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Abstract: 

Here a new approach is proposed to study the 

performance of graph-based semi-supervised learning 

methods, under the assumptions that the dimension of 

data p and their number n grow large at the same rate 

and that the data arise from a Gaussian mixture model. 

Unlike small dimensional systems, the large 

dimensions allow for a Taylor expansion to linearize 

the weight (or kernel) matrix W, thereby providing in 

closed form the limiting performance of semi-

supervised learning algorithms. This notably allows to 

predict the classification error rate as a function of the 

normalization parameters and of the choice of the 

kernel function. Despite the Gaussian assumption for 

the data, the theoretical findings match closely the 

performance achieved with real datasets, particularly 

here on the popular MNIST database. 
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Introduction: 

Semi-supervised learning (SSL) methods use small 

amounts of labeled data along with large amounts of 

unlabeled data to train prediction systems. Such 

approaches have gained widespread usage in recent 

years and have been rapidly supplanting supervised 

systems in many scenarios owing to the abundant 

amounts of unlabeled data available on the Web and 

other domains. Annotating and creating labeled 

training data for many predictions tasks is quite 

challenging because it is often an expensive and labor-

intensive process.  

 

 

On the other hand, unlabeled data is readily available 

and can be leveraged by SSL approaches to improve 

the performance of supervised prediction systems. 

There are several surveys that cover various SSL 

methods in the literature. The majority of SSL 

algorithms are computationally expensive; for 

example, transductive SVM. Graph-based SSL 

algorithms are a subclass of SSL techniques that have 

received a lot of attention recently, as they scale much 

better to large problems and data sizes. These methods 

exploit the idea of constructing and smoothing a graph 

in which data (both labeled and unlabeled) is 

represented by nodes and edges link vertices that are 

related to each other. Edge weights are defined using a 

similarity function on node pairs and govern how 

strongly the labels of the nodes connected by the edge 

should agree.  

 

Graph-based methods based on label propagation  

work by using class label information associated with 

each labeled “seed” node, and propagating these labels 

over the graph in a principled, iterative manner. These 

methods often converge quickly and their time and 

space complexity scales linearly with the number of 

edges |E| and number of labels m. Successful 

applications include a wide range of tasks in computer 

vision information retrieval (IR) and social networks  

and natural language processing (NLP); for example, 

class instance acquisition and relation prediction, to 

name a few. Several classification and knowledge 

expansion type of problems involve a large number of 

labels in real world scenarios. For instance, entity-

relation classification over the widely used Freebase 

taxonomy requires learning over thousands of labels 

which can grow further by orders when extending to 
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open-domain ex- traction from the Web or social 

media; scenarios involving complex overlapping 

classes or fine-grained classification at large scale for 

natural language and computer vision applications . 

Unfortunately, existing graph-based SSL methods 

cannot deal with large m and |E| sizes. Typically 

individual nodes are initialized with sparse label 

distributions, but they become dense in later iterations 

as they propagate through the graph. Talukdar and 

Cohen  recently proposed a method that seeks to 

overcome the label scale problem by using a Count-

Min Sketch  to approximate labels and their scores for 

each node. This reduces the memory complexity to 

O(logm) from O(m). They also report improved 

running times when using the sketch-based approach. 

However, in real world applications, the number of 

actual labels k associated with each node is typically 

sparse even though the overall label space may be 

huge; i.e., k < m. Cleverly leveraging sparsity in such 

scenarios can yield huge benefits in terms of efficiency 

and scalability. While the sketching technique from 

approximates the label space succinctly, it does not 

utilize the sparsity (a naturally occurring phenomenon 

in real data) to full benefit during learning. 

 

Related Work: 

In many real world classification tasks, the number of 

labeled instances is very few due to the prohibitive 

cost of manually labeling every single data point, 

while the number of unlabeled data can be very large 

since they are easy to obtain. Traditional classification 

algorithms, known as supervised learning, only make 

use of the labeled data, therefore prove insufficient in 

these situations. To address this problem, semi-

supervised learning has been developed, which makes 

use of unlabeled data to boost the performance of 

supervised learning. In particular, graph-based semi-

supervised learning algorithms have proved to be 

effective in many applications, such as hand-written 

digit classification [Zhu et al., 2003; Zhu et al., 2005], 

medical image segmentation [Grady and Funka-Lea, 

2004], word sense disambiguation [Niu, Ji and Tan, 

2005], image retrieval [He et al., 2004], etc.  

Compared with other semi-supervised learning 

methods, such as TSVM [Joachims, 1999], which 

finds the hyperplane that separates both the labeled 

and unlabeled data with the maximum margin, graph-

based semi-supervised learning methods make better 

use of the data distribution revealed by unlabeled data. 

In graph-based semi-supervised learning, a weighted 

graph is first constructed in which both the labeled and 

unlabeled data are represented as vertices. Then many 

of these methods can be viewed as estimating a 

function on the graph [Zhu, 2005]. Based on the 

assumptions that nearby points in the feature space are 

likely to have the same label, the function is defined to 

be locally smooth and consistent with the labeled data. 

Finally, the classification labels are obtained by 

comparing the function value and a pre-specified 

threshold. For example, in the Gaussian random fields 

and harmonic function method, the learning problem is 

formulated in terms of a Gaussian random field on the 

graph, and the mean of the field serves as the function 

[Zhu et al., 2003].  

 

Another example is the local and global consistency 

method, in which the function at each point is 

iteratively determined by both the information 

propagated from its neighbors and its initial label 

[Zhou et al., 2004]. Yet another example is the graph 

mincut method whose function corresponds to 

partitioning the graph in a way that roughly minimizes 

the number of similar pairs of examples that are given 

different labels [Blum and Chawla, 2001]. In the 

mincut method, the function can only take binary 

values. Up till now, graph-based semi-supervised 

learning methods are generally approached from the 

discriminative perspective [Zhu, 2005] in that the 

function on the graph corresponds to posterior 

probabilities in one way or another. In the 

discriminative setting, however, the use of unlabeled 

data does not necessarily guarantee better decision 

boundaries. In addition, there is no clear explanation 

why the function on the graph should correspond to 

posterior probabilities from statistics point of view. In 

this paper, we propose a new graph-based semi-
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supervised learning method from the generative model 

perspective. Specifically, the class conditional 

probabilities and the class priors are estimated from 

the weighted graph. The potential advantages involve 

several aspects: first, it can be theoretically justified 

that in the ideal cases where the two classes are 

separable, the output functions in terms of certain 

eigenvectors of the graph converge to the class 

conditional probabilities as the number of training data 

goes to infinity. In non-ideal cases, our functions still 

provide a good estimate of the class conditional 

probabilities. Finally, the estimated class priors make 

use of both the labeled and unlabeled data, which 

compensate for the lack of label information in many 

practical situations. Experimental results show that our 

approach leads to better performance than other 

existing graph-based methods on a variety of datasets. 

Hence we can claim both stronger theoretical 

justification and better empirical results. 

 

System Architecture 

Fig: Semi-Supervised Learning 

 

Implementation 

Graph SSL Optimization 

We learn a label distribution ˆ Y by minimizing the 

convex objective function: 

 

C(Ŷ) =μ1 8vv| Ŷv − Yv |2
2

vϵv1
 

           + μ2  wvu| Ŷv − Ŷu |2
vϵV ,uϵN(v)                        (1) 

          +  μ3     | Ŷv − U |2
2

vϵv  

s.t.  Ŷvl
L
l=1 =1,Vv 

 

where N(v) is the (incoming) neighbor node set of the 

node v, and U is the (uniform) prior distribution over 

all labels. The above objective function models that: 1) 

the label distribution should be close to the gold label 

assignment for all the seeds; 2) the label distribution of 

a pair of neighbors should be similar measured by their 

affinity score in the edge weight matrix; 3) the label 

distribution should be close to the prior U, which is a 

uniform distribution. The setting of the hyper 

parameters μi will be discussed. The optimization 

criterion is inspired from  and similar to some existing 

approaches such as Adsorption  and MAD  but uses a 

slightly different objective function, notably the 

matrices have different constructions. In Section 5, we 

also compare our vanilla version against some of these 

baselines for completeness. The objective function in 

Equation 1 permits an efficient iterative optimization 

technique that is repeated The objective function in 

Equation 1 permits an efficient iterative optimization 

technique that is repeated 2The graph G can be 

directed or undirected depending on the task. 

Following most existing works in the literature, we use 

undirected edges for E in our experiments. until 

convergence. We utilize the Jacobi iterative algorithm 

which defines the approximate solution at the (i+1)th 

iteration, given the solution of the (i)th iteration as 

follows: 

 

Ŷvl
(i)

= 
1

Mvl
(μ1svvYvl +μ2      wvuuϵN(v) Ŷul

(i=1)
+ μ3Ul  ) 

Mvl  = μ1svv+ μ2  wvuuϵN(u) + μ3                                                   

(2) 

 

where i is the iteration index and Ul =
1

m
  which is the 

uniform distribution on label l. The iterative procedure 

starts with   Ŷvl
(0)

 vl which is initialized with seed label 

weight Yvl if v ϵ Vl, else with uniform distribution  
1

m
. 

In each iteration I,   Ŷvl
(i)

 vl aggregates the label 

distribution Ŷv
(i−1)

 at iteration i−1 from all its 

neighbors uϵN(v). More details for deriving the update 

equation can be found in.  
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We use the name EXPANDER to refer to this vanilla 

method that optimizes Equation 1. DIST-

EXPANDER: Scaling To Large Data In many 

applications, semi-supervised learning becomes 

challenging when the graphs become huge. To scale to 

really large data sizes, we propose DISTEXPANDER, 

a distributed version of the algorithm that is directly 

suited towards parallelization across many machines. 

We turn to Pregel and its open source version. Graph 

as the underlying framework for our distributed 

algorithm. These systems follow a Bulk Synchronous 

Parallel (BSP) model of computation that proceeds in 

rounds. In every round, every machine does some local 

processing and then sends arbitrary messages to other 

machines. Semantically, we think of the 

communication graph as fixed, and in each round each 

node performs some local computation and then sends 

messages to its neighbors.  

 

The specific systems like Pregel and Giraph build 

infrastructure that ensures that the overall system is 

fault tolerant, efficient, and fast. The programmer’s job 

is simply to specify the code that each vertex will run 

at every round. Previously, some works have explored 

using MapReduce framework to scale to large graphs . 

But unlike these methods, the Pregelbased model is far 

more efficient and better suited for graph algorithms 

that fit the iterative optimization scheme for SSL 

algorithms. Pregel keeps vertices and edges on the 

machine that performs computation, and uses network 

transfers only for messages. MapReduce, however, is 

essentially functional, so expressing a graph algorithm 

as a chained MapReduce requires passing the entire 

state of the graph from one stage to the next—in 

general requiring much more communication and 

associated serialization overhead which results in 

significant network cost. 

 

Algorithm 1 DIST-EXPANDER Algorithm 

1: Input: A graph G = (V,E,W), where V = Vl ∪ Vu Vl 

= seed/labeled nodes, Vu = unlabeled nodes 

2: Output: A label distribution Ŷv = Ŷv1 Ŷv2...  Ŷvm 

for every node v ϵ V minimizing the overall objective 

function (1). Here,  Ŷvl represents the weight of label  l 

assigned to the node v. 

3: Let L be the set of all possible labels, |L| = m. 

4: Initialize Ŷvl
0  with seed label weights if vϵVl, else

1

m
. 

5: (Graph Creation) Initialize each node v with its 

neighbors N(v) = {u : (v, u) ϵ E}. 

 

6: Partition the graph into p disjoint partitions V1, 

…….,Vp, where ∪iVi = V  

7: for i = 1 to max_ iter do 

8: Process individual partitions Vp in parallel. 

9: for every node v ϵ Vp do 

10: (Message Passing) Send previous label distribution 

Ŷv
i=1 to all neighbors u ϵ N(v). 

11: (Label Update) Receive a message Mu from its 

neighbor u with corresponding label weights Ŷv
i=1u 

.Process each message M1...M|N(v)| and update 

current label distribution   Ŷv
1  iteratively using 

Equation (2). 

12:    end for 

13:        end for 

 

Results: 

In this section, we present the comparative 

experimental results on two datasets: Cedar Buffalo 

binary digits database [Hull, 1994], and a document 

genre-classification dataset [Liu et al., 2003]. Our 

algorithm is compared with two other graph-based 

semi-supervised learning methods: Gaussian random 

fields and the local and global consistency method. We 

did not compare with supervised learning methods, 

such as one nearest neighbor, since they have been 

proved to be less effective than Gaussian random 

fields based on experimental results. Here designed 

two kinds of experiments: balanced and unbalanced. In 

the balanced case, the ratio of labeled points from each 

class is always the same as the class priors; in the 

unbalanced case, if not explained otherwise, we fix the 

total number n1 of labeled points, and perturb the 

number of positive labeled points around n1/2 with a 

Gaussian distribution of mean 0 and standard deviation 

n1/10.  
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In each experiment, we gradually increase the number 

of labeled data, perform 20 trials for each labeled data 

volume, and average the accuracy at each volume 

point. 

 

6.1 Cedar Buffalo Binary Digits Database: 

We first perform experiments on Cedar Buffalo binary 

digits database [Hull, 1994] including two 

classification tasks: classifying digits “1” vs “2”, with 

1100 images in each class; and odd vs even digits, with 

2000 images in each class (400 images for each digit). 

The data we use are the same as those used in [Zhu et 

al., 2003]. Here Ø(xi ,xj) =(2πб
2
)

-d/2 
exp(-||xi-xj|| /2б

2
)  

where is the average distance between each data point 

and its 10 nearest neighbors. 

Figure 3. Balanced Classification. (a): 1 vs 2; (b) 

odd vs even 

                     
Figure 4. Unbalanced Classification. (a): 1 vs 2; (b) 

odd vs even 

 

Figure 3(a) and 3(b) show the results of the two 

classification tasks in the balanced case. The 

performance of our algorithm is comparable with 

Gaussian random fields, and both of them are much 

better than the local and global consistency method. 

Figure 4(a) and 4(b) show the results in the unbalanced 

case. In this situation, the performance of Gaussian 

random fields is much worse than in the balanced  

case, while the performance of our algorithm is 

comparable to the balanced case. This is because the 

class mass normalization procedure adopted in 

Gaussian random fields depends on the labeled set 

only to estimate the class priors; while our algorithm 

makes use of both the labeled and the unlabeled set to 

estimate the class priors. Therefore, it is more robust 

against the perturbation in the proportion of the 

positive and negative data in the labeled set. 

 

6.2 Genre Dataset: 

Genre classification is to classify the documents based 

on its writing styles, such as political articles and 

movie reviews. The genre dataset that we use consists 

of documents from 10 genres, including biographies 

(b), interview scripts (is), movie reviews (mr), product 

reviews (pr), product press releases (ppr), product 

descriptions on store websites (pd), political articles on 

newspapers (pa), editorial papers on politics (ep), news 

(n), and search results from multiple search engines 

using 10 queries (sr). We randomly select 380 

documents from each category to compose the whole 

dataset of 3800 documents. Each document is 

processed into a “tf.idf” vector, which is generated 

based on the top 10,000 most frequent words in this 

dataset after stemming, with the header and stop words 

removed. Here Ø(xi ,xj) =exp(-(1-(xi.xj/(||xi-xj|| 

/0.03),which is borrowed from [Zhu et al., 2003] and 

roughly measures the similarity between documents. 

The only difference is that we keep all the edges 

instead of keeping edges for only 10 nearest neighbors. 

Next we perform experiments to compare the three 

algorithms. The results are provided in Figure 5 and 

Figure 6 respectively.  

 
Figure 5. Classification between Random 

Partitions. (a): balanced; (b): unbalanced 
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Figure 6. Unbalanced Classification.  

(a): pa vs other; (b) b vs other 

 

For Figure 5, we randomly partition the 10 categories 

into two classes, i.e. pa, pr, sr, b, and is, vs mr, ppr, pd, 

ep and n. Figure 5(a) and 5(b) correspond to the 

balanced and unbalanced cases respectively. In the 

balanced case, Gaussian random fields are better than 

our algorithm and the local and global consistency 

method. This might be because the function Ø(xi 

,xj)does not have some of the nice properties required 

by Theorem 2. However, in the unbalanced case, 

Gaussian random fields tend to suffer a lot. On the 

contrary, our algorithm is quite robust despite of the 

perturbation. In Figure 6, we try to classify pa and b 

against all the other categories. In these experiments, 

the class priors are 0.1 for the positive class and 0.9 for 

the negative class. However, here we provide equal 

numbers of positive and negative points in the labeled 

set. From the figures, we can see that the performance 

of our algorithm is rather stable, while the performance 

of both Gaussian random fields and the local and 

global consistency method is largely affected by the 

misleading labeled set, since they only depend on the 

labeled set to estimate the class priors, either explicitly 

or implicitly. 

 

Conclusion and Future Work: 

In this paper, we propose a novel graph-based semi-

supervised learning method to estimate both the class 

conditional probabilities and the class priors. It is a 

generative model, in contrast to existing graph-based 

methods, which are essentially discriminative. In the 

ideal case, the estimated class conditional probabilities 

have been proved to converge to the true value.  

In the general case, our algorithm can still output 

reasonable estimates of the class conditional 

probabilities. For data points outside the training set, 

the class conditional probabilities are estimated via 

kernel regression. When estimating the class priors, we 

effectively use the unlabeled data to make up for the 

labeled data with unrepresentative class prior 

distributions. Experimental results on two datasets 

demonstrate the superiority of our algorithm over 

recent existing graph-based semi-supervised learning 

methods, especially when the proportion in the labeled 

set is not the same as the class priors. In our 

experiments, we notice that in some cases, adding even 

a single labeled point into the labeled set brings about 

significant improvement in classification accuracy; 

while in other cases, adding many labeled points into 

the labeled set does not help improve the performance. 

Currently we are incorporating active learning into our 

framework. Particularly, we are interested in 

determining when to invoke active learning (not just 

which instances to label) in order to achieve the 

biggest gain while minimizing incremental labeling 

cost. 
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