to the cost paid by the client. 

As noted in [35] a typical PC can perform 2
20

 hashes 

per second. However, a concern with this scheme is 

that there is a scope for disparity amongst clients with 

differing computing powers (up to 38x). Another 

concern is that the puzzle solving can be parallelized. 

However, since the attacker is going to solve the 

puzzle using a fixed (albeit large) amount of resources, 

this has generally not been considered a big problem. 

D. Time-Lock Puzzle Schemes 

Time-lock puzzles [38] were originally proposed to 

preserve information in a time capsule. The original 

goal was to ensure that a client cannot decrypt a given 

message until a given period of time into the future has 

elapsed. To ensure that a client cannot simply throw 

more computing resources to solve the problem in a 

shorter period of time, the puzzles were designed to be 



 

  
                                                                                                                                                                                                                    Page 532 

 

non-parallelizable. In the original construction, for a 

random a and difficulty l, the server asks the client to 

compute: 

b = a
2l
 (mod n) 

where n is the usual RSA modulus (the product of p 

and q, two distinct large prime numbers). If the client 

does not know the factorization of n, then the only 

known way to compute b efficiently is by l modular 

squaring of a. Because the results of the next step in 

modularization depends on the output of the previous 

step, it is not possible to parallelize this operation. The 

server can efficiently verify the same value by 

computing: 

b = a
e
(mod n) 

 

where e = 2
l
(mod (n)) and (n) = (p 1) (q 1) is the usual 

to tient function. Both (n) and e can be easily 
computed by the server in possession of factorization 
of n. Due to the non-parallelizability property, this has 
been suggested as a puzzle-based scheme for DoS 
defense [42]. 

E. Memory-Bound Puzzle schemes  
Noting the high disparity in computation between 

different clients, researchers have proposed using 

memory latency as a mechanism for resource payment 

[20, 9, 19]. Because the memory latency for accessing 

a single word from the main memory exhibits low 

disparity (5-10x) across different classes of machines, 

it is arguably a fairer puzzle mechanism. In such 

schemes, the client solves the puzzle by successively 

looking up values from a pre-computed table in the 

main-memory. Care must be taken to ensure that the 

table is not too small as it may completely fit in the 

cache of a higher-end computer. It may also not be too 

large as it may be more than the memory available to a 

lower-end device. It is also important that the memory 

access pattern (while solving the puzzle) is fairly 

random, otherwise it may lead to higher cache hits. 

Another concern is that the disparity between the 

server (in creating the puzzle) and the client (in solving 

it) is not as large as in the hash-reversal-based 

schemes. One way of hardening the puzzle is, for 

instance, by having the client solve multiple memory-

bound puzzles for every single request  

F. Bandwidth-Based Mechanisms  

In a bandwidth-based currency scheme clients use 

additional bandwidth to get access. It is often assumed 

that attackers are using all of the bandwidth available 

to them (or the maximum bandwidth they can afford to 

use without being detected by other mechanisms) to 

execute an attack, whereas legitimate clients are using 

only the resources they require to accomplish their 

less-demanding objectives. Hence legitimate clients 

have bandwidth to spare and can use this fact to reduce 

the attacker‟s chances of success. This strategy was 

introduced in] in the context of authenticated broadcast 

and extended to general Internet protocols in Two 

general strategies have been explored by researchers in 

this domain. In selective verification], clients send 

extra requests and the server selects from them 

probabilistically. The extra requests serve as a form of 

bandwidth payment that could adaptively change 

according to the severity of the attack Bandwidth 

auctions allow clients to build credit by sending bytes 

to an auction system from which the server 

periodically takes requests from clients that have built 

the most credit (in terms of bandwidth payment)  

G. Resource Fairness  

A broad design objective of many of the currency-

based defense mechanisms is to achieve Resource 

Fair-ness [40, 35]. The idea is to provide access to the 

service proportional to the resource payment by the 

client. If ri is the amount of the resource payment by 

each individual client i (for instance, computation to 

solve a puzzle), given total server (processing) 

bandwidth s, the client i would be entitled to the 

following allocation of server‟s bandwidth: Under 

such schemes, to achieve fairness in server resource 

allocation, all the clients must have little disparity in 

terms of the actual resource (currency) they own and 

are willing to spend. However, in general, different 

clients might have different resources available. For 

instance, the authors in note that there is a disparity of 

38x in terms of the time required to solve the 

computational puzzle scheme they use (com-paring a 

Nokia 6620 cell phone to a desktop PC with a Hyper-

Threaded Intel Xeon 3.20GHz processor). Since, the 

differences between memory latencies are much 

smaller (5x-10x), various memory bound puzzle 

schemes] are proposed to make the allocation fairer. 



 

  
                                                                                                                                                                                                                    Page 533 

 

H. Adaptation  

It is desirable for the currency-based mechanisms to 

adaptively require payment from clients proportional 

to the severity of the attack, i.e. the demand for 

server‟s resources. The payment must be high enough 

to guarantee service for a client, while not too high to 

incur unnecessary cost. The cost can be both on clients 

and the server. Examples of cost on the client are 

solving computationally expensive puzzles or sending 

significant amounts of dummy bytes as bandwidth 

payment. An example of cost on the server is 

allocating a high-bandwidth channel to receive 

bandwidth payments. Among the mechanisms 

proposed for achieving adaptation, the following 

general paradigms stand out: (1) auctions by the server 

(2) probabilistic selective processing at the server and 

(3) ramp-up at the client. Many of the existing 

adaptive mechanisms are based on (a variation of) the 

above paradigms. Below we provide illustrative 

examples of such mechanisms. In the context of 

puzzle-based schemes Wang et al. [41] provide an 

auction-based framework in which the server 

maintains a buffer containing client requests, which it 

processes periodically. Client i‟s request ri contains a 

puzzle solution of difficulty DIF(ri).  

As the server receives requests from clients, the buffer 

may become full. In this case, upon arrival of a new 

request rj , if DIF(rj ) is greater than the lowest 

difficulty puzzle in the queue rk, then rk is replaced 

with rj . Each client i has a valuation vi for getting 

service, which roughly translates to the maximum 

number of hash operations it is willing to perform to 

solve puzzles to get service. A client initially starts its 

requests with no solution enclosed (DIF(ri) = 0). If it 

does not get service, it increments the difficulty of the 

puzzles solution enclosed in the next request by INCR. 

This process is repeated until client gets service, or the 

required difficulty increases beyond the client‟s 

valuation. INCR is determined by vi and the maximum 

latency the client is willing to tolerate.  

The authors show that this mechanisms is efficient in 

the sense that the client can raise its bid just above the 

attacker‟s bid to win an auction. Parno et al. employ a 

similar strategy in routers that differs in terms of client 

ramp-up strategy. At at each step,. In the context of 

bandwidth-based schemes bandwidth auctions allow 

clients to build credit by sending dummy bytes to an 

accounting system and the server periodically holds 

auctions to take requests from clients that have built 

the most credit. No particular strategy for governing 

the pace of bandwidth payments by clients is 

disclosed, except it is required to be in a congestion-

controlled channel. The Adaptive Selective 

Verification bandwidth scheme [27] requires clients to 

respond to an attack by using time-out windows and 

“drop acknowledgements” from the server to 

adaptively boost request rates. The server selectively 

processes some of the requests, and sends drop 

acknowledgements for each request it denies. Drop 

acknowledgements work as a “please send more” 

message to the clients. The request rate by a client is 

doubled upon each failed attempt, up to a pre-

determined maximum level. The authors show the 

solution is efficient in terms of bandwidth usage. 

III. RESOURCE INFLATION ANALYSIS 

Most systems are designed with an approximate or 

exact expectation as to how its users would interact 

with them. Such an assumption could particularly be 

dangerous if the users can gain significant advantages 

by taking actions outside of the presumed behavior 

model. In this section we discuss how „thinking out of 

the box‟ by some users of a system can result in 

unexpected surprises. In particular, we focus on cases 

where a limited set of users are willing to engage in 

such an activity, whereas a large number of ordinary 

users may not have the resources or permissions to do 

so. We mention examples where this can result in 

security breaches and focus on the possibility of 

resource inflation in currency-based DoS 

countermeasures.  



 

  
                                                                                                                                                                                                                    Page 534 

 

We provide a simple analysis of resource inflation in 

these mechanisms and specifically enumerate feasible 

resource inflation attacks on puzzle-based and 

bandwidth-based mechanisms. 

A. Thinking out of the Box: Resource Inflation  

There exist many examples in today‟s systems where a 

user can use out-of-the-box solutions to either gain a 

significant advantage over other users, or violate 

fundamental safety properties of a system. A prime 

example is the differential power analysis (DPA) 

attack on smart cards [28]. In a DPA attack, the 

attacker collects power consumption measurements 

from a tamper resistent device (e.g. a smart card) to 

find secret keys embedded in the device. This kind of 

attack was either unknown, or disregarded as a serious 

threat at the design time. It is also not easy to execute 

for the majority of non-sophisticated users of smart 

cards. Nevertheless, it has been shown that this threat 

is serious and needs to be addressed. Another example 

is greedy MAC-layer behavior in wireless networks. A 

greedy host can deliberately misuse the MAC protocol 

to gain significant extra bandwidth at the expense of 

other stations [30, 37, 36]. Again, despite such 

behavior is not feasible or desirable for the majority of 

ordinary wireless users, its significance and 

consequences cannot be overlooked. In the context of 

currency-based DoS countermeasures, a goal for out-

of-the-box solutions would be to create large 

disparities in terms of access to the resource that serves 

as payment. While different defense mechanisms take 

natural disparities in resource ownership between 

clients into account (usually by trading in latency to 

get the service allocated), the problem would be 

exacerbated if the attacker can find practical ways of 

inflating its resource payment using out-of-the-box 

solutions. This helps an attacker build an advantage in 

terms of payments, and consequently the share of 

service she secures for herself. Such attempts would be 

particularly effective if repeating the same strategy is 

impractical or undesirable for legitimate clients. 

Botnets. Given the widespread existence of botnets, 

one may consider the analysis of resource inflation 

threats for DoS countermeasures unnecessary.  

We make the following argument to reject this 

perception. Almost all DoS countermeasures have 

some kind of „breakdown point,‟ which is the amount 

of resources the attackers need to have in order to 

break it. Compromising remote computers to form bots 

is not free; it entails certain risks/costs to the  attackers. 

Renting bots from botnet owners is not free either.  

Table 1: Resource Inflation Analysis. 

Now consider the following examples. First, assume 

the  number of bots required to completely break a 

particular DoS countermeasure on a server to be 

60,000. If the attacker can use resource inflation to 

mount the same attack using only 100 nodes, it in fact 

faces a „lower bar‟ in order to launch the desired 

attack. This effectively translates to higher probability 

or frequency of attacks in the long run. Second, 

imagine the largest botnet in the world to comprise 

million machines. If the botnets owners can use 

resource inflation to effectively make it have the 

power of a 600 million botnet, then this would be a 

game changer in terms of what can be done (if at all) 

to protect any internet connected resource. So, we 

think regardless of the size and ease of access to 

botnets, it is prudent to fully consider the ramification 

of resource inflation attacks. 

B.General Analysis  

Consider a server S that can process requests at the 

rate of s requests per time unit. The legitimate clients 

of this server send requests at the average rate of ql 

requests per time unit. The server is over-provisioned, 

so s > ql. Attackers send requests at an aggregate rate 

of qa per time unit in such a way that the server is 

overwhelmed, i.e. ql + qa> qa s. Assume that the server 

deploys a resource fairness scheme in which it 

allocates its processing bandwidth according to the 

corresponding resource payment by each client. In this 

scheme, if ri is the amount of the resource payment by 

each individual client i (for instance, computation to 

solve a puzzle), the client i should ideally be entitled to 

the following allocation: Therefore, if we represent the 

aggregate resource (payment) of legitimate clients and 

attackers (per time unit) 



 

  
                                                                                                                                                                                                                    Page 535 

 

Example. Consider a simplified setting in which a 

server aims to protect itself against resource exhaus-

tion attacks by asking clients to solve computational 

puzzles. Assume for simplicity that there is no 

disparity in computational power among legitimate 

clients. The attacker controls a botnet consisting of 

compromised hosts. Each compromised host has equal 

computational power to a legitimate client. The 

legitimate and botnet hosts represent 90% and 10% of 

the clientele, respectively. Under resource fairness, 

they would be entitled to an aggregate 90% and 10% 

of the server‟s processing bandwidth. Suppose the 

attacker uses the techniques in Section 4to inflate its 

resources by a factor of = 630. As a result, the 

legitimate client‟s share of the server‟s processing 

bandwidth would fall to 1:4% (from 90%), and 

attackers will get 98:6% of the server‟s capacity. We 

also investigate the outcome for = 40 and = 1300, 

corresponding to resource inflation using cloud 

computing and high-end GPUs from our experiments 

in Sections 4and 5. Table 1 summarizes allocation for 

different values of   

 

 

C. Analysis under Adaptive Schemes  

As we discussed above, in the case of a naive resource 

payment mechanism, where the clients and the attacker 

make a payment commensurate with their available 

resource in each time-slot, the effect of resource 

inflation is very detrimental to normal clients. As 

discussed in Section 2most puzzle schemes try to 

account for disparities between client resources by 

using an adaptive payment mechanism. Under such an 

adaptive scheme, if the client fails to get a connection in 

a given time-slot, it re-sends a request with a higher 

payment (typically twice as much [35, 27]). It takes 

clients more time to make successive resource 

payments, thereby increasing the time to get service. 

This is also referred to as the connection establishment 

time. In Portcullis, the authors analyze the connection 

establishment time for a given client for their adaptive 

scheme.  

Under the assumption that all client and attacker nodes 

have uniform computational resources, the authors 

characterize the expected time for a client to traverse a 

bottleneck link as O(nm), where nm is the number of 

malicious hosts. In fact, they show that if the server has 

no external ways of distinguishing legitimate senders 

from malicious attackers, then there is always an 

attacker strategy such that the expected time for a 

legitimate sender is (nm). The analysis above is done 

under the assumption of uniform attacker and client 

nodes. If we have a resource inflation of at each of the 

nm attacker nodes, we can equivalently treat them as if 

we have nm attacker nodes (of uniform computational 

resources). Therefore, the expected time for a legitimate 

client under the previous theorem is of order O( nm).  

For example, if in the presence of a 1000 node attack 

the connection establishment time is 100ms, with = 600 

it may be as high as 60 seconds. Unlike the assumptions 

made for the analysis, in general, the clients have non-

uniform computational resources. For instance, there is 

a difference of about 38x when computing SHA-1 

hashes between a Nokia 6620 cellphone and a Xeon 

3.2GHz based computer [35]. 

 

Inflation 

Source 

Inflation 

Factor 

Attacker 

Population 

Attacker 

Allocation 

- 0 10% 10% 

Cloud 

Computing 40 10% 81.6% 

Stock GPU 630 10% 98.6% 

High-end GPU 1300 10% 99.3% 

- 0 2% 2% 

Cloud 

Computing 40 2% 47% 

Stock GPU 630 2% 92.8% 

High-end GPU 1300 2% 96.4% 



 

  
                                                                                                                                                                                                                    Page 536 

 

Under those assumptions, we can extend the results 

regarding expected time for connection establishment to 

non-uniform clients as follows. If i is the ratio of 

computational resource between each of the nm attacker 

hosts and client i, then the expected time for the client 

to establish a connection is of order O(nm i). If there is a 

resource inflation of available to each of the attacker 

hosts, then the expected time is of order O(nm i ). Using 

the previous example, assuming a pathological case in 

which a legitimate client uses a cell-phone, while 

attackers use PCs (e.g. i = 20), the legitimate client may 

face connection establishment times as high as 1200 

seconds. 

D. Overview of Resource Inflation Threats to DoS 

Countermeasures  

We perform an extensive experimental case study on 

resource inflation attempts on puzzle-based mecha-

nisms. In particular, we focus on three avenues. First, 

we investigate the feasibility of using GPUs for 

improving puzzle-solving speeds as GPUs are 

particularly efficient in handling large numbers of 

similar operations in parallel. Second, we study the 

feasibility of speeding up puzzle solving by leveraging 

mul-tiple processors in a multi-core processor. Third, 

we consider the use of cloud computing facilities for 

parallelizing, and hence speeding up puzzle solving 

capabilities. We also explore resource inflation 

possibilities against bandwidth-based mechanisms. In 

particular, we focus on three classes of resource 

inflation possibilities. First, we study the possibility 

and implications of attacks at transport layer, and in 

particular those that ignore or exploit congestion 

control mechanisms. 

Second, we consider the effect of greedy MAC-layer 

behavior by an attacker that tries to gain a larger share 

of the bandwidth by violating the protocol in subtle 

ways. Third, we briefly discuss how using more than 

one interface for network connection can help an 

attacker inflate its resources Resource Inflation using 

GPUs  Graphics Processing Units (GPUs) are 

dedicated devices used for rendering, manipulating, 

and displaying computer graphics.  

Modern GPUs are in general very efficient at 

processing large amounts of data in parallel. Unlike the 

modern CPU which is designed to efficiently optimize 

the execution of single threaded (or not highly multi-

threaded) programs using complex out-of-order 

execution strategies, a modern GPU‟s efficiency 

comes from executing massively data-parallel 

programs. These are algorithms which perform simple 

operations on a large number of data points in parallel. 

This is often referred to as Single Instruction Multiple 

Data (SIMD) programming .Recently, there has been 

significant interest in using GPUs‟ efficiency at 

executing data parallel algorithms for non graphical 

computation. This paradigm is known as General 

Purpose GPU (GPGPU) computing or Stream 

Computing in the hands of non-graphics programmers.  

There exist multiple tool-chains that support GPGPU 

programming. Two of the most popular ones are the 

Brook/Compute Abstraction Layer (CAL) from AMD 

[12] and Compute Unified Device Architecture 

(CUDA) from Nvidia [34]. GPGPUs have been used in 

improving the speed of various programs such as 

Folding@Home [1], computational chemistry [3] as 

well as various other fields. Recently, GPUs were also 

used for finding MD5 chosen-prefix collisions [16]. 

 

Figure 1: Logical view of GPGP Architecture 

(from[13]). 

For instance, AMD‟s GPU-based architecture is 

logically represented in Figure 1.  



 

  
                                                                                                                                                                                                                    Page 537 

 

As shown in the figure, the GPU consists of a large 

number of SIMD engines. Each engine in turn consists 

of a number of thread-processors. For instance, 

AMD‟s HD4850 contains 800 thread-processor 

instances. Each thread processor unit has access to its 

own general purpose registers and can also access the 

GPU‟s memory. The thread dispatcher manages 

various threads and is invoked by the client on the 

CPU. It must be noted that threads in GPUs are not as 

analogous to processor threads on a general purpose 

computer. A GPU-based thread is a very lightweight 

thread that can be started with minimum overhead. All 

the GPU-based threads (within a single SIMD engine 

block) need to execute the same instruction (possibly 

on different input data) for maximum efficiency.  

In effect, we cannot use different threads to perform 

completely different computations on different pieces 

of data. When two (or more) threads running on a 

thread processor in an SIMD engine need to execute 

different instructions, the GPU will ensure that only 

one of the threads executes at any given time. 

Although GPUs only support this limited notion of 

parallelism, for the right kinds of processing 

algorithms GPUs offer big advantages in efficiency. 

This is both in terms of price and power consumption. 

For instance, a mid-range card such as the ATI Radeon 

HD4850 (with 800 stream processors) is under $150 

and much cheaper (although lot more inflexible) than 

buying a large number of processors. 

IV.GPGPU PROGRAMMING MODEL  

A GPU-based program is usually written in a way to 

take advantage of the inherently data parallel programs 

(such as matrix multiplication, simulations, etc.). 

Given a program, the GPU-based platform can run the 

program such that each thread of the program operate 

on a single data (or a single block of data). All of such 

threads can run simultaneously on the stream 

processors (Figure 1) as long as there are enough 

stream processors on the GPU card. In case the data 

elements are larger than the number of stream 

processors, the Thread Dispatcher manages the 

available processors between the various threads.  

For instance, consider the following snippet of code 

written in AMD‟s stream computing language: 

kernel void 

sum(float a<>, float b<>, out float c<>) 

{ 

c = a + b; 

} 

The inputs are the streams a and b and the output is the 

stream c. When this program, along with the stream 

reading and writing operations (not shown) is run, the 

GPGPU infrastructure reads the input streams from the 

main memory of the CPU into the memory of the 

GPU. Thereafter, each stream processor will run 

simultaneously and independently on a slice of the 

input, corresponding to the two input vectors and 

produces the result in the output. The net effect of this 

program is that the sum of two vectors a,b is computed 

and stored in the output vector c. If the size of the 

stream is much larger than that of the number of 

stream processors available on the card, this might take 

a few iterations to complete. Note that, although each 

of the threads is working on a different piece of data, 

they are effectively per-forming the same operation in 

each thread. This results in maximum efficiency in a 

data-parallel algorithm on a GPU. 

A. Solving Hash-Reversal Puzzles using GPUs  

We take advantage of the inherently data-parallel 

nature of the hash-reversal puzzles when solving them 

on the GPU. Hash-reversal puzzles, such as the one 

described in Section 2.1.1, can be speeded up using 

GPUs in the following two ways. In the first approach, 

we can run each individual guess for the puzzle 

solution x of the hash puzzle as an independent thread 

on the GPU. Since there is almost no data-dependent 

divergence in SHA-1, we will get close to the 

maximum efficiency when running a single puzzle 

split-up in multiple threads, and thereby speeding up 

solving of a single puzzle. The disadvantage with this 

approach is that there is a reasonable overhead 

involved in sending data to and from the card, and this 



 

  
                                                                                                                                                                                                                    Page 538 

 

overhead is shared by each solving of the puzzle In the 

second approach, given n puzzles with puzzle 

difficulty level l, we run each puzzle into a single 

thread that can be run simultaneously in the GPU (i.e., 

ideally on as many individual processors as on a given 

GPU). Each thread effectively searches a 2
l
 search 

space for the puzzle solution. It is important to note 

that, because all of the threads are running the same 

code , the GPU can run all the different threads 

simultaneously. If the hash computation were 

somehow data-divergent, i.e. different operations were 

to be performed on the data based on the values of the 

data, the GPU threads would not be as efficient. The 

only data-divergence between various puzzle solving 

threads occurs when we verify if the last l bits of the 

hash (for a given guess x) are all 0. When this occurs, 

the successful thread stalls the other threads for a few 

instructions (while storing the solution). Since this 

occurs only once per puzzle, blocking has minimal 

effect on the efficiency. 

 

Figure 2: Speed up achieved in throughput of SHA-

1-based hash-reversal puzzles on ATI HD 4850. 

Analysis: We have measured the speedup achieved in 

solving n hash-reversal based puzzles on an mid-range 

ATI Graphics card (ATI HD 4850, costs about $150). 

The speedup shown is against a PC that solves 2
20

 

SHA-1 hashes per second. The results show that an 

inflation factor of up to 630 could be achieved. We 

must also emphasize that this is not a high-end 

graphics card. We also experimented with a high-end 

graphics card (ATI Radeon HD 4870x2, costs about 

$450) that has twice the amount of streaming 

processors (1600 vs. the 800) on the card, and is also 

clocked slightly higher. Using that card, we achieved 

the inflation factor of up to 1230 for puzzle difficulty 

21 Solving Time-lock Puzzles using GPUs Time-lock 

based puzzles as are explicitly designed to be non-

parallelizeable. In effect, this means that the attacker 

cannot speed up the solving of any given individual 

puzzle. However due to the nature of GPU-based 

computation, the attacker can solve multiple time-lock 

puzzles at the same time. Although, the attacker will 

not be able to reduce the time taken to solve any 

individual puzzle, he can achieve resource inflation by 

solving a different time-lock puzzle in each individual 

thread of the GPU stream-computing processor.Figure 

3acompares the results of performing modular 

exponentiations of 32-bit integers on a Core2 Duo 

Processor versus a ATI Radeon 4870x2 GPU. The x-

axis measures the puzzle difficulty and the y-axis gives 

the throughput in terms of puzzles solved per second. 

The results are averaged over 2000 puzzles per run. 

Note that the y-axis is in log-scale. 

 

Figure 3: (a) Time-lock puzzle throughputs 

between ATI Radeon HD 4870x2 and Core2 Duo 

2.4GHz. (b) Time-lockpuzzle inflation comparing 

GPU versus the CPU. 

Figure 3bprovides the resource inflation achieved by 

the GPU versus the CPU for the results in Fig-ure 3a. 

Note that we achieve an inflation factor of up to 158 

for some parameters. 

C. Attacks on Other Puzzle-Based Schemes  

Since the hash-based puzzle schemes are inherently 

parallel in nature, the speed at which they are solved  



 

  
                                                                                                                                                                                                                    Page 539 

 

can be significantly improved by effectively solving 

the sub-puzzles on different computational resources. 

Another significant class of puzzle schemes proposed 

are the memory-bound puzzle schemes ([20, 9, 19]). 

The key idea under such schemes is that the disparity 

in the memory latency between different machines is 

much smaller than the the disparity in terms of the 

CPU power between different machines. While this is 

true for CPUs, we note that the memory latency 

between the GPU processor and its on-board memory 

is slightly lower than the latency between the CPU and 

its memory. Also, a single instance of a memory 

puzzle does not have enough of a disparity (between 

the server‟s puzzle creation and the client‟s puzzle 

solving), so usually the puzzle is hardened by having 

the client solve multiple instances simultaneously.A 

strategy employed by [19] aims to stop parallelization 

of multiple individual memory-bound puzzles. 

However, this hardening scheme stops parallelization 

only under the assumption that there is no effective 

way to synchronize between multiple puzzle-solving 

threads (which is not the case for GPU-based 

computation). We believe that some of these puzzle 

schemes need to be analyzed more thoroughly to see if 

they are amenable to a GPU-based resource inflation 

attack. 

D. GPU Utilization by Legitimate Clients  

At this juncture, it may be argued that the legitimate 

clients can also utilize GPUs to achieve parity with an 

attacker using GPUs. This, however, is not always a 

feasible counter-measure for a number of 

reasons.Firstly, many of the clients may not have a 

GPU present to solve the puzzles. Even if they have a 

GPU, they may not be available to the user for general 

purpose computation. Typically these are the same 

clients which are amongst the less powerful nodes in 

the network such as cell phones or older desktops. 

Furthermore, the disparity in computational power of 

GPUs is vast as well. By making legitimate clients 

with GPUs increase their puzzle throughput, we will 

make it harder for those clients that either do not have 

access to a GPU or have GPUs with lesser 

computational power to compete with the rest of the 

clients. Secondly, in the puzzle schemes that are 

resitant to parallelization, increased throughput in the 

puzzle solving does not help the client get a connection 

faster. The attacker can utilize the increased puzzle-

solving throughput because his goal is to occupy the 

largest number of available connections. The client 

may only be interested in getting one of his requests 

accepted by the server and therefore solving multiple 

puzzles at a given point may not help his cause. 

Furthermore, if we allow the legitimate clients to use 

GPUs to solve multiple puzzles simultaneously, the 

server will have to generate and verify a lot more 

puzzles. Depending on the puzzle-scheme, it will also 

need to store a lot more of the valid puzzle solutions to 

prevent replays. 

V.OTHER RESOURCE INFLATION THREATS 

In this section we study other avenues for resource 

inflation on puzzle-based mechanisms and bandwidth-

based mechanisms. On puzzle-based mechanisms, we 

focus on the use of multi-core processors and cloud 

computing for resource inflation. On bandwidth-based 

mechanisms, we focus on the possibility of misbe-

havior in the MAC layer and transport layer, as well as 

the possibility of using multiple interfaces by the 

attacker. 

A.Hash-reversal Puzzle-based Mechanisms 

We describe and analyze two ways by which one can 

speed-up the solving of hash-reversal puzzle schemes, 

namely the use of multi-core processors and cloud 

computing. Although the attacks provided in this 

section provide a cause for concern, they may not pose 

threats as serious as those by GPUs (see Section 4). 

Multi-Core Processors A simple way to speed up 

solving the hash-reversal puzzle scheme is to simul-

taneously utilize the cores in a multi-core processor. 

As the hash-reversal puzzle scheme is inherently 

parallelizable, the attacker can solve a hash-reversal 

puzzle of level l by splitting the search into n threads, 

where n is the number of multiple processors available 

to the system (recall that this requires the attacker to 

search the solution space of about 2
l
). In effect, the 

time taken to solve the puzzle is reduced from t on a 



 

  
                                                                                                                                                                                                                    Page 540 

 

single threaded implementation to (t=n) + c on an n-

core processor, where c is a small synchronization 

overhead.In an analysis in [35], a factor of 38x speed-

up is provided between a resource constrained Nokia 

6620 and a PC with a Xeon 3.2GHz processor. 

However, it appears that the puzzle solving algorithm 

on the Xeon processor was not parallelized. We study 

the benefits of running multiple threads for solving 

hash-reversal puzzles by implementing it on a quad-

core Intel Q6600 processor. Figure 4summarizes our 

results. Given the recent proliferation of multi-core 

processors, an attacker controlling a botnet can utilize 

this to his advantage, causing a small amount of 

resource inflation. Cloud Computing Another way for 

the attacker to achieve resource inflation is by using 

cloud computing. Various services such as Google‟s 

App Engine [23] and Amazon‟s Elastic Compute 

Cloud [11] allow users to host their web-service 

infrastructure on the cloud computing infrastructure. A 

key feature of these services is that they allow scalable 

implementations at a very competitive price. The 

attacker can effectively “hire” a cloud-based 

computation for the short duration of an attack and 

have a multiplier effect on the damage that he can 

cause, compared to what he could have achieved only 

with his existing botnet. 

The attacker can use a cloud-computing based 

implementation to outsource the puzzle solving, so that 

an individual bot in a botnet can query the cloud-based 

puzzle solver to get the solutions without using the 

limited resources on the bot (Figure 5). In effect, the 

throttling that the puzzle-scheme is supposed to 

achieve on the attacker is now no longer as effective. 

Figure 4: Time taken to solve SHA-1 based hash-

reversal puzzles on a quad-core Intel Q6600 processor 

(summed over 1000 runs). For this to be effective, 

however, the attacker must be able implement the 

cloud-based puzzle solver with low cost. Google‟s 

App Engine allows a user to host web-based 

applications written in Python or Java. In fact, it allows 

free hosting for applications along with enough 

bandwidth and CPU resource to allow around 5 

million page-views a month.  

By utilizing this free hosting service, given an account, 

the attacker can implement the puzzle solving code as 

a web-based form which returns the results to the 

puzzle parameters given in the form.We implemented 

the hash-reversal based puzzle scheme on Google‟s 

App Engine. The performance results are shown in 

Figure 6a. This test was run with 50 concurrent users 

(each asking 50 puzzles serially, for a total of 2500 

requests per puzzle difficulty). We measured the 

number of puzzles that we‟re able to solve per second. 

As shown in the figure, the performance rate was very 

good. Figure 6bshows the factor of inflation that the 

attacker using the cloud would get as compared against 

a stock PC that can compute 2
20

 hashes per second. 

This means that an attacker using a bot, can solve more 

puzzles than (s)he could using the cpu on the bot 

alone. The trade-off of course is that that attacker 

needs to expend more bandwidth to get the results.  

This may not be a problem for an attacker who uses 

exploited machines to launch an attack, whereas a 

legitimate client may not always be willing to expend 

extra bandwidth to get the same advantage.It is worth 

noting that we can parallelize solving multiple puzzles 

with the cloud based implementation. In effect, we can 

parallelize much better than a multi-core processor, by 

sending multiple puzzles (in the order of 100s to 

1000s) to different applications in the cloud at the 

same time. An attacker with enough bandwidth can 

achieve a reasonable amount of resource inflation at 

almost no computational (or economic) cost. 

Furthermore, the restrictions with respect to Google‟s 

(free) App Engine, do not apply to Amazon‟s EC2 

implementation (which is payment-based). An attacker 

willing to spend a modest amount will be able to run 

his un-interpreted executable puzzle-solving code and 

will also have a reasonable scaling power. We believe 

this would be a serious and realistic attack vector for a 

determined and resourceful attacker. However, this 

must be evaluated more thoroughly to measure the cost 

per benefit ratio. 



 

  
                                                                                                                                                                                                                    Page 541 

 

 

Figure 4: Time taken to solve SHA-1 based hash-

reversal puzzles on a quad-core Intel Q6600 

processor (summed over 1000 runs). 

For this to be effective, however, the attacker must be 

able implement the cloud-based puzzle solver with low 

cost. Google‟s App Engine allows a user to host web-

based applications written in Python or Java. In fact, it 

allows free hosting for applications along with enough 

bandwidth and CPU resource to allow around 5 

million page-views a month. By utilizing this free 

hosting service, given an account, the attacker can 

implement the puzzle solving code as a web-based 

form which returns the results to the puzzle parameters 

given in the form.We implemented the hash-reversal 

based puzzle scheme on Google‟s App Engine. The 

performance results are shown in Figure 6a. This test 

was run with 50 concurrent users (each asking 50 

puzzles serially, for a total of 2500 requests per puzzle 

difficulty). We measured the number of puzzles that 

we‟re able to solve per second. As shown in the figure, 

the performance rate was very good. Figure 6bshows 

the factor of inflation that the attacker using the cloud 

would get as compared against a stock PC that can 

compute 2
20

 hashes per second. This means that an 

attacker using a bot, can solve more puzzles than (s)he 

could using the cpu on the bot alone. The trade-off of 

course is that that attacker needs to expend more 

bandwidth to get the results. This may not be a 

problem for an attacker who uses exploited machines 

to launch an attack, whereas a legitimate client may 

not always be willing to expend extra bandwidth to get 

the same advantage. It is worth noting that we can 

parallelize solving multiple puzzles with the cloud 

based implementation. In effect, we can parallelize 

much better than a multi-core processor, by sending 

multiple puzzles (in the order of 100s to 1000s) to 

different applications in the cloud at the same time. An 

attacker with enough bandwidth can achieve a 

reasonable amount of resource inflation at almost no 

computational (or economic) cost. Furthermore, the 

restrictions with respect to Google‟s (free) App 

Engine, do not apply to Amazon‟s EC2 

implementation (which is payment-based). An attacker 

willing to spend a modest amount will be able to run 

his un-interpreted executable puzzle-solving code and 

will also have a reasonable scaling power. We believe 

this would be a serious and realistic attack vector for a 

determined and resourceful attacker. However, this 

must be evaluated more thoroughly to measure the cost 

per benefit ratio.our experiments with resource 

inflation attacks on puzzle-based schemes showed that 

an attacker can use multi-core processors, cloud 

computing, and GPUs to inflate its resource payments. 

In particular, the resource inflation attack using GPUs 

proved to create a formidable inflation factor of up to 

600x using inexpensive GPUs. Our results underscore 

the importance of analyzing such attack possibilities to 

determine whether the valid clients should match the 

inflation tech-nique, ignore it because its impact is 

small, or change to a different scheme. Furthermore, 

since the puzzle. 

 

Figure 5: Using a Cloud-based puzzle-solver to 

attack a server 

 



 

  
                                                                                                                                                                                                                    Page 542 

 

VI. CONCLUSION: 

In this paper we considered the threats from a range of 

„thinking out of the box‟ attacks against various 

currency-based DoS countermeasures. In particular, 

we introduced the concept of resource inflation attacks 

on currency-based DoS countermeasures in which the 

attackers find ways to inflate their ownership of the 

resource (payment) required for getting service. As a 

case study, we illustrated a series of resource inflation 

attacks on existing DoS mechanisms. For instance, our 

experiments with resource inflation attacks on puzzle-

based schemes showed that an attacker can use multi-

core processors, cloud computing, and GPUs to inflate 

its resource payments. In particular, the resource 

inflation attack using GPUs proved to create a 

formidable inflation factor of up to 600x using 

inexpensive GPUs. Our results underscore the 

importance of analyzing such attack possibilities to 

determine whether the valid clients should match the 

inflation tech-nique, ignore it because its impact is 

small, or change to a different scheme. Furthermore, 

since the puzzle.  

VII.REFERENCES 

[1]Folding@Home. http://folding.stanford.edu/.  

[2]IEEE 802.11 Wireless Local Area Networks. 

http://www.ieee802.org/11/.  

[3]Nvidia Computational Chemistry. 

http://www.nvidia.com/object/computational 

chemistry.html.  

[4]Two root servers targeted by botnet. PC Advisor 

(pcadvisor.co.uk), 02/07/2007.  

[5]Phish fighters floored by DDoS assault. The 

Register (theregister.co.uk), 02/20/2007.  

[6]Surge in hijacked PC networks. BBC (bbc.co.uk), 

03/19/2007.  

[7]Telegraph floored by DDoS attack. The Register 

(theregister.co.uk), 05/22/2007.  

 

[8]FBI busts alleged DDoS mafia. Security Focus 

(securityfocus.com), 08/26/2004.  

[9]M. Abadi, M. Burrows, M. Manasse, and T. 

Wobber.  Moderately hard, memory-bound functions. 

ACM Trans. Inter. Tech., 5(2):299–327, 2005. 

[10]A. Akella, S. Seshan, R. Karp, S. Shenker, and C. 

Papadimitriou. Selfish behavior and stability of the 

internet:: a game-theoretic analysis of tcp. In 

SIGCOMM ‟02: Proceedings of the 2002 conference 

on Applications, technologies, architectures, and 

protocols for computer communications, pages 117– 

130, New York, NY, USA, 2002. ACM.  

[11]Amazon Elastic Compute Cloud (Amazon EC2). 

http://aws.amazon.com/ec2/.  

[12]AMD Stream Computing. www.amd.com/stream.  

[13]AMD Stream Computing User Guide. 

http://ati.amd.com/technology/streamcomputing/.  

[14]A. Back. Hashcash - a denial of service counter-

measure. Technical report, 2002.  

[15]J. Bellardo and S. Savage. 802.11 denial-of-

service attacks: real vulnerabilities and practical solu-

tions. In SSYM‟03: Proceedings of the 12th 

conference on USENIX Security Symposium, pages 

2–2, Berkeley, CA, USA, 2003. USENIX Association.  

[16]M. Bevand. Md5 chosen-prefix collisions on gpus. 

Black Hat USA, 2009.  

[17]N. Borisov. Computational puzzles as sybil 

defenses. In P2P ‟06: Proceedings of the Sixth IEEE 

International Conference on Peer-to-Peer Computing, 

pages 171–176, Washington, DC, USA, 2006. IEEE 

Computer Society.  

[18]D. Dean and A. Stubblefield. Using client puzzles 

to protect tls. In SSYM‟01: Proceedings of the 10th 

conference on USENIX Security Symposium, pages 

1–1, Berkeley, CA, USA, 2001. USENIX Association.  

[19]S. Doshi, F. Monrose, and A. D. Rubin. Efficient 

memory bound puzzles using pattern databases. In 

ACNS, pages 98–113, 2006.  



 

  
                                                                                                                                                                                                                    Page 543 

 

[20]C. Dwork, A. Goldberg, and M. Naor. On 

memory-bound functions for fighting spam. 2003. 

Authors: 

 

T. Ramya Priya 

PG Scholar IN Department CS(COMPUTER 

SCIENCE) Sri Indu Institute of Engg. & Tech. 

 

 

Yada Sunitha 

Associate Professor, Department CSE (COMPUTER 

SCIENCE AND ENGINEERING ) Sri Indu Institute 

of Engg. & Tech. 

 

 
Dr. I.Satyanarayana 

Completed B.E-Mechanical Engg. from Andhra 

University, M.Tech Cryogenic Engg. Specilization-IIT 

Kharagpur, Ph.D-Mechanical Engg.-JNTUH, 

Currently working as an Principal at Sri Indu Institute 

of Engg. & Tech, Sheriguda(Vi), IBP(M),RR Dist. 


